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Abstract

We study a family of singular perturbation problems of the kind

inf

{
1
ε

∫

Ω

f (u, ε∇u, ερ) dx:
∫

Ω

u = m0,

∫

Ω

ρ = m1

}

,

where u represents a fluid density and the non-negative energy density f vanishes only for u = α or u = β. The novelty of the
model is the additional variable ρ ! 0 which is also unknown and interplays with the gradient of u in the formation of interfaces.
Under mild assumptions on f , we characterize the limit energy as ε → 0 and find for each f a transition energy (well defined when
u ∈ BV(Ω; {α,β}) and ρ is a measure) which depends on the n − 1 dimensional density of the measure ρ on the jump set of u. An
explicit formula is also given.
 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

Bubbles, foams and the role of surfactants have been the object of focused study in the last years; a surfactant is,
roughly speaking, a substance which may be added to a mixture of two phases (gas/fluid, fluid/fluid, even metallic
foams) to help with the formation of interfaces, by locally lowering surface tension.

Several Ginzburg–Landau-type models exist in the literature (see e.g. [3–6,8–10,12]), based on the study of the
molecular interaction energies of the two phases and the surfactant. Due to the amphiphilic character of tensioactives,
the energy should take into account the gradient of the orientation of surfactant molecules, but as this gives rise to
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highly complex numerical problems, in many instances (see [5,8–10,12]) only the average concentration of surfactant
is considered, thus leading to a bulk energy of the form

∫
f (u,∇u,ρ) dx

where u is the phase parameter (i.e. a scalar function which takes two different prescribed values, say α and β , in the
two phases) and ρ is the density of the surfactant.

As an example, a recent paper [5] by Fonseca, Morini and Slastikov uses a particular model by Perkins, Sek-
erka, Warren and Langer which is a modification of the standard van der Waals–Cahn–Hilliard model for fluid phase
transition, namely their energy is given by

∫

Ω

1
ε
W(u) + ε|∇u|2 + ε

(
ρ − |∇u|

)2
dx, (1.1)

where W is a double-well potential and ε is the scaling parameter that is commonly used to drive the system towards
phase separation. Fonseca, Morini and Slastikov deduce from the model the limit energy at the interface between two
phases.

In this paper we deal with a very general class of energy functionals, and under mild assumptions we derive the
limit energy on the interface, depending on the bulk energy density f ; to be more precise, let α < β be two real
numbers and let f : R × Rn × [0,+∞[ → [0,+∞[ be a continuous function satisfying

(H1) f (s,0,0) = 0 ⇐⇒ s ∈ {α,β};
(H2) for all s ∈ R, f (s, ·,·) is convex;

(H3)






for all s ∈ R, f (s, z,γ ) ! f (s,0,0),

for all s ∈ R, z *→ f (s, z,0) attains a strict minimum at z = 0,

for all s ∈ R, ∂f
∂z (s,0,0) = 0,

if s ∈ {α,β}, ∂f
∂γ (s,0,0) = 0;

(H4) there exist C,C′ > 0 such that f (s,0,0) ! 1
C |s| − C′.

If Ω is a bounded open set with Lipschitz boundary, the total energy we attach to the system reads

Fε(u,ρ) =
{ 1
ε

∫
Ω f (u, ε∇u, ερ) dx if (u,ρ) ∈ W 1,1(Ω) × L1

+(Ω),

+∞ otherwise.
(1.2)

Due to the scaling and to conditions (H1)–(H3) we expect that if a sequence (uε,ρε) is uniformly bounded in energy
(that is supε Fε(uε,ρε) < +∞), then up to a subsequence we will have uε ⇀ u and ρε ⇀ ρ where u(x) ∈ {α,β} and
ρ ∈ M+(Ω) is a non-negative Radon measure supported by Ω . We will show that in fact the convergence of uε is
strong in L1(Ω) and the limit u belongs to the space BV(Ω; {α,β}): thus u is of the form u = α1A +β1Ω\A where A

is a set with finite perimeter. Then the total limit energy will be concentrated on the interface ∂A (essential boundary
of A). The physical interpretation of the above is that the two phases actually separate, and all the energy resides at
the interface.

The interest now lies in describing this energy; for this task we introduce the conical envelope of f defined by:

fc(s, z,γ ) := inf
λ>0

1
λ

f (s,λz,λγ ), (1.3)

and then, for all (z,Θ) ∈ Rn × [0,+∞[, we set

σ (z,Θ) := inf

{ β∫

α

fc

(
s, z,γ (s)

)
ds: γ ∈ L1(α,β;R+),

β∫

α

γ (s) ds "Θ

}

. (1.4)

The properties of fc and σ are summarized in Section 3, see Lemmas 3.2 and 3.4. It turns out that the value σ (z,Θ)

given in (1.4) is the reduced expression for the minimum of a one-dimensional problem in which u varies between
α and β and the density ρ has a prescribed integral. The direction z figures out the normal to the transition layer. As
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observed in many other scalar models (see the forefather [11] and many of the references in [5]) the transition profile
will be unidimensional. If for a two-valued BV function α1A + β1Ω\A we denote by Su the jump set of u, that is
the reduced boundary of A inside Ω , and by νu the normal to Su pointing towards higher values of u, for any such
function and for any non-negative Radon measure ρ on Ω we define

F(u,ρ) :=
∫

Su

σ
(
νu(x),ρ0(x)

)
dHn−1, (1.5)

where

ρ0(x) = dρ

d(Ju)
(x), Ju := Hn−1 Su. (1.6)

We remark that according to the previous formulas the only portion of surfactant which plays a role in the total energy
concentrates at the interface, that is it has a density with respect to the singular surface measure.

After some preliminary material in Section 3, we will prove in Section 4 the Γ -convergence of Fε to F and as an
immediate corollary we obtain the following result:

Theorem 1.1. Assume that m1 > 0 and that α|Ω| < m0 < β|Ω|. Let (uε,ρε) be an optimal pair (possibly up to a
small error vanishing as ε → 0) for the minimum problem

inf
{

1
ε

∫

Ω

f (u, ε∇u, ερ) dx:
∫

Ω

u = m0,

∫

Ω

ρ = m1

}
.

Then the sequence (uε,ρε) is relatively compact for the normed topology of L1(Ω) times the weak convergence in
M+(Ω), and any cluster point (ū, ρ̄) belongs to BV(Ω; {α,β}) × M+(Ω) and solves the problem

inf
{
F(u,ρ): (u,ρ) ∈ BV

(
Ω; {α,β}

)
× M+(Ω),

∫

Ω

udx = m0,

∫

Ω

ρ = m1

}
.

To prove one of the inequalities involved in our main result (Theorem 4.1), we will introduce an integral represen-
tation formula for the relaxed functional of

∫
Ω fc(u,∇u,ρ) dx on BV × M+. Instead, the other inequality requires

lengthy technical approximation arguments to find and implement an optimal transition profile.
We remark that the definition (1.4) of σ may seem too difficult to handle to be of any practical use, but in Section 2

we provide an explicit formula which helps with computing the function σ without solving the variational problem
in (1.4), and we apply it to the study of some particular cases and a discussion on the underlying physical models
including the one proposed in [5]. Due to the interest of these considerations for the applications, we placed this
section right after the introduction, even though we will have to refer to some material covered later on.

To conclude this introduction, we emphasize that in this paper we give a mathematical foundation to a large class of
surfactant-driven energies and that the approximation procedure we propose may be usefully applied for the numerical
treatment of interface problems in the presence of a surfactant.

2. A representation formula, examples and comments

In this section we will analyze in deeper detail the properties of the integrand σ (z,Θ) which describes the interface
energy arising from our model. As will be proved in Lemma 3.4, the function σ (z,Θ) given by (1.4) is convex, lower
semicontinuous and 1-homogeneous on Rn × R+. Moreover σ (z, ·) is monotone non-increasing. In the following we
extend the definition of σ to all of Rn+1 by setting

σ (z,Θ) = +∞ if Θ < 0,

which obviously preserves the previous properties of σ .
Explicit computations are not an easy task. However we found a quite simple formula for the partial Legendre–

Fenchel conjugate of σ with respect to the variable Θ , that is the function σ ∗(z,Θ∗) given by

σ ∗(z,Θ∗) = sup
Θ∈R

[
Θ∗Θ − σ (z,Θ)

]
.
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This formula will be helpful in order to study the differentiability of σ (z, ·). Notice that, as a convex and l.s.c. func-
tion on the real line, σ (z, ·) can be recovered from σ ∗(z, ·) through the biconjugate formula σ (z,Θ) = sup{ΘΘ∗ −
σ ∗(z,Θ∗): Θ∗ ∈ R}. Analogously, we denote by f ∗

c (s, z, ·) the (partial) Legendre–Fenchel conjugate of fc(s, z, ·).
We also denote by ∂σ (z,Θ) the partial subdifferential defined by

∂σ (z,Θ) =
{
Θ∗: σ (z,Θ) + σ ∗(z,Θ∗) =ΘΘ∗}.

Since σ = +∞ for Θ < 0, we have that ∂σ (z,0) = ]−∞, τ ] where τ = σ ′(z,0+) is the slope at 0 of σ (z, ·).

Lemma 2.1. For any z ∈ Rn

σ ∗(z,Θ∗) =
{∫ β

α f ∗
c (s, z,Θ∗) ds if Θ∗ " 0,

+∞ if Θ∗ > 0.
(2.1)

Proof. As σ is bounded, see (3.14), we immediately infer that σ ∗(z,Θ∗) = +∞ whenever Θ∗ > 0. Thus from now
on we concentrate on the case Θ∗ " 0. We get from definition (1.4)

σ ∗(z,Θ∗) = sup
Θ!0

[
Θ∗Θ − σ (z,Θ)

]

= sup
Θ!0

[

Θ∗Θ − inf

{ β∫

α

fc

(
s, z,γ (s)

)
ds: γ ∈ L1

+,

β∫

α

γ (s) ds "Θ

}]

= sup
Θ!0

[

sup
γ∈L1([α,β];R+),

∫ β
α γ (s) ds"Θ

(

Θ∗Θ −
β∫

α

fc

(
s, z,γ (s)

)
ds

)]

= sup
γ∈L1([α,β];R+)

[

sup
Θ!∫ β

α γ (s) ds

(

Θ∗Θ −
β∫

α

fc

(
s, z,γ (s)

)
ds

)]

.

Since Θ∗ " 0, it is never convenient to take Θ >
∫ β
α γ (s) ds. Thus we obtain

σ ∗(z,Θ∗) = sup
γ∈L1([α,β];R+)

[

Θ∗
β∫

α

γ (s) ds −
β∫

α

fc

(
s, z,γ (s)

)
ds

]

= sup
γ∈L1([α,β];R+)

β∫

α

[
Θ∗γ (s) − fc

(
s, z,γ (s)

)]
ds

=
β∫

α

sup
γ (s)!0

[
Θ∗γ (s) − fc

(
s, z,γ (s)

)]
ds

=
β∫

α

f ∗
c (s, z,Θ∗) ds,

where in the third line we interchange “sup” and “integral” (see [2], Theorem VII.7). !

We remark that, despite the function f ∗
c may very well be finite also for some positive values of Θ∗ (see Exam-

ple 2.5), the domain of σ (z, ·), and thus of ∂σ (z, ·), lies in ]−∞,0]. As a consequence of Lemma 2.1 we have:
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Lemma 2.2. Let z ∈ Rn, Θ ! 0 and Θ∗ < 0. Then Θ∗ ∈ ∂σ (z,Θ) if and only if there exists γ ∈ L1([α,β];R+) such
that

β∫

α

γ (s) ds "Θ, Θ∗ ∈ ∂fc

(
s, z,γ (s)

)
for a.e. s ∈ [α,β]. (2.2)

In particular

∂σ (z,0) =
⋂

s∈[α,β]
arg minf ∗

c (s, z, ·) =
]
−∞, τ (z)

]
,

where τ (z) = infs∈[α,β] f ′
c(s, z,0+) and f ′

c(s, z,0+) is the slope at 0 of fc(s, z, ·).

Notice that this lemma ensures the existence of an optimal γ associated with Θ provided ∂σ (z,Θ) contains a
negative element Θ∗. The special case Θ∗ = 0 is discussed later in Remark 2.4.

Proof. If γ satisfies (2.2), then

σ (z,Θ) "
β∫

α

fc

(
s, z,γ (s)

)
ds =

β∫

α

[
Θ∗γ (s) − f ∗

c (s, z,Θ∗)
]
ds

"ΘΘ∗ − σ ∗(z,Θ∗),

showing that Θ∗ ∈ ∂σ (z,Θ). Remark that this implication holds also if Θ∗ = 0.
Conversely, assume that Θ∗ ∈ ∂σ (z,Θ) with Θ∗ < 0; we begin with the case Θ > 0. As we will see in Lemma 3.5,

for every ε > 0 there exists γε(s) such that

β∫

α

fc

(
s, z,γε(s)

)
ds " σ (z,Θ) + ε,

β∫

α

γε(s) ds =Θ.

Set hε(s) := fc(s, z,γε(s))+f ∗
c (s, z,Θ∗)−Θ∗γε(s). Then by Lemma 2.1 the function f ∗

c (·, z,Θ∗) is integrable and

β∫

α

hε(s) ds " ε+ σ (z,Θ) + σ ∗(z,Θ∗) −ΘΘ∗ = ε.

As in addition hε and fc are nonnegative, we infer that hε → 0 in L1([α,β]). Recalling that Θ∗ < 0, we are led to

0 " γε " 1
−Θ∗

[
hε − f ∗

c (·, z,Θ∗)
]
.

Thus the sequence γε is equiintegrable and therefore weakly relatively compact in L1([α,β)]. Let γ be a weak cluster
point. Then limε→0

∫ β
α γε(s) ds =

∫ β
α γ (s) ds and, since fc(s, z, ·) is convex continuous, we have by the classical

weak lower semicontinuity property of convex integral functionals

lim inf
ε→0

β∫

α

fc

(
s, z,γε(s)

)
ds !

β∫

α

fc

(
s, z,γ (s)

)
ds.

Therefore

0 = lim
ε→0

β∫

α

hε(s) ds !
β∫

α

[
fc

(
s, z,γ (s)

)
+ f ∗

c (s, z,Θ∗) −Θ∗γ (s)
]
ds ! 0,

and we conclude that γ (s) satisfies (2.2).
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Now let Θ = 0: in this case we obviously have γ ≡ 0 and condition (2.2) reduces to Θ∗ ∈ ∂fc(s, z,0) for a.e. s ∈
[α,β]. By Lemma 2.3, we have ∂fc(s, z,0) = arg minf ∗

c (s, z, ·) = ]−∞, τ (s)] where

τ (s) := f ′
c(s, z,0+) = inf

t>0

fc(s, z, t)

t
.

The continuity of fc, proved in Lemma 3.2, implies that τ (s) is upper semicontinuous. Thus the condition on Θ∗

satisfied a.e. reduces to Θ∗ " τ where τ = inf{τ (s): s ∈ [α,β]}. !

Lemma 2.3. Let g be a convex lower semicontinuous function on R such that g(x) = +∞ for x < 0; the following
three conditions are then equivalent:

(i):g(x) ! g(0) + τx ∀x ! 0, (ii):g∗(τ ) = −g(0), (iii):g∗(x∗) = g∗(τ ) ∀x∗ " τ.

Therefore ∂g(0) = arg ming∗ = ]−∞, g′(0+)].

Proof. Since (i) may be rewritten τx − g(x) " −g(0) it is clearly equivalent to (ii). Now we observe that g∗(x∗) =
supx!0[x∗x −g(x)] is monotone non decreasing as a function of x∗. Therefore condition (iii) is equivalent to g∗(τ ) =
ming∗. Since g is convex l.s.c. we have infg∗ = −g∗∗(0) = −g(0) and the last condition reduces to (ii). !

Remark 2.4. In view of Lemma 2.3, one has 0 ∈ ∂σ (z,Θ) if and only if σ (z, ·) reaches its minimum at Θ and remains
constant on [Θ,+∞[. This means that Θ is a saturation constant beyond which any further addition of surfactant has
no effect on the surface tension. If there exists an integrable selection γ (s) of the minimum set of fc(s, z, ·), then
this selection satisfies (2.2) with Θ∗ = 0, and as already mentioned in the proof of Lemma 2.2 this implies that
0 ∈ ∂σ (z,Θ) where Θ =

∫ β
α γ (s) ds. Therefore we obtain:

Θ = inf

{ β∫

α

γ (s) ds: fc

(
s, z,γ (s)

)
= minfc(s, z, ·) = −f ∗

c (s, z,0) a.e.

}

.

Notice also that such a finite Θ exists if and only if the slope at 0 of σ ∗(z, ·) is finite, which, in view of (2.1), is
equivalent to the condition

∫ β
α (f ∗

c )′(s, z,0+) ds < +∞.

In the ensuing examples we will endeavour to describe the behaviour of the surface energy σ , by pushing its
computation as far as possible. In addition to Lemma 2.3 we will use the fact that, for any function f and constants
C,K .= 0, there holds

g(x) = Cf (x/K) ⇒ g∗(x∗) = Cf ∗(Kx∗/C). (2.3)

For a wide class of energies, including those considered in Examples 2.5 and 2.6 below, the specific form of the
energy density f allows for easy computation of fc . Indeed assume

f (s, z,γ ) = W(s) + g2(s, z,γ )

with W ! 0 and with g ! 0 positively homogeneous of degree 1 with respect to the pair (z,γ ), so that g2 is positively
homogeneous of degree 2: then one directly obtains

fc(s, z,γ ) = 2
√

W(s)g(s, z,γ ).

In view of (2.1), we need to compute f ∗
c : this is simpler when, in addition, f depends on z only through |z|. Then

writing

g(s, z,γ ) = |z|ψ
(
s,γ /|z|

)

(with ψ(s, t) = +∞ for t < 0), and leaving to the reader the easy changes for the cases z = 0 or W(s) = 0, one has
by (2.3)
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f ∗
c (s, z,Θ∗) = sup

γ>0

[
Θ∗γ − 2

√
W(s)|z|ψ

(
s,γ /|z|

)]

= |z| sup
t>0

[
Θ∗t − 2

√
W(s)ψ(s, t)

]

= 2
√

W(s)|z|ψ∗
(

s,
Θ∗

2
√

W(s)

)
.

Eventually one has only to compute the conjugate of the function (of one real variable) ψ(s, ·).

Example 2.5. The functional (1.1) may now be dealt with quite easily: indeed we apply to the function f (s, z,γ ) =
W(s) + |z|2 + (|z| − γ )2 the considerations above to get

fc(s, z,γ ) = 2
√

W(s) |z|ψ
(
γ /|z|

)

with ψ(t) =
√

1 + (1 − t)2 for t > 0. Since in (1.5) we only use |z| = 1, with a little abuse of notation we have

fc(s,1,γ ) = 2
√

W(s)

√
1 + (1 − γ )2;

it is straightforward to get

ψ∗(t∗) =






+∞ if t∗ > 1,

t∗ −
√

1 − (t∗)2 if − 1√
2

" t∗ " 1,

−
√

2 if t∗ " − 1√
2

(we remark that this function is finite also for some positive values of its argument), so that by (2.3)

f ∗
c (s,1,Θ∗) =

{
Θ∗ −

√
4W(s) − (Θ∗)2 if −

√
2
√

W(s) "Θ∗ " 0,

−2
√

2
√

W(s) if Θ∗ " −
√

2
√

W(s).

Although going further would require to know W in explicit form, we can draw some physically interesting features
of the limit interface σ (z,Θ)(= |z|σ (1,Θ)).

(1) By (2.1) the function σ ∗(1, ·) is constant exactly on ]−∞,−
√

2 maxW ]; by Lemmas 2.2 or 2.3 this implies that
the slope at Θ = 0 of σ (1,Θ) is −

√
2 maxW : the value of this constant accounts the influence of small additions

of surfactant to a surfactant-free mixture. In particular, we have for small Θ

σ (1,Θ) ≈ σ (1,0) −
√

2 maxW Θ,

where

σ (1,0) =
β∫

α

fc(s,1,0) ds = 2

β∫

α

√
W(s)ds.

(2) Employing the prime to denote differentiation with respect to Θ∗, since (f ∗
c )′(s,1,0−) ≡ 1, by (2.1) we have

(σ ∗)′(1,0−) = β − α, which by Lemma 2.3 implies that σ (1,Θ) is constant for Θ ! β − α: this shows that
this model exhibits saturation, that is, if the amount of surfactant is larger than β − α the exceeding part has
no influence on the interface energy. One may easily see that in this case if Θ = β − α the minimizing density
given by Lemma 2.2 is the constant 1, whereas if Θ > β−α the minimizing sequence concentrates the exceeding
mass around points where W(s) = 0, that is at s = α or s = β . Physically this means that the extra surfactant
concentrates inside the pure phases.

Example 2.6. We may modify Example 2.5 above to obtain an uneven distribution of surfactant across the interface,
or to obtain cases where saturation is neither achieved: fix a positive function γ̄ (s) and define

ψ(s, t) =
√

1 +
(
1 − t/γ̄ (s)

)2
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so that the minimum point of ψ is now at t = γ̄ (s) instead of t ≡ 1. Leaving out the computations, one may check
that there is saturation if and only if γ̄ ∈ L1, because

(σ ∗)′(1,0−) =
β∫

α

γ̄ (s) ds =:Θ0,

the value at which (if finite) the surfactant reaches saturation by Lemma 2.3.

Example 2.7. Another interesting energy is given by

f (s, z,γ ) = W(s) + |z|p
(δ + γ )p−1

where δ > 0 and p > 1. Setting

µδ(s) =
(

(p − 1)δ

W(s)

)1/p

one has

fc(s, z,γ ) =






p|z|
µ

p−1
δ

− p−1
µ

p
δ

γ if 0 " γ " µδ(s)|z|,
|z|p
γ p−1 if γ ! µδ(s)|z|.

The left part of the graph of fc with respect to γ is the tangent line drawn from (0, fc(s, z,0)) to the graph of
|z|p/γ p−1; here again some comments may be made.

(1) There is no saturation: this seems clear since fc is decreasing. It can be proved by computing f ∗
c ; indeed for all

s .= α,β one has for a suitable t (s) > 0 and for all Θ∗ ∈ ]−t (s),0[:
f ∗

c (s,1,Θ∗) = −p(p − 1)(1−p)/p(−Θ∗)(p−1)/p.

In particular (f ∗
c )′(s,1,0) ≡ +∞, which implies (σ ∗)′(1,0) = +∞.

(2) For Θ∗ "Θ∗
0 := − maxW(s)

δ , one has

f ∗
c (s,1,Θ∗) = − p

(µδ(s))p−1

so that σ ∗(1, ·) is constant on ]−∞,Θ∗
0 ]. From Lemma 2.3 we deduce the approximate behaviour of the surface

energy for small amounts of surfactant:

σ (1,Θ) ≈ σ (1,0) +Θ∗
0Θ,

where

σ (1,0) = p

((p − 1)δ)(p−1)/p

β∫

α

W(p−1)/p(s) ds.

(3) Pushing δ to zero leads to the following explicit expression for the limit surface tension coefficient

σ (1,Θ) = (β − α)p

Θp−1 .

This can be easily checked by plugging fc(s, z,γ ) = |z|p/γ p−1 in (1.4) and by choosing a constant profile γ (s).
In the underlying physical model, the phase transition may thus only occur at those interfaces on which the
surfactant has a positive density.
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3. Preliminary results

The first part of this section is devoted to a precise study of the properties of the conical envelope fc defined in
(1.3) and of the interface energy density σ introduced in (1.4) in relation with a one-dimensional variational problem.
In the second part of the section, we recall some useful features of convex functionals on measures. Then in the last
part, we establish some approximation properties for the limit functional introduced in (1.5).

3.1. Interfacial integrands

Lemma 3.1. Under assumptions (H1)–(H3)

fc(s, z,0) = 0 for some z .= 0 ⇐⇒ s ∈ {α,β}, (3.1)

fc(α, z,0) = fc(β, z,0) = 0, (3.2)

fc(α,0,γ ) = fc(β,0,γ ) = 0. (3.3)

Proof. Assume that fc(s, z,0) = 0 for some z .= 0 and s /∈ {α,β}: this means that for a suitable sequence λn of
positive numbers

1
λn

f (s,λnz,0) → 0; (3.4)

by the minimum property (H3)2 we have

1
λn

f (s,λnz,0) ! f (s,0,0)

λn
,

and if λn .→ +∞ we deduce as n → +∞
f (s,0,0) = 0,

which implies by (H1) that s ∈ {α,β}. If otherwise λn → +∞, by the convexity of f we have as soon as λn ! 1

f (s,λnz,0) ! f (s,0,0) + λn

(
f (s, z,0) − f (s,0,0)

)
,

thus in particular

1
λn

f (s,λnz,0) ! f (s, z,0) − f (s,0,0)

which by (3.4) would give f (s, z,0) " f (s,0,0), thus contradicting the strict minimality in (H3)2 because f is convex
and z .= 0, which proves (3.1).

Confining ourselves to s = α, by (H1) we may write

f (α,λz,0)

λ
= f (α,λz,0) − f (α,0,0)

λ
→ z

∂f

∂z
(α,0,0) = 0

by (H3)3, thus fc(α,0,0) " 0 by (1.3), and also (3.2) is proved.
The proof of (3.3) is the same (switch z and γ ), just remark that we did not use the strict minimality given by

(H3)3 but simply minimality—which in the case of (s,0, ·) is provided by (H3)1—and we need to compute the partial
derivative only at s = α, which is allowed by (H3)4. !

In addition to the function fc defined in (1.3) we will use the function defined for all M ! 1 as

f M
c (s, z,γ ) = inf

M−1"λ"M

1
λ

f (s,λz,λγ ). (3.5)

Moreover it is useful to introduce an auxiliary lower-bound function: we set

k(s) = inf
{
γ + fc(s, z,γ ): γ ! 0, |z|2 + γ 2 = 1

}
. (3.6)

We then have:
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Lemma 3.2. Under the assumptions (H1)–(H3) the function fc(s, z,γ ) is continuous; for every s it is convex,
1-homogeneous and subadditive with respect to (z,γ ) and

fc(α, ·, ·) = fc(β, ·, ·) = 0. (3.7)

In particular there exists

K = max
{
fc(s, z,γ ): s ∈ [α,β], γ ! 0, |z| + γ = 1

}

and

fc(s, z,γ ) " K
(
|z| + γ

)
∀s ∈ [α,β], γ ! 0, z ∈ Rn. (3.8)

The function f M
c is also continuous, and

f M
c ↘ fc as M → +∞; (3.9)

in particular it satisfies the inequalities

fc(s, z,γ ) " f M
c (s, z,γ ) " f 1

c (s, z,γ ) = f (s, z,γ ). (3.10)

Finally the function k(s) is continuous and

k(s) > 0 if s /∈ {α,β}. (3.11)

Proof. Some of the properties of fc might be deduced from [1], proof of Lemma 3.1 in Appendix A, but since our
assumptions on (z,γ ) are a little less restrictive we prefer to carry on the adapted proofs here.

To prove that fc is convex, fix s, take two couples (z1,γ1) and (z2,γ2) and choose a number ϑ ∈ ]0,1[; now take
any two positive numbers λ1,λ2, and for the sake of convenience set

1
K

= ϑ

λ1
+ 1 − ϑ

λ2
.

We have

ϑ

λ1
f (s,λ1z1,λ1γ1) + 1 − ϑ

λ2
f (s,λ2z2,λ2γ2)

= 1
K

[
ϑ/λ1

ϑ/λ1 + (1 − ϑ)/λ2
f (s,λ1z1,λ1γ1) + (1 − ϑ)/λ2

ϑ/λ1 + (1 − ϑ)/λ2
f (s,λ2z2,λ2γ2)

]

! 1
K

f
(
s,K

(
ϑz1 + (1 − ϑ)z2

)
,K

(
ϑγ1 + (1 − ϑ)γ2

))

! fc

(
s,ϑz1 + (1 − ϑ)z2,ϑγ1 + (1 − ϑ)γ2

)
,

where we used the convexity of f in the second-last inequality. Taking the infimum with respect to λ1,λ2 gives the
convexity inequality.

The fact that fc is 1-homogeneous is obvious from the definition; since fc is convex and 1-homogeneous it is also
subadditive. Convexity and (3.2), (3.3) together with the fact that f ! 0 imply (3.7).

To prove continuity we remark that as fc is the infimum of a family of continuous functions, it is upper semicon-
tinuous, and we have only to prove that it is also lower semicontinuous. Assume

sn → s, zn → z, γn → γ

and set

2= lim inf
n→+∞

fc(sn, zn,γn).

Upon passing to a subsequence it is not restrictive to assume that indeed

2= lim
n→+∞

fc(sn, zn,γn),
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and we have to prove that fc(s, z,γ ) " 2, which of course we must do only if 2< +∞. For every n, by (1.3) we may
select λn such that

∣∣∣∣fc(sn, zn,γn) − 1
λn

f (sn,λnzn,λnγn)

∣∣∣∣<
1
n
,

thus

1
λn

f (sn,λnzn,λnγn) → 2.

It is not restrictive to assume also λn → λ ∈ [0,+∞]; now we have three cases depending on the limit λ.
Case λ= 0. We remark that by (H3)1

1
λn

f (sn,0,0) " 1
λn

f (sn,λnzn,λnγn) → 2< +∞,

thus f (sn,0,0) → 0, but the continuity of f implies f (s,0,0) = 0, which in turn by (H1) implies that s ∈ {α,β}. But
then (3.7) clearly implies 0 = fc(s, z,γ ) " 2.
Case 0 < λ< +∞. This is the easiest, because by the continuity of f and (1.3) we get

fc(s, z,γ ) " 1
λ

f (s,λz,λγ ) = lim
n→+∞

1
λn

f (sn,λnzn,λnγn) = 2.

Case λ= +∞. Fix µ > 0: by the convexity of f we have as soon as λn ! µ

1
µ

(
f (sn,µzn,µγn) − f (sn,0,0)

)
" 1
λn

(
f (sn,λnzn,λnγn) − f (sn,0,0)

)
;

letting n → +∞ by the continuity of f we get

1
µ

f (s,µz,µγ ) " 1
µ

f (s,0,0) + 2

and the result follows by (1.3). The remaining statements about fc follow immediately from continuity and homo-
geneity.

The proof of the continuity of f M
c is the same, and there is no need of the last case; as for (3.9), (3.10) we remark

that definitions (1.3) and (3.5) immediately imply that the family of functions M *→ f M
c decreases pointwise to fc as

M → ∞.
We now turn to k: as fc is continuous, the function (s, z,γ ) *→ γ + fc(s, z,γ ) is uniformly continuous on every

set

[s1, s2] × (z,γ ): γ ! 0, |z|2 + γ 2 = 1,

which implies continuity with respect to s of its minimum value with respect to the other two variables, which is k

by (3.6).
To prove that k(s) is positive if s /∈ {α,β}, assume that for some s we have k(s) = 0: by the continuity of fc there

exist (z,γ ) such that

γ ! 0, |z|2 + γ 2 = 1, γ + fc(s, z,γ ) = 0. (3.12)

Since fc ! 0, we have immediately γ = 0, thus (3.12) reads fc(s, z,0) = 0 for some z .= 0, and (3.1) ends the
proof. !

For the sake of completeness we recall a selection lemma, see [2] Theorem 3.6 or [7] Theorem 3.1, stated here in
the special case we will need:

Lemma 3.3. Let Λ be a measurable multifunction defined on [0,R] and whose values are nonempty closed subsets
of R; if for every c ! 0 the set {t : Λ(t)∩[c,+∞[ .= ∅} is measurable, there exists a measurable function λ : [0,R] → R
such that λ(t) ∈Λ(t).
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We now come to a relevant variational interpretation of the function σ introduced in (1.4): define for all R > 0

σR(z,Θ) = inf

{ R∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt : w(0) = α,w(R) = β,

w ∈ Lip(0,R),w′(t) > 0 when w(t) < β,

R∫

0

ρ(t) dt "Θ

}

(3.13)

(here and elsewhere, measurability is understood whenever an integral appears); then:

Lemma 3.4. For every (z,Θ) we have σR(z,Θ) ↘ σ (z,Θ) when R → +∞. Moreover the function σ is convex,
continuous, 1-homogeneous, subadditive, and it is non-increasing with respect to Θ . Accordingly, there is a constant
C > 0 such that

σ (z,Θ) " σ (z,0) " C on
{
|z| = 1

}
. (3.14)

Proof. The fact that R *→ σR is decreasing is obvious. To prove that σR ! σ , take any couple (w,ρ) as in (3.13); we
first clean away the part where w = β . Assume

{w < β} = [0,R0[;
then w : [0,R0] → [α,β] is invertible and since f ! 0 we have

R∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt !

R0∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt

=
R0∫

0

1
w′(t)

f

(
w(t), zw′(t),

ρ(t)

w′(t)
w′(t)

)
w′(t) dt

!
R0∫

0

fc

(
w(t), z,

ρ(t)

w′(t)

)
w′(t) dt (3.15)

where we used (1.3). We change to the variable s = w(t) ∈ [α,β], so t = w−1(s), and we define an important new
function (the density ρ reparametrized by the value of w) by

γ (s) = ρ(w−1(s))

w′(w−1(s))
;

remark that
R0∫

0

fc

(
w(t), z,

ρ(t)

w′(t)

)
w′(t) dt =

β∫

α

fc

(
s, z,γ (s)

)
ds (3.16)

and that

Θ !
R∫

0

ρ(t) dt !
R0∫

0

ρ(t) dt =
β∫

α

γ (s) ds,

so (1.4), (3.15), (3.16) give

R∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt ! σ (z,Θ)
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whence

σR ! σ. (3.17)

Proving that σ = infσR requires more care. Set

I(z,Θ) = inf
R>0

σR(z,Θ), (3.18)

fix any R,w,ρ such that

w(0) = α, w(R) = β, w ∈ Lip, w′ > 0 on ]0,R[,
R∫

0

ρ(t) dt "Θ (3.19)

and, for the time being, also

ρ bounded, (3.20)

and take any R0 > 0 and any 1–1 Lipschitz function ϕ : [0,R0] → [0,R] with Lipschitz inverse and ϕ′ > 0. We define
on [0,R0] two functions w0,ρ0 by

w0 = w ◦ ϕ, ρ0 = (ρ ◦ ϕ)ϕ′;
then

w0(0) = α, w0(R0) = β, w′
0 > 0 on ]0,R0[

and
R0∫

0

ρ0(s) ds =
R0∫

0

ρ
(
ϕ(s)

)
ϕ′(s) ds =

R∫

0

ρ(t) dt "Θ,

therefore by (3.13)

I(z,Θ) " σR0(z,Θ) "
R0∫

0

f
(
w0(s), zw

′
0(s),ρ0(s)

)
ds

=
R∫

0

1
ϕ′(ϕ−1(t))

f
(
w(t), zw′(t)ϕ′(ϕ−1(t)

)
,ρ(t)ϕ′(ϕ−1(t)

))
dt.

If we set

λ(t) = ϕ′(ϕ−1(t)
)
= 1/(ϕ−1)′(t)

the choices made up to this point impose on λ only the following restrictions:

λ measurable on [0,R], M−1 " λ" M for some M (3.21)

(the bounds are due to Lipschitz continuity of ϕ and ϕ−1, and there is no restriction concerning the integral of λ
because R0 may still be any positive number). We have proved that

I(z,Θ) "
R∫

0

1
λ(t)

f
(
w(t), zw′(t)λ(t),ρ(t)λ(t)

)
dt (3.22)

for any (R,w,ρ) satisfying (3.19), (3.20) and any λ satisfying (3.21).
Fix M > 1 and choose ε > 0: we check that Lemma 3.3 may be applied to

Λ(t) =
{
λ ∈ [M−1,M]: 1

λ
f
(
w(t), zw′(t)λ,ρ(t)λ

)
" f M

c

(
w(t), zw′(t),ρ(t)

)
+ ε

R

}
.
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Indeed closedness is easy, non-emptyness follows from the definition of f M
c , and we must check that

Sc =
{
t : ∃λ! c: λ ∈Λ(t)

}

is measurable if c > 0. Assume for a while that w ∈ C 1 and ρ ∈ C 0: by Lemma 3.2 the function

(t,λ) *→ 1
λ

f
(
w(t), zw′(t)λ,ρ(t)λ

)
− f M

c

(
w(t), zw′(t),ρ(t)

)

is continuous on [0,R] × [c,M], so Sc is compact; the general case follows by approximation.
By Lemma 3.3 there exists a measurable function λM defined on [0,R] such that

M−1 " λM(t) " M

and for a.e. t

1
λM(t)

f
(
w(t), zw′(t)λM(t),ρ(t)λM(t)

)
" f M

c

(
w(t), zw′(t),ρ(t)

)
+ ε

R
.

Picking exactly this function λM in (3.22) we deduce

I(z,Θ) " ε+
R∫

0

f M
c

(
w(t), zw′(t),ρ(t)

)
dt;

since ε was arbitrary we may drop it to get

I(z,Θ) "
R∫

0

f M
c

(
w(t), zw′(t),ρ(t)

)
dt. (3.23)

Now, the argument of f M
c lies in a compact subset of [α,β] × Rn+1 by (3.19), (3.20), so by the continuity of f and

(3.9), (3.10) we may apply the dominated convergence theorem in (3.23) and get as M → +∞

I(z,Θ) "
R∫

0

fc

(
w(t), zw′(t),ρ(t)

)
dt. (3.24)

Condition (3.20) may now be lifted by approximation, using (3.8): we may thus in any case write

I(z,Θ) "
R∫

0

fc

(
w(t), z,

ρ(t)

w′(t)

)
w′(t) dt

[w(t)=s]=
β∫

α

fc

(
s, z,γ (s)

)
ds, (3.25)

where we put

γ (s) = ρ(w−1(s))

w′(w−1(s))
.

Since w and ρ need only satisfy the mild conditions (3.19), the function γ need only satisfy

γ ! 0,

β∫

α

γ (s) ds "Θ,

so by (1.4), (3.25) we get

I(z,Θ) " σ (z,Θ),

which together with (3.17), (3.18) concludes the proof.
As for the remaining statements, monotonicity, convexity and 1-homogeneity are directly verified from the def-

inition, and subadditivity follows from the latter two. Since convexity implies continuity at all interior points of
the domain, and upper semicontinuity at the boundary, we only need to prove lower semicontinuity at (z,0): take
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(zn,Θn) → (z,0) and, assuming without loss of generality that σ (zn,Θn) has a limit, by (1.4) let γn ∈ L1([α,β]) be
such that

lim
n→+∞

β∫

α

fc

(
s, zn,γn(s)

)
ds = lim

n→+∞
σ (zn,Θn),

β∫

α

γn(s) ds "Θn.

Since Θn → 0 the sequence γn converges to zero in L1, but fc is continuous by Lemma 3.2 and it is positive, so
Fatou’s lemma implies

σ (z,0) =
β∫

α

fc(s, z,0) ds " lim
n→+∞

β∫

α

fc

(
s, zn,γn(s)

)
ds = lim

n→+∞
σ (zn,Θn).

The bound (3.14) follows immediately from continuity. !

Two remarks are in order: first, the lemma we just finished shows that to approach the value σ (z,Θ) one must
carefully tune the distribution ρ(s) of the amount Θ of surfactant with the transition profile w(s), so the two are
coupled. Second, it appears that the amount of surfactant needed to reach the transition cost σ (z,Θ) can be lower
than the given maximum Θ . In fact it is not worth to take care of the unused portion as is shown in the following
lemma, where the inequality constraint

∫ R
0 ρ(t) dt "Θ is substituted with an equality.

Lemma 3.5. Let σ̃R be defined by

σ̃R(z,Θ) = inf

{ R∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt : w(0) = α, w(R) = β,

w ∈ Lip(0,R), w′(t) > 0 when w(t) < β,

R∫

0

w(t) dt =Θ

}

, (3.26)

then σ (z,Θ) = lim infR→∞ σ̃R(z,Θ).

Proof. Since σ̃R ! σR , by Lemma 3.4 we already have σ " lim infR→∞ σ̃R . Fix z, Θ and R > 0 and take ε > 0: we
will find a number R′ ! R such that σ̃R′(z,Θ) " σR(z,Θ) + ε, which will conclude the proof. Let w and ρ be as in
(3.13) and such that

R∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt < σ (z,Θ) + ε

2

and assume
R∫

0

ρ(t) dt =Θ − C <Θ;

we will extend w and ρ beyond R by setting

w(t) = β, ρ(t) = C

M
on [R,R + M]

for some M to be determined, then we define R′ = R + M . Indeed by (H3)4 we have

f (β,0,ρ) " ρ η(ρ) (3.27)

for some nondecreasing function η such that η(ρ) → 0 as ρ → 0, and
R′∫

R

f
(
w(t), zw′(t),ρ(t)

)
dt =

R+M∫

R

f (β,0,C/M)dt " Cη

(
C

M

)
,
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and if M is so large that Cη(C/M) < ε/2, we have
∫ R′

0 ρ(t) dt =Θ whereas

σ̃R′(z,Θ) "
R′∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt <

R∫

0

f
(
w(t), zw′(t),ρ(t)

)
dt + ε

2
< σR(z,Θ) + ε. !

3.2. Convex functionals on measures

Let X a locally compact metric space and let ϕ(x,p) be a Borel function on X × Rd to R+ which is positively
1-homogeneous in p. Then we consider the functional on the space M(X;Rd) of Rd -valued vector measures on X

defined by

Φ :λ ∈ M(X;Rd) →
∫

X

ϕ

(
x,

dλ

dθ

)
dθ,

where θ is a positive Radon measure on X such that λ6 θ . By the homogeneity of ϕ, is easy to check that the integral
above does not depend on the choice of θ and therefore we may rewrite functional Φ in a more intrinsic way as

∫

X

ϕ(x,λ) =
∫

X

ϕ

(
x,

dλ

dθ

)
dθ for every θ such that λ6 θ . (3.28)

Furthermore, the following additivity property holds
∫

X

ϕ(x,λ1 + λ2) =
∫

X

ϕ(x,λ1) +
∫

X

ϕ(x,λ2) whenever λ1 ⊥ λ2

(where λ1 ⊥ λ2 means that λ1 and λ2 are mutually singular).
Now we turn to the continuity (resp. lower semicontinuity) properties of functional Φ . We will say that a sequence

{λn} converges weakly to λ (denoted λn
∗
⇀ λ) in M(X;Rd) if we have

∫
X udλn →

∫
X udλn for every continuous

test function compactly supported in X. A straightforward variant of an important result due to Reshetnyak is the
following

Theorem 3.6.

(i) (Lower semicontinuity) Assume that ϕ(x, ·) is convex, nonnegative and that ϕ is l.s.c. on X × Rd . Then

λn
∗
⇀λ 8⇒ lim inf

n

∫

X

ϕ(x,λn) !
∫

X

ϕ(x,λ).

(ii) (Continuity) Assume that X is compact and that ϕ is continuous on X × Rd . Let {λn} a sequence in M(X;Rd)

such that

λn
∗
⇀λ,

∫

X

ϕ0(λn) →
∫

X

ϕ0(λ),

where ϕ0 : Rd → R+ is a suitable strictly convex positively 1-homogeneous function (i.e. ϕ0(z1 + z2) < ϕ0(z1) +
ϕ0(z2) whenever |z1| = |z2| = 1 and z1 .= |z2|). Then we have

lim
n

∫

X

ϕ(x,λn) =
∫

X

ϕ(x,λ).

Assertion (i) of this theorem will be used in Section 4 with X =Ω × ]α,β[ and d = n + 1, whereas assertion (ii)
will be used with X =Ω and d = n.
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3.3. Approximation properties for the limit energy

In order to simplify the construction of recovery sequences for the limit energy F(u,ρ), it will be very useful to
reduce to the case where (u,ρ) is suitably regular: this will be possible using Proposition 3.10 below. Before that, we
need some lemmas (two Lipschitz approximation results for measures and an approximation result for sets of finite
perimeter) and we introduce a distance on the set of Radon measures.

Lemma 3.7. Let Ω be a bounded open set and let µ ∈ M+(Ω) be a non-negative Radon measure such that
µ(∂Ω) = 0. If θ ∈ L1

µ, there exists a sequence θh of Lipschitz functions defined on Rn and with compact support
in Ω such that

∫
|θ − θh|dµ → 0. Moreover one may take

∫
θh dµ =

∫
θ dµ.

Proof. By Hahn–Banach Theorem, proving that the subspace V of Lipschitz functions compactly supported in Ω is
dense in L1

µ is equivalent to showing that an element w ∈ L∞
µ (dual space) vanishes whenever it satisfies

∫
w θ dµ = 0

for all ϕ ∈ V . Let w be such a function and let B # Ω be a closed ball. Then there exists a sequence of smooth
functions ϕh ∈ V ranging in [0,1] such that ϕh → 1B and whose support lies in a slightly bigger ball B ′ # Ω . By
using dominated convergence, we obtain

∫

B

w dµ = lim
h

∫
ϕhw dµ = 0

yielding that w = 0 at every Lebesgue’s point of w in Ω , that is µ-a.e. over Rn since µ(∂Ω) = 0. So we have proved
that there exists a sequence θ̃h in V such that θ̃h → θ in L1

µ. In particular rh :=
∫
θ̃h dµ converges to r :=

∫
θ dµ.

Pick an element ϕ0 ∈ V such that
∫
ϕ0 dµ = 1. Then θh := θ̃h + (r − rh)ϕ0 satisfies all requirements. !

Lemma 3.8. Let Ω be a bounded open set and let ω ∈ M+(Ω) be a non-negative Radon measure. There exists a
sequence ωh of non-negative Lipschitz functions defined on Rn and with compact support in Ω such that ωh dLn ⇀ω

weakly in the sense of measures. Moreover one may take
∫
Ω ωh dx = ω(Ω).

Proof. We prove that the weak closure of the set of Radon measures of the form f dLn with f Lipschitz, non-negative
and compactly supported inΩ is the space of all non-negative Radon measures in Ω : this density result clearly follows
from the fact that if φ ∈ C0(Ω) satisfies

∫
φf dx = 0 for all such f then φ = 0. The last condition is dealt with as in

Lemma 3.7. !

The following is a variant of an approximation result for sets with finite perimeter to be found in [11] (see also [1]).

Lemma 3.9. Let A be a set of finite perimeter in Ω . Denote by ∂A the essential boundary of A and by νA its
generalized outward normal. Then there exists a sequence {Ah} of bounded subsets of Rn with C2 boundary satisfying

|Ah ∩Ω| = |A|,
∣∣(Ah ∩Ω):A

∣∣→ 0, Hn−1(∂Ah ∩ ∂Ω) = 0

and such that for every non-negative convex continuous function σ on Rn × [0,+∞[ and every non-negative Lipschitz
function ρ on Rn

lim
h

∫

Ω∩∂Ah

σ
(
νAh,ρ(x)

)
dHn−1 =

∫

∂A

σ
(
νA,ρ(x)

)
dHn−1.

Proof. For the construction of Ah we refer to Lemma 4.3 in [1] where it is noticed that the vector measure λh := D1Ah

converges tightly to λ := D1A, that is

Hn−1(∂Ah ∩Ω) =
∫

Ω

|λh| →
∫

Ω

|λ| = Hn−1(∂A ∩Ω). (3.29)

The last assertion follows by using property (ii) in Theorem 3.6 with ϕ0(z) = |z| and ϕ(x, z) = σ (z,ρ(x)). !
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We introduce a distance on the set of positive Radon measures M+(Ω) by

d∗(µ,ν) =
∞∑

n=1

2−n
∣∣〈µ − ν,φn〉

∣∣, (3.30)

where {φn}n is a dense subset of C0(Ω; [0,1]). It is clear that this distance satisfies

d∗(tµ1, tµ2) = td∗(µ1,µ2) ∀t ! 0, (3.31)

d∗(µ1 + µ2,µ3 + µ4) " d∗(µ1,µ3) + d∗(µ2,µ4). (3.32)

Also, the topology induced by this distance on the space of positive Radon measures with total mass not exceeding a
given value is equivalent to weak convergence, so in particular on the set {µ ∈ M+(Ω): µ(Ω) " m1} we have

µh ⇀ µ ⇐⇒ d∗(µh,µ) → 0.

We may state and prove the main result of this subsection.

Proposition 3.10. Let u ∈ BV (Ω; {α,β}), with u = α1A + β1Ω\A for some A ⊂ Ω , and let ρ ∈ M+(Ω) be a
non-negative Radon measure. There exist a sequence {Ah} of bounded subsets of Rn and two sequences θh,ωh of
non-negative Lipschitz functions compactly supported in Ω , such that, setting

uh := α1Ah∩Ω + β1Ω\Ah, ρh := θhHn−1 ∂Ah +ωhLn Ω

the following properties hold:

(i) ∂Ah ∈ C2, Hn−1(∂Ah ∩ ∂Ω) = 0,
∫
Ω |uh − u|dx → 0,

∫
Ω uh dx =

∫
Ω udx;

(ii) ρh ⇀ρ and ρh(Ω) = ρ(Ω) for every h;
(iii) limh→+∞ F(uh,ρh) = F(u,ρ).

Proof. We first remark that if θ,ω are Lipschitz and v ∈ BV(Ω; {α,β}) then setting ρ̄ = θHn−1 Sv +ωLn Ω we
have by (1.5), (1.6)

F(v, ρ̄) =
∫

Sv

σ
(
νv, θ(x)

)
dHn−1.

Setting as in (1.6)

ρ0 = dρ

dJu
,

what we have to show, in order to prove all three properties, is that

∀h ∈ N, ∃Ah, θ̃h,ωh: ‖uh − u‖1 + d∗(ρh,ρ) <
C

h
, (3.33)

∫

Suh

σ
(
νuh, θ̃h(x)

)
dHn−1 <

∫

Su

σ
(
νu,ρ

0(x)
)
dHn−1 + C

h
(3.34)

for some constant C, with Ah, θ̃h,ωh as prescribed and the condition on
∫

uh and ρh(Ω) satisfied.
Fix h. We begin by applying Lemma 3.7 to

µ := Ju = Hn−1 Su, θ := ρ0 = dρ

dµ

(recall that Su ⊂Ω) and Lemma 3.8 to

ω= ρ − θHn−1 Su
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to obtain two sequences θj ,ωj . By the continuity of σ and the convergence of θj to ρ0 we have, using also (3.14),
∫

Su

∣∣σ (νu, θj ) − σ (νu,ρ
0)
∣∣dHn−1 → 0

as j → +∞. By the convergence results in the two lemmas, we may select an index (which we label h) such that
∫

Su

∣∣σ (νu, θh) − σ (νu,ρ
0)
∣∣dHn−1 <

1
h

, d∗(ωh + θhJu,ρ) <
1
h

. (3.35)

Now we apply Lemma 3.9 to get a sequence Aj and define uj accordingly. We remark that by the convergence of
D1Aj to D1A we have from Theorem 3.6 that for every continuous function φ

∫

Suj

φθh dHn−1 →
∫

Su

φθh dHn−1

and in particular

pj :=
∫

Suj

θh dHn−1 → p :=
∫

Su

θh dHn−1 =
∫

Su

ρ0 dHn−1.

These properties together say that

p

pj
θhHn−1 Suj ⇀θhHn−1 Su,

∫

Suj

p

pj
θh dHn−1 =

∫

Su

ρ0 dHn−1.

Since θh is bounded, by the continuity of σ we deduce

sup
|z|=1, x∈Rn

∣∣∣∣σ
(

z,
p

pj
θh(x)

)
− σ

(
z, θh(x)

)∣∣∣∣→ 0

as j → +∞, so that by (3.29)
∫

Suj

∣∣∣∣σ
(
νuj ,

p

pj
θh

)
− σ (νuj , θh)

∣∣∣∣dHn−1 → 0.

Finally, Lemma 3.9 implies that
∫

Suj

σ (νuj , θh) dHn−1 →
∫

Su

σ (νu, θh) dHn−1,

so that by the previous formula
∫

Suj

σ
(
νuj ,

p

pj
θh

)
dHn−1 →

∫

Su

σ (νu, θh) dHn−1

as j → +∞. We may therefore select an index j (which we relabel h) such that defining

θ̃h = p

ph
θh, ρh = θ̃hHn−1 Suh +ωhLn Ω

and using also (3.35) all conditions in (3.33), (3.34) are satisfied. !
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4. Main result

We will use two sets of mass constraints:∫

Ω

uε dx = m0,

∫

Ω

ρε dx = m1 (4.1)

and ∫

Ω

udx = m0, ρ(Ω) = m1. (4.2)

Theorem 4.1. Let Ω be a bounded open subset of Rn with Lipschitz boundary, and let f satisfy (H1), . . . , (H4). If
Fε,F are defined as in (1.2), (1.5) respectively, then:

(i) (compactness) if {(uε,ρε)}ε ⊂ W 1,1(Ω) × L1
+(Ω) satisfies (4.1) and

supFε(uε,ρε) < +∞
then there exists (u,ρ) ∈ BV(Ω; {α,β}) × M+(Ω) satisfying (4.2) such that at least for a subsequence

uε → u strongly in L1,

ρε ⇀ ρ weakly in the sense of Radon measures;
(ii) (lower bound) if {(uε,ρε)}ε ⊂ W 1,1(Ω) × L1

+(Ω) satisfies (4.1) and

uε → u, ρε ⇀ ρ

for some (u,ρ) ∈ BV(Ω; {α,β}) × M+(Ω) then (u,ρ) satisfies (4.2) and

F(u,ρ) " lim inf
ε→0

Fε(uε,ρε);

(iii) (upper bound) if (u,ρ) ∈ BV(Ω; {α,β}) × M+(Ω) satisfies (4.2) there exists {(uε,ρε)}ε ⊂ W 1,1(Ω) × L1
+(Ω)

satisfying (4.1) such that

uε → u, ρε ⇀ ρ, lim sup
ε→0

Fε(uε,ρε) " F(u,ρ). (4.3)

Conditions (ii) and (iii) express the fact that the sequence Fε is Γ -converging to F in the space BV × M+ endowed
with the strong L1 topology times the weak topology of measures. The remainder of this section is devoted to the proof
of the three parts of the theorem.

4.1. Compactness

We truncate the function k defined in (3.6) by setting

k̃(s) = min
{
1, k(s)

}
,

so that

0 " k̃(s) " 1, k̃(s) = 0 ⇔ s ∈ {α,β} (4.4)

by (3.11); we also define

K(s) =
s∫

0

k̃(t) dt,

thus K is a C 1 function, strictly increasing and satisfying
∣∣K(s)

∣∣" |s|. (4.5)
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Assume

Fε(uε,ρε) " C; (4.6)

since
∫
ρε dx = m1, we have (writing C in place of C + m1: throughout the proof we will denote by the same letter

C any harmless constant)

C !
∫

Ω

ρε + 1
ε
f (uε, ε∇uε, ερε) dx !

∫

Ω

ρε + fc(uε,∇uε,ρε) dx

!
∫

Ω

√
|∇uε|2 + ρ2

ε k(uε) dx !
∫

Ω

k(uε)|∇uε|dx

!
∫

Ω

k̃(uε)|∇uε|dx =
∫

Ω

∣∣∇
(
K(uε)

)∣∣dx,

thus
∫

Ω

k(uε)|∇uε|dx " C,
∥∥∇

(
K(uε)

)∥∥
L1 " C. (4.7)

By (4.5), (4.6) and by using the definitions of fc and Fε we deduce
∫

Ω

∣∣K(uε)
∣∣dx "

∫

Ω

|uε|dx " CC′ + C

∫

Ω

f (uε, ε∇uε, ερε) dx " CC′ + CεFε(uε,ρε) " C,

whence
∥∥K(uε)

∥∥
L1 " C. (4.8)

We may also write by (4.6)
∫

Ω

1
ε
f (uε,0,0) dx " Fε(uε,ρε) " C

so that
∫

Ω

f (uε,0,0) dx → 0. (4.9)

We begin to switch back and forth between uε and K(uε): by (4.7), (4.8) we deduce that the sequence K(uε) is
bounded in W 1,1(Ω), thus strongly compact in BV ; in particular, up to a subsequence, there exists a function ψ such
that

ψ ∈ BV(Ω), K(uε) →ψ weakly in BV and strongly in L1.

We deduce also from this that

K(uε) →ψ a.e. in Ω.

Since K is 1–1 by (4.4) we have that

uε = K−1(K(uε)
)

→ u := K−1(ψ) a.e. in Ω. (4.10)

By (H4) we have

|uε| " CC′ + Cf (uε,0,0) dx

but (4.9) implies that the non-negative sequence f (uε,0,0) converges in L1, thus the previous two formulas imply
that

uε → u strongly in L1(Ω).
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Now the continuity of f implies that

f (uε,0,0) → f (u,0,0) a.e.

but since f (uε,0,0) → 0 we obtain

f
(
u(x),0,0

)
= 0 a.e.,

which by (H1) gives u(x) ∈ {α,β} a.e.; call A the set where u(x) = α: then ψ(x) = K(α) on A and ψ(x) = K(β)

otherwise, so

ψ = K(α)1A + K(β)1Ω\A

but as ψ ∈ BV the set A is (equivalent to one) of finite perimeter in Ω and thus

u = α1A + β1Ω\A ∈ BV(Ω).

As for the convergence of ρε we have that (4.1) implies that for a subsequence ρε ⇀ ρ, but ρ(Ω) ! m1 because Ω is
compact, and ρ(Ω) " ρ(Rn) " m1 because Rn is open.

4.2. Lower bound inequality

Assume u = α1A + β1Ω\A is a BV function and let {(uε,ρε)}ε be as in the statement; we may assume

lim inf
ε→0

Fε(uε,ρε) = lim
ε→0

Fε(uε,ρε) < +∞.

We first get rid of the areas where uε /∈ [α,β]: indeed, if we consider the truncation operator T (t) = (t ∨ α) ∧ β we
have

T (uε)⇀ T (u) = u weakly in BV

and

Fε(uε,ρε) =
∫

Ω

1
ε
f (uε, ε∇uε, ερε) dx

(1.3)
!

∫

Ω

fc(uε,∇uε,ρε) dx !
∫

Ω

fc

(
T (uε),∇T (uε),ρε

)
dx

because fc(uε, ·,·) ! 0 whereas fc(T (uε),∇T (uε), ·) = 0 where uε .= T (uε) due to (3.7). To avoid the weight of the
notation, we may thus with no loss of generality assume that

α " uε " β

and prove that

lim inf
ε→0

∫

Ω

fc(uε,∇uε,ρε) dx ! F(u,ρ). (4.11)

We want to rewrite the integral at the left-hand side in a way that will let us apply Reshetnyak’s theorem 3.6, so
we transform it into an integral (in one more dimension) on the graph of uε . We begin by remarking that there is no
contribution to the integral from the parts where uε = α or uε = β , because ∇uε = 0 a.e. on these sets and due to (3.7).
Now we associate with each (uε,ρε) three bounded Radon measures which we define on Ω × ]α,β[ as

〈ζε,ϕ〉 =
∫

Ω

ϕ(x,uε)∇uε dx =
∫

Ω×]α,β[

ϕ(x, t)
∇uε√

1 + |∇uε|2
dHn Guε ,

〈mε,ϕ〉 =
∫

Ω

ϕ(x,uε)ρε dx =
∫

Ω×]α,β[

ϕ(x, t)
ρε√

1 + |∇uε|2
dHn Guε , (4.12)

〈µε,ϕ〉 =
∫

Ω

ϕ(x,uε) dx =
∫

Ω×]α,β[

ϕ(x, t)
√

1 + |∇uε|2
dHn Guε ;
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the first one is vector-valued, all three are supported by the graph Guε of uε and clearly

ζε 6 µε,
dζε

dµε
= ∇uε, mε 6 µε,

dmε

dµε
= ρε.

Recalling (3.7), by the area formula we may write
∫

Ω

fc(uε,∇uε,ρε) dx =
∫

Ω×]α,β[

fc

(
t,∇uε(x),ρε(x)

) 1
√

1 + |∇uε|2
dHn Guε

=
∫

Ω×]α,β[

fc

(
t,∇uε(x),ρε(x)

)
dµε

=
∫

Ω×]α,β[

fc

(
t,

dζε

dµε
,
dmε

dµε

)
dµε

=
∫

Ω×]α,β[

fc(t, ζε,mε), (4.13)

by (3.28). We will prove that up to subsequences we have

ζε ⇀ ζ, mε ⇀m (4.14)

weakly in the sense of measures, therefore by Reshetnyak’s theorem 3.6

lim inf
ε→0

∫

Ω×]α,β[

fc(t, ζε,mε) !
∫

Ω×]α,β[

fc(t, ζ,m). (4.15)

The measures mε are uniformly bounded, and on the other hand (4.7), by (3.11) and the continuity of k, implies
∫

{x∈Ω: α+δ<uε(x)<β−δ}

∣∣∇uε(x)
∣∣dx " cδ,

hence also ζε is compact and (4.14) is proved: we will now identify the limits of the measures ζε as ε → 0; to this aim
it is enough to take as test functions those which are products of a function of x times a function of t , that is we take

ϕ(x, t) =ψ(x)a(t):

we begin with ζε . We define

A(t) =
t∫

α

a(s) ds

and we have

〈ζε,ϕ〉 =
∫

Ω

ψ(x)a(uε)∇uε dx =
∫

Ω

ψ(x)∇
(
A(uε)

)
dx = −

∫

Ω

divψ(x)A(uε) dx. (4.16)

The support of a(t) is contained in an interval ]α′,β ′[, and (4.10) implies that the bounded functions uε converge
pointwise a.e. to u, thus A(uε) converges in L1 and we deduce that the last integral converges as ε → 0 to

−
∫

Ω

divψ(x)A(u)dx = −
∫

{x∈Ω: u(x)=β}

divψ(x)A(β) dx (4.17)

by the form of u and the fact that A(α) = 0. Since u is in BV , recalling the definitions of Su, Ju and νu given in
Section 1 we may write



1134 E. Acerbi, G. Bouchitté / Ann. I. H. Poincaré – AN 25 (2008) 1111–1143

−
∫

{x∈Ω: u(x)=β}

divψ(x)A(β) dx =
∫

Su

ψ(x)

( β∫

α

a(t) dt

)

νu(x) dHn−1(x)

=
∫

Ω

( β∫

α

ϕ(x, t) dt

)

νu(x) dJu(x),

and joining this to (4.16), (4.17) we get

〈ζε,ϕ〉 →
∫

Ω

( β∫

α

ϕ(x, t) dt

)

νu(x) dJu(x).

What we proved for product functions extends by density, and we may thus write

ζε ⇀ ζ :=
(
νu(x)Ju

)
⊗
(

L1(t) ]α,β[
)

(4.18)

weakly in the sense of measures.
It is not easy to characterize the limit of mε; to better understand the outcome it is useful, in addition to (4.12), to

write also

〈mε,ϕ〉 =
∫

Ω×]α,β[

ϕ(x, t)
(
ρε(x) dLn(x) ⊗ δuε(x)(t)

)
. (4.19)

Thus mε is a product measure which (as Guε has no vertical part) on the vertical side is concentrated on a single real
value for each x. The projection of mε on Ω is just ρε dLn, and what we know of the measure m in (4.14) is that, due
to the assumption ρε ⇀ ρ, the projection of m on Ω is ρ. Define

µ = Ju ⊗ L1 ]α,β[;
we may split m into its absolutely continuous and singular parts with respect to µ, as m = ma dµ+ms , and due to our
considerations for Hn−1-a.e. x ∈ Su there exists a probability measure px on ]α,β[ such that, denoting by px

a (t) dt its
absolutely continuous part with respect to L1 ]α,β[,

ma dµ = dρ

dJu
(x)Ju ⊗ px

a (t)
(

L1(t) ]α,β[
)
.

We remark that as px was a probability, now

β∫

α

px
a (t) dt " 1. (4.20)

Going back to (4.15) and recalling (4.18) we may write
∫

Ω×]α,β[

fc(t, ζ,m) =
∫

Ω×]α,β[

fc

(
t,

dζ

dµ
,
dm

dµ

)
dµ +

∫

Ω×]α,β[

fc(t,0,ms)

!
∫

Ω×]α,β[

fc

(
t,

dζ

dµ
,
dm

dµ

)
dµ

=
∫

Su

( β∫

α

fc

(
t,νu,

dρ

dJu
(x)px

a (t)
)

dt

)

dJu

!
∫

Su

σ

(
νu,

dρ

dJu
(x)

)
dJu (4.21)
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by (4.20) and (1.4). The proof of (4.11) follows by collecting (4.13), (4.15), (4.21) and the definition (1.2) of F(u,ρ).
Going back to (4.19), we see that now that the graph of u has vertical parts, the measure m, besides eventually

possessing a singular part with respect to Ju ⊗ L1, spreads its pointwise projection dρ
dJu (x) on the vertical line from

α to β in the fashion that turns out to be most favorable in terms of fc(t,νu, ·)-energy. A word about the singular part
of m, which plays no role in the final energy: it is easy to remark that if by chance the approximating functions uε
take the value α (or β) on a set S of positive measure, and if we take ρε to be any (even huge) constant on S, then by
(H1)–(H3)

1
ε

∫

S

f (uε, ε∇uε, ερε) dx → 0

and the energy contribution of this part of the limit m is indeed zero.

4.3. Upper bound inequality

We use the distance introduced in (3.30); using a simplified notation (we omit some spaces and conditions) it is
readily seen that (4.3) is equivalent to

∀j ∈ N, ∃{uj
ε ,ρ

j
ε }ε>0, εj : ∀ε < εj

‖uj
ε − u‖1 + d∗(ρj

ε ,ρ) <
C

j
, Fε(u

j
ε ,ρ

j
ε ) < F(u,ρ) + C

j
(4.22)

for some fixed constant C. Indeed it is trivial that (4.3) implies (4.22); for the converse, one may first make sure that
εj ↘ 0 by setting

ε̃1 = ε1, ε̃j+1 = min{εj+1, ε̃j /2},
so that in particular ε̃j " εj , then one defines for all ε " ε1

j (ε) = ̄ ⇐⇒ ε̃̄ ! ε > ε̃̄+1;
as ε̃j ↘ 0, also j (ε) → ∞ when ε → 0, and

‖uj(ε)
ε − u‖1 + d∗(ρj (ε)

ε ,ρ) → 0, lim sup
ε→0

Fε(u
j (ε)
ε ,ρj (ε)

ε ) " F(u,ρ).

We will therefore concentrate on (4.22). We have several tasks ahead, and we accordingly subdivide the proof into
several steps: at the beginning we deal with the case when everything is smooth, then we will use the approximation
result of Lemma 3.10.
Step 1: smooth interface, preliminaries and first approximation of ρ on Su. Let u ∈ BV(Ω; {α,β}) be a function with
a nice interface: precisely we assume that there exists a bounded open set U ⊂ Rn with smooth boundary such that

Hn−1(∂U ∩ ∂Ω) = 0 (4.23)

and that if we set

A =Ω ∩ U, B =Ω \ U, Ω0 = A ∪ B (4.24)

then

u = α1A + β1B, Su =Ω ∩ ∂U.

We remark that inside Ω the vector νu(x) coincides with the outward normal vector nU(x) to U ; to avoid doubling
the notation, we define νu(x) on all of ∂U as nU(x).

Since U is smooth, denoting by dist± the signed distance to ∂U , i.e.

dist±(x) = dist(x,U) − dist(x,Rn \ U),

if we define for all r > 0

Ur =
{
x:
∣∣dist±(x)

∣∣" r
}

(4.25)
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there exists a number T > 0 such that the projection Π(x) of x onto ∂U is well defined on the strip UT , and the
mapping

Φ(x) =
(
Π(x),dist±(x)

)
, Φ :UT → ∂U × [−T ,T ] (4.26)

is a smooth diffeomorphism whose Jacobian satisfies

JΦ " c on UT , JΦ−1 " c on Φ(UT ). (4.27)

We remark for further reference that

max
Φ(Ur )

|JΦ−1 − 1| → 0 as r → 0. (4.28)

We also define for all r ∈ R

Ωr =
{

{x ∈Ω: dist(x, ∂Ω) > r} if r ! 0,

{x ∈ Rn: dist(x,Ω) < −r} if r < 0.

Let ρ be a nice function: precisely we assume that there exist two non-negative Lipschitz functions ρ0,ρ1 com-
pactly supported in Ω such that

ρ = ρ0(x)Hn−1 Su + ρ1 Ln Ω, ρ(Ω) = m1 (4.29)

and we set

m′
1 =

∫

Su

ρ0dHn−1, m′
2 =

∫

Ω

ρ1 dx = m1 − m′
1; (4.30)

if m′
1 = 0 much of the trouble we are going to be into would be spared, because σ (z,0) = maxσ (z, ·), thus we assume

that, alas, this is not the case. Eventually reducing the value of the number T above, we also assume that

sptρ0 ∪ sptρ1 #ΩT .

The lives of the two measures split for a while: steps 1, . . . ,4 are devoted to the approximation of ρ0 and step 5
to ρ1; the two proofs are entirely independent, and may be read in any order. We warn that to improve readability
(and since confusion is unlikely) we will frequently employ the same symbol to denote a measure and its density
with respect to a base measure which is clear from the context: thus for example we will denote by ρ0 both the
measure ρ0(x)Hn−1 Su and its density ρ0(x). Also, when dealing with subsets of ∂U we will use terms as open
and boundary referring to the relative topology, without further mentioning it.

To help the reader not to get lost, we include a map of what lies forth: for simplicity imagine x is the coordinate
on the jump set, and t orthogonal to it; for every x we want to approximate σ (νu(x),ρ0(x)) with a smooth transition
from α to β . To do this we must rely on Lemma 3.4 and (3.13) which link σ (νu(x),ρ0(x)) with something containing
the original integrand f ; unfortunately this gives rise to a family of “near best” transitions, one for each x, given in
the notation of (3.13) by the couples (wx(t),ρx(t)), where we stress the dependence on the point x.

This family has no regularity properties at all with respect to x, thus we are forced to replace it by a piecewise
constant (with respect to x) choice, later to be smoothed out by a partition of unity method. We will therefore select
small intervals, and pick points x where

∫
f (wx,νu(x)w′

x,ρx) dt nearly matches σ (νu(x),ρ0(x)). This process may
ruin the condition of constant total mass on ρ, and we remark that as this mass might be entirely concentrated on the
jump set, we cannot risk to exceed m′

1: we therefore must voluntarily reduce ρ0 so that its mass is less than m′
1, which

will leave us with some room for the piecewise constant approximation without mass problems; we will later put the
extra mass remaining in a dustbin far from the jump set. One last problem will come from the volume constraint on u:
to deal with this we will move the transition strip a little around the jump set, and as we do not want this translation to
ruin all we did to preserve the mass of ρ by letting some of it fall outside Ω , all future movements will have amplitude
not exceeding T .

The first brick is the dustbin: take, say, a ball P ⊂Ω far from Su and ∂Ω : we may assume its distance from both
is at least T . Fix j ∈ N; as this will remain the same throughout the proof, dependence on j is harmless, and will be
stressed only very sparingly. We measure how much mass we may afford to put in the dustbin: let :m > 0 be such
that

d∗
(

2:m

|P | 1P ,0
)

<
1
j
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(this :m is one of the j -dependent quantities). By (3.31) this implies that

0 " c ":m ⇒ d∗
(

1
|P |c1P ,0

)
<

1
j
. (4.31)

We reserve half the dustbin’s capacity for each of ρ0 and ρ1: choose m′′
1 such that

0 < m′′
1 < m′

1, m′′
1 > m′

1 −:m.

In step 3 we will have to venture on ∂U a bit beyond Ω : thus we define the function ρ0 on all of ∂U by extending it as
zero outside Ω . We thus remark that the function σ (νu(x),ρ0(x)) is well defined on ∂U . For simplicity of notation,
it is also convenient to restrict the function ρ0 to ∂U , so that sptρ0 #Ω ∩ ∂U . Now remark that by (4.23)

lim
r→0+

Hn−1(∂U ∩ (Ω−r \Ωr )
)
= 0,

so we may take 0 < rj < T/3, and a constant ϑj < 1 so close to 1 that if we define a smaller function

ρsm = ϑjρ
0

we have

Hn−1(∂U ∩Ω−3rj ) " 2Hn−1(Su)

and

d∗(ρ0,ρsm) <
1
j
, m′′

1 <

∫

Su

ρsm dHn−1 < m′
1; (4.32)

the introduction of the number ϑj < 1 was needed only to get that the very last inequality is strict, so from now on we
will be able to slightly change the function without worrying whether this increases or decreases the norm.

We also impose on rj the following restriction:

d∗(ρ1,ρ1 (Ω \ Urj )
)
<

1
j
, ρ1(Ω ∩ Urj ) <:m. (4.33)

We define an enlarged relative of Su:

Σu = ∂U ∩Ω−2rj .

By the bound (3.14), we may also assume that rj was so small that
∫

Σu

σ
(
ν(x),ρsm(x)

)
dHn−1 <

∫

Su

σ
(
ν(x),ρ0(x)

)
dHn−1 + 1

j
. (4.34)

Step 2: near best slope and piecewise constant approximation. We are not finished with ρ0 yet; pick a small number
ϑ > 0 such that both functions

ρ−
sm = (ρsm − ϑ)+, ρ+

sm = ρsm + ϑ

satisfy (4.32), (4.34) when substituted in place of ρsm: this is possible since all inequalities are strict, and this will give
us some freedom to change ρ once more. We may also suppose the number ϑ to be so small that for any non-negative
continuous function ρ̄ ∈ L1(∂U)

ρ−
sm " ρ̄ " ρ+

sm ⇒ d∗(ρ0, ρ̄) <
1
j
.

For brevity we define

ξ(x) = σ
(
νu(x),ρsm(x)

)
+ 1

j Hn−1(Σu)
,

so that in particular ξ is a continuous function satisfying

ξ(x) > σ
(
νu(x),ρsm(x)

)
,

∫

Σu

ξ(x) dHn−1 <

∫

Su

σ
(
νu(x),ρ0(x)

)
dHn−1 + 2

j
(4.35)
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by (4.34). We apply Lemma 3.5 to obtain for each point x ∈ ∂U a number rx and functions wx,ρx as in (3.26) such
that

rx∫

0

ρx(t) dt = ρsm(x),

rx∫

0

f
(
wx(t),νu(x)w′

x(t),ρx(t)
)
dt < ξ(x)

(due to the first condition we have ρx ≡ 0 outside sptρ0). In particular for Y = x we have

ρsm(Y ) − ϑ <

rx∫

0

ρx(t) dt < ρ+
sm(Y ),

rx∫

0

f
(
wx(t),νu(Y )w′

x(t),ρx(t)
)
dt < ξ(Y ).

Since ρsm, f,νu, ξ are continuous functions, these inequalities hold also for all Y in a neighbourhood Ix of x in ∂U ,
and in particular since ρx ! 0 we have for all Y ∈ Ix

ρ−
sm(Y ) "

rx∫

0

ρx(t) dt < ρ+
sm(Y ),

rx∫

0

f
(
wx(t),νu(Y )w′

x(t),ρx(t)
)
dt < ξ(Y )

(we had to use the possibly negative function ρsm − ϑ only to have a clean strict inequality at boundary points of the
support of ρsm). We impose another restriction: if x ∈Ω2rj then Ix ⊂Ω2rj , and for all x ∈ ∂U \ sptρ0 we assume that
Ix does not intersect sptρ0: these points will thus never contribute in terms of ρ, since ρsm = 0 on all of Ix ; instead,
the sets Ix for all points in sptρ0 will never go beyond Ω2rj . Finally we assume these sets are nice, precisely that Ix

is the intersection of ∂U with an open ball Bx centered at x and with radius less than the number T defined in (4.25),
and we define Wx to be the intersection of Σu with the ball of half the radius of Bx , thus Wx is relatively open in Σu.

We cover Σu with a finite number of these sets, W1, . . . ,Wk with Wm ≡ Wxm , and let Im, rm,wm,ρm be the sets,
numbers and functions Ixm, rxm,wxm,ρxm respectively. To make the sets disjoint, we replace each Wm by

Wm \
m−1⋃

i=1

Wi,

which we relabel Wm not to add to the already exuberant notation, and we remark that Im is still an open neighbour-
hood of Wm. We get rid of the numbers rm by calling r = max{rm} and by extending the functions wm and ρm as β
and 0 respectively on ]rm, r]: this does not change the situation, as f (β,0,0) = 0. For our future convenience we may
go one step further, extending wm,ρm on all of R as α,0 for t < 0 and β,0 for t > r : still nothing changes.

We summarize the situation: we have

Σu = W1 ∪ · · · ∪ Wk ∪ N

with Hn−1(N) = 0 and all sets disjoint; we also have functions wm,ρm such that for all points x ∈ Im

ρ−
sm(x) "

r∫

0

ρm(t) dt < ρ+
sm(x),

r∫

0

f
(
wm,νu(x)w′

m(t),ρm(t)
)
dt < ξ(x). (4.36)

Step 3: glueing together the pieces in a neighbourhood of Σu. In this step we use ideas from the proof of [1]; basically
we will use wm and ρm in Wm to define a function in a small “cylinder” sticking out from Wm into Ω , but although
this might be fine for ρ, the resulting function w is irregular, so we will interpolate between neighbouring patches.

Take a number δ > 0, whose value we will be able to fix later, smaller than half the smallest radius of the balls Bm

and smaller than rj , and let

W δ
m =

{
x ∈ Wm: dist(x, ∂U \ Wm) ! δ

}
, W̃ δ

m =
{
x ∈ ∂U : dist(x,Wm) < δ

}
:

since W̃ δ
1 ∪ · · · ∪ W̃ δ

k is a neighbourhood of Σu and each W δ
m is compact in W̃ δ

m, we may take a partition of unity
ψ1, . . . ,ψk on Σu such that

ψm = 1 in W δ
m, sptψm ⊂ W̃ δ

m ⊂ Im, |Dψm| " C

δ
(4.37)
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for some C independent of δ.
Recalling (4.26), we remark that for ϑ > r/T the function

k∑

m=1

ψm

(
Π(x)

)
wm

(
ϑ dist±(x)

)

is regular and it is well defined for all x ∈ Rn such that
∣∣dist±(x)

∣∣" T , (4.38)

which contains an n-dimensional neighbourhood of ∂U ; moreover where

(ψ1 + · · · +ψk)
(
Π(x)

)
= 1 (4.39)

its value on one face of the neighbourhood is α, its value on the other is β . This may seem a good candidate for the
transition, just extending the resulting function as α or β elsewhere, but there are two (minor) problems: for one thing,
there may be points in Ω satisfying (4.38) but not (4.39), and the proposed extension would then be discontinuous;
also, recalling (4.24), the proposed extension would have value α in all of A, but β only in a portion of B , thus missing
the integral constraint. Thanks to the introduction of Σu we will show that it is easy to deal with the first problem,
while to tackle the second we will slightly shift the centre of the neighbourhood in the normal direction to ∂U .

Recall that T > 3rj and that dist(∂U \Σu,Ω) ! 2rj , so that

x ∈Ω,
∣∣dist±(x)

∣∣< 2rj ⇒ Π(x) ∈Σu ⇒
k∑

m=1

ψm

(
Π(x)

)
= 1. (4.40)

Now set (the reason for each entry at the right-hand side will be clear in the sequel)

Rj = min
{
rj /2,1/

(
2cj Hn−1(Σu)

)}
< T (4.41)

where c was defined in (4.27); we are about to set a first j -dependent restriction on ε, which will be used to determine
the number εj of (4.22): recalling (4.24), (4.25), we define in Ω for all ε < Rj/r

uδε(x) =
k∑

m=1

ψm

(
Π(x)

)
wm

(
dist±(x)

ε
+ τε

)
if x ∈Ω ∩ URj , (4.42)

uδε(x) = α if x ∈ A \ URj , uδε(x) = β if x ∈ B \ URj ,

where τε ∈ [0, r] will be chosen in a few lines. By (4.40), if x ∈Ω is such that dist±(x) = Rj then |dist±(x)| < rj and

dist±(x)

ε
+ τε ! r

no matter what τε ! 0 is, so wm(·) = β for all m and therefore uδε(x) = β; analogous considerations hold on the other
side of URj , where dist±(x) = −Rj and the value turns out to be α for any τε " r . Thus the resulting function uδε is in
W 1,1(Ω); moreover it is always between α and β because so do the functions wm of which it is a convex combination,
and it agrees with the target function u except on a set whose measure by (4.41) does not exceed 1/j , so that

‖uδε − u‖1 " β − α

j
. (4.43)

Finally, for τε = 0 we have uδε = α in A, so
∫

uδε dx "
∫

udx, whereas for τε = r we have uδε = β in B , so
∫

uδε dx !∫
udx. Therefore there exists a value of τε for which the volume constraint

∫

Ω

uδε dx = m0 =
∫

Ω

udx

is satisfied. The family {uδε}ε thus satisfies its share of (4.22).
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We go back to ρ: define for m = 1, . . . , k

ρ̄m =
r∫

0

ρm(t) dt

and define on ∂U

ρδp(x) =
k∑

m=1

ψm(x)ρ̄m.

By our choices and recalling (4.37) we have that

ρδp(x) = ρ̄m in W δ
m, ρ̄m = 0 if Im ∩ sptρ0 = ∅, ρ̄m .= 0 ⇒ W̃ δ

m ⊂ Im ⊂Ω2rj

and in particular

sptρδp ⊂ Su ∩Ω2rj (4.44)

and also, since at each point the value ρδp(x) is a convex combination of only those ρ̄m for which x ∈ Im, by the first
part of (4.36) we have

ρ−
sm(x) " ρδp(x) < ρ+

sm(x) on ∂U.

In particular we deduce by (4.34), the monotonicity of σ and the choice of ρ−
sm,ρ+

sm made at the beginning of step 2
∫

Σu

σ
(
νu(x),ρδp(x)

)
dHn−1 <

∫

Su

σ
(
νu(x),ρ0(x)

)
dHn−1 + 1

j
.

We define

ρδε (x) = 1
ε

k∑

m=1

ψm

(
Π(x)

)
ρm

(
dist±(x)

ε
+ τε

)
if x ∈Ω ∩ URj

and zero elsewhere. It is clear that as ε → 0 this family converges weakly to the measure ρδp , and also that
∫
Ω ρδε dx →∫

Su
ρδp dHn−1, so we deduce by (4.32) and the choice of ρ−

sm,ρ+
sm that for ε small (this is the second condition to

build εj )

d∗(ρ0,ρδε ) <
1
j
, m′′

1 <

∫

Ω

ρδε (x) dx < m′
1; (4.45)

since the support of each ρm is in [0, r], the support of ρδε is contained in
{
y ∈Ω: y = x + tνu(x), x ∈ sptρδp, |t | " εr

}
,

but as we chose

εr " Rj " rj

we finally deduce by (4.44)

sptρδε ⊂Ωrj ∩ Urj .

The remark extends to uδε , for which we may say
{
x ∈Ω: uδε(x) .= α,β

}
⊂Ω ∩ U εr ⊂Ω ∩ Urj .

We summarize: concentrating on ρ0 and the jump, we found a candidate family of transitions uδε which converges in
L1 to u and satisfies the integral constraint, and a candidate family of L1 functions ρδε whose support is a narrow strip
close to Su and far from ∂Ω , whose integral is not too far from

∫
Su
ρ0 and which are sufficiently close to ρ0 in the d∗

metric.
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Step 4: energy estimate and conclusion for ρ0. We restrict ourselves to the strip Ω ∩ U εr , outside which
f (uδε, ε∇uδε, ερ

δ
ε ) ≡ 0. We add another restriction about εj : we will assume that

ε " δ

(δ has still to be chosen, but we will do so depending only on j ). Since the functions wm(t) we got from Lemma 3.5
were Lipschitz, from (4.37), (4.42) and the regularity of ∂U we deduce

∣∣∇uδε(x)
∣∣" C

ε
if Π(x) ∈ W δ

m,
∣∣∇uδε(x)

∣∣" C

ε
+ C

δ
" 2C

ε
otherwise,

where C is a constant independent of ε, δ, but which takes into account all sorts of j -dependent quantities. We also
have

ρδε (x) " C

ε
.

We divide Σu into the constancy patches W δ
m and the patch interpolation set

Gδ =Σu \
k⋃

m=1

W δ
m;

recalling (4.40), (4.41), and since α " uδε " β , we have

Π(x) ∈ Gδ ⇒ f (uδε, ε∇uδε, ερ
δ
ε ) " M,

where by the continuity of f we set

M = max
{
f (s, z,γ ): α " s " β, |z| " 2C, 0 " γ " C

}
.

As ε → 0, we have
∣∣{x ∈Ω ∩ U εr : Π(x) ∈ Gδ

}∣∣≈ 2εrHn−1(Gδ ∩Ω),

and we may now specify the value of δ: precisely, remarking that

Hn−1(Gδ ∩Ω) → 0 as δ → 0,

we take δ so that

Hn−1(Gδ ∩Ω) " 1
4rMj

.

From this moment δ is fixed (depending on j ), so referring to (4.22) we may define

uj
ε := uδε in Ω, ρj

ε := ρδε in Ω ∩ Urj ,

and we obtain

lim
ε→0

1
ε

∫

{x∈Ω∩U
rj : Π(x)∈Gδ}

f (uj
ε , ε∇uj

ε , ερ
j
ε ) dx " 1

2j
,

therefore for all sufficiently small ε, which is a further restriction on εj ,

1
ε

∫

{x∈Ω∩U
rj : Π(x)∈Gδ}

f (uj
ε , ε∇uj

ε , ερ
j
ε ) dx <

1
j
. (4.46)

Now take a patch W δ
m and remark that on {x ∈Ω ∩ U εr : Π(x) ∈ W δ

m} we have

uj
ε (x) = wm

(
dist±(x)

ε
+ τε

)
, ρj

ε (x) = 1
ε
ρm

(
dist±(x)

ε
+ τε

)
,

thus by the change of variables

y = x + ε(t − τε)νu(x)
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we have

1
ε

∫

{y∈Ω∩U εr : Π(y)∈W δ
m}

f (uj
ε , ε∇uj

ε , ερ
j
ε ) dy =

∫

W δ
m

dHn−1(x)

r∫

0

f
(
wm(t),νu(x)w′

m(t),ρm(t)
)
JΦ−1(y) dt,

where y ∈Ω ∩ U εr is the only place where ε hides. Recalling (4.28) and later using (4.36) we have

lim sup
ε→0

1
ε

∫

{y∈Ω∩U εr : Π(y)∈W δ
m}

f (uj
ε , ε∇uj

ε , ερ
j
ε ) dy =

∫

W δ
m

dHn−1(x)

r∫

0

f
(
wm(t),νu(x)w′

m(t),ρm(t)
)
dt

<

∫

W δ
m

ξ(x) dHn−1,

so that for ε sufficiently small (this is the last restriction on εj as far as ρ0 is concerned)

1
ε

∫

{y∈Ω∩Urj : Π(y)∈W δ
m}

f (uj
ε , ε∇uj

ε , ερ
j
ε ) dy <

∫

W δ
m

ξ(x) dHn−1, (4.47)

where we used again (H1). Summing with respect to m and collecting (4.35), (4.46) and (4.47) we get at last

1
ε

∫

Ω∩Urj

f
(
uj
ε (x), ε∇uj

ε (x), ερj
ε (x)

)
dx <

∫

Σu

ξ(x) dHn−1 + 1
j

<

∫

Su

σ
(
νu(x),ρ0(x)

)
dHn−1 + 3

j
(4.48)

for all ε sufficiently small.
Step 5: reduction to a simpler problem and approximation of ρ1. Recalling the subadditivity property (3.32) of d∗ and
comparing (4.43), (4.45), (4.48) with our goal (4.22), we see that we still have to define ρj

ε also outside the strip Urj

in such a way that using the hybrid notation [α;β] to denote α in A and β in B ,
∫

Ω

ρj
ε dx = m1, d∗(ρj

ε (Ω \ Urj ),ρ1)<
C

j
,

1
ε

∫

Ω\Urj

f
(
[α;β],0, ερj

ε

)
dx <

C

j
,

where ρ1 was defined in (4.29). Indeed the last condition and (4.48), given (1.2) and (1.5), immediately imply the last
inequality in (4.22). Recall the definition (4.30) of m′

2; if we are in the lucky case m′
2 = 0 then ρj = 0 outside Urj and

that’s the end. Else, the task ahead is not too hard: we remark that the function ρj = ρ1 (Ω \ Urj ) satisfies

ρj ∈ L∞, sptρj ⊂Ω \ Urj , d∗(ρj ,ρ1) <
1
j
, m′

2 −:m <

∫

Ω

ρj dx " m′
2 (4.49)

by (4.33), and we are done: call

cε = m1 −
∫

Ω

ρj
ε dx

and remembering (4.31) define on Ω \ Urj

ρj
ε = ρj + 1

|P |cε1P

(recall that ρj
ε is already defined on Ω ∩Urj ). This family satisfies the integral constraint

∫
ρ

j
ε = m1, also d∗(ρj

ε ,ρ) <

C/j and by the L∞ bound, since cε " m1, we deduce by (3.27)

ρj
ε " M on Ω \ Urj ⇒ f

(
[α;β],0, ερj

ε

)
" εMη(εM) on Ω \ Urj
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so that
1
ε

∫

Ω\Ur
j

f
(
[α;β],0, ερj

ε

)
dx " Mη(εM) → 0

as ε → 0, and we may suppose that

1
ε

∫

Ω\Ur
j

f
(
[α;β],0, ερj

ε

)
dx " 1

j

for ε " εj suitably small (last restriction on εj ).
Step 6: general case. By the metric nature of both L1 convergence and weak convergence of Radon measures with
equibounded mass, (4.22) in the general case now follows easily from Proposition 3.10: let uh,ρh be the sequence
given by this proposition and fix j ; there exists h̄ such that

‖uh̄ − u‖1 + d∗(ρh,ρ) <
1
j
, F (uh̄,ρh) < F(u,ρ) + 1

j
.

In steps 1, . . . ,5 we proved that (4.22) holds if u,ρ are nice, so in particular if (u
j
ε ,ρ

j
ε ) is the sequence given by (4.22)

with uh̄,ρh̄ in place of u,ρ we have for all ε < εj

‖uj
ε − u‖1 + d∗(ρj

ε ,ρ) <
C + 1

j
, Fε(u

j
ε ,ρ

j
ε ) < F(u,ρ) + C + 1

j
.
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