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allowing Existence and Regularity
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Abstract. In this paper a realistic model for mixtures of magnetic materials
is presented, and an application to an optimal design problem is also given.

1. Energies involved

In the Weiss-Landau-Lifschitz model of the micromagnetic theory (which we do
not want to discuss here in detail, referring the reader e.g. to [6]), the total energy
associated with a single crystal (or “grain”) of a magnetic material is given by the
sum of several contributions. Every point (every atom in the real, discrete world)
in the body € C R? is magnetized, i.e., it generates a magnetic field, and we may
describe it with a vector field

m: Q) — R3

called magnetization. Below a certain temperature characteristic of the material
(Curie temperature) the modulus of the magnetization is constant,

m|=m’ in
/m| :

where the magnetic saturation intensity m?® is also a characteristic of the material.
Throughout the paper it is assumed that we are below the Curie temperature of
each material employed.

The first energy term is the magnetic exchange energy, generated by the wish
of adjacent points to share the same orientation of m: since |m| is constant, the
exchange energy depends on the gradient matrix Vm through a four-indices tensor
A, also characteristic of the material, and is in general given by fQ (AVm, Vm) dx.
A very good approximation, which is commonly assumed, is that A is close to being
a multiple of the identity, thus we set

Exch:/a|Vm|2d:c,
Q

where the constant a is another characteristic of the material: when a is small
the exchange energy is low, and we are in presence of a “soft” magnetic material
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as e.g. iron; when a is large, as in permanent magnets, the magnetic material is
“hard”.

A second character on the energy stage is the anysotropic energy: due to the
structure of the crystal, there are some alignments of the magnetization m (the
easy axes) which are preferred with respect to others: there is one direction (and
its opposite) for uniaxial crystals, there are more for different symmetry groups.
This is generally described as the integral of a polynomial in m, but we generalize
it here as

Anys = / o(m)dz ,
Q
where the continuous function
¢ : OBms — [0, +00]

depends on the material. In order to describe (in a qualitative way) the interplay
of these two energies, rescale for a while the function ¢ by setting x = max ¢ and
1 = ¢/k, so the two energy terms are

Exch + Anys = / [a|Vm|? + kip(m)] dz .
Q

Now consider a rod of uniaxial crystal, and assume that at the two ends the
magnetization is along the easy axis, but points in the two opposite directions: the
anysotropic energy wants m to stay preferably in these two directions, whereas
the exchange energy term favours a slow transition. What conceivebly happens is
that m will stay almost constant in two extremal portions of the rod, and there
will be a transition layer between the two orientations; having a large and « small
leads to a slow transition, thus a thick interface, and having a small and « large
makes for sudden transition and narrow interface. According to one of the theories
about how the transition occurs, it is easy to compute that the thickness of the
interface is proportional to y/a/k and that the total energy contribution of the
layer is proportional to

var - area of cross-section;

in other theories the numbers are different, but the area of the cross-section re-
mains. The fact that this really happens may be seen in any magnetic material:
the grain ends up divided into a lot of islands where the orientation of m is con-
stant, the magnetic domains, separated by thin layers where all the transitions
take place, the Bloch walls (according to other theories, there are other kinds of
walls, such as e.g. Néel walls, to which some of our considerations apply only on
a large-scale level). To get an idea of the dimensions involved, the diameter of
magnetic domains is in the range of one tenth of a micron to millimeters, whereas
the thickness of the walls is of about 10 to 100 atomic layers. We remark that
many times, when doing explicit computations, the sum Exch 4+ Anys is replaced
by a constant (or a function of the magnetizations on the two sides) times the area
of the middle section of the wall. We will later generalize the model in order to
include all these variations.
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Another, easy term in the expression of the energy is due to the Zeeman field,
the influence of the external magnetic field f (to simplify the notation we dropped

a few constants):
Ext:—/f-md:c,
Q

of which little has to be said: m will try to align with f.

The last term which is classically considered is the magnetostatic, or demag-
netizing energy: m itself generates a magnetic field in the whole space, h[m], which
the magnetostatic equations give as

curlh =0 in R3
(1)
div (h + m]IQ) =0 in R3.
These are to be interpreted, in a weak sense, as

h € L?(R3;R3) | curlh =0,

/ h-vdr=—- | m-vdx Vv € L*(R*;R?) such that curl v=10;
R3 Q
then the demagnetizing energy (which is a nonlocal term) is given by
Demag = / |h[m]|? dz .
R3

Since (1) holds in R3, the generated magnetic field is zero if m is divergence-free
and at the same time tangent to the boundary of 2, whereas it is large if m has
constant direction: thus the demagnetizing energy has large effects and heavily
interferes with the exchange and anysotropic energies, which have opposite wishes
regarding the alignment of m. It is not the purpose of this paper to describe the
interesting microstructure problems arising from this situation, for which we refer
e.g. to [5].

The mapping m — h[m] has some interesting properties (see [4]): it is linear,
continuous from LP(§) to LP(R3) and

/ (|2 dz = —/ m - hfm] dz ;
R3 Q
from this formula we deduce in particular that
m — |h[m]|? dz is continuous from L2(£;R?) to R .

R3

Also, although the term is nonlocal, some local estimates may be recovered: if two
magnetizations agree outside a ball, i.e. if m = m’ outside B, C 2, we have

b~ b do = [ [hfm - ) de < cfm ' < g
R3 R3
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since |m| = |m’| = m?; also, by the continuity of ¢ on the compact set dB;

[ 1otam) — otam) o < e
Q

both estimates are extremely useful when proving regularity.
The total energy associated with a magnetization m of a single crystal is
given by the sum of the four terms we discussed, i.e.,

E(m) = Exch+ Anys + Ext + Demag
_ /[a|Vm|2+¢(m)—f-m]d:v+/ (hfm|2 dz
Q R3

A self-evident defect of this model is that it only applies to a single crystal (it
has other defects, the main of which is that it is valid only for approximately insu-
lating materials, since conduction electrons play an important role in the magnetic
theory of conductors).

2. Mixtures and their energy

We now turn to mixtures of magnetic materials: we begin by considering a body €2
made of two crystals €; and €9 of different materials, separated by a smooth sur-
face X; we stress the fact that by “different” we mean that the two grains may also
be made of the same “stuff” but with crystallographic axes orientated in different
directions. In general, as we have seen, a magnetic material is identified by just
three quantities: the exchange constant a, the magnetic saturation m?®, and the
anysotropy function ¢, which contains all the necessary crystallographic informa-
tion, thus we are confronted with two materials identified by the triples (a1, ms, ¢1)
and (a2, m$, ¢2) respectively. The energy contribution of the magnetizations m;
and ms of the two grains is thus given by

V(ml,mg) = / [a1|Vm1|2+¢1(m1) —f-ml] dx
1971

—|—/ [a2|Vm2|2 —I—(bg(mg) —f~m2] dx
Qq

+ [ s,
R3

where h = h[ml]lgzl + m2]192].

In addition to this volume energy, an extra energy term on ¥ has to be
considered; the density of this surface energy is given by the sum of two terms: a
positive constant 1 2, depending on the two materials and due to chemical and
electric disturbances in the lattice atoms, and a non-negative function 3 depending
on the two materials, on the traces Tr m; and Tr ms of the magnetizations on
the two sides of 3, and possibly also on the normal vector v to ¥. The function
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B1,2(Tr my, Tr my, v) keeps track of the magnetic disturbances across X, and the
surface term is

S(ml, mg) = / [01172 + 6172(TI‘ my, Tr my, I/)] dH2 ,
b))

so the total energy is
E(m;, my) = V(mj, my) + S(mi, my) .

If the number of crystals grows, so does the shape of E; to keep it readable,
we make for a while a simplification, which we will later drop to return to a general
formulation: we assume § = 0 and a = 1, so the surface term reduces to the area
of the interface.

It is now easy to describe the case of K grains: we have K magnetic materials,
each characterized by a triple (a;, m$, ¢;) and occupying an open subset €; of §;
the sets (2; are pairwise disjoint and their union is all of 2 up to a 2-dimensional
set X; if we denote by m; the magnetization in §2;, the energy is given by

Zde +HAZ), (2)

us K
i Vm; |2 i(m;) —f-m,;|d h ilo,
S AV tmo £ omae k[ o)

where we recall that

|m1| = mf in € , m; € Wl’Q(QZ‘;Rs) . (3)

3. A new form of the energy

We now turn our attention to an optimal design problem, the analysis of which
will put under a new light the energy above, will force us to modify it once more,
and will lead to a great simplification of the shape of the energy.

Fix a bounded open set 2 C R3 and a vector field f € L?(2;R?),GUARDARE
and assume you have an infinite amount of each of K different magnetic materials,
with which you want to fill  in order to minimize the energy (2): thus you want
to find K pairs (€;, m;) satisfying all the conditions above, and noticeably the
constraints (3), which minimize the energy among all such sets of pairs. The trained
eye will see at first glance that this problem is not well posed, because the energy
is not semicontinuous: in particular, a magnetization m; which is discontinuous
along a surface ¥ C €; is not an admissible competitor, as it violates the Sobolev
condition in (3), but it may be easily approached by a sequence of admissible
competitors with equibounded energy, simply by fattening ¥ into an open set %’
and adding this to ; for some j # i (extend m; to ¥’ as a constant). This
then leads to a finite relaxed energy for the discontinuous function we selected,
although it is not in W%2; we remark that this is in some sense analogous to Gibbs’
phenomenon in fluids (see [7]): if you want the magnetization to be discontinuous
inside a crystal, break the crystal and coat the fracture faces with a different
material.
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The structure of the relaxed energy, which allows inner discontinuities but
penalizes them, may be physically interpreted as keeping into account the possible
magnetic disarrangements (“magnetic cracks”) inside a crystal, or as a simplifica-
tion (which we already met) of the energy of a Bloch wall.

Since we have been forced to consider a relaxed energy which no longer forces
the magnetizations to be in W12 inside each grain, but allows jumps, it is natural
to take as an ambient space that of special functions of bounded variation, SBV,
for whose definition and properties we refer to [2]. This setting allows us to write
the energy in a different form, but this is no simpler than before: indeed we cannot
charge all surface terms on the jump set of the overall magnetization, because some
parts of the surface may then be missing: to convince ourselves, recall that in two
adjacent grains (2; and {2; one may well have m{ = mj, thus the magnetization
might have no jump across the interface, although some energy has to be taken
into account (due to the electric disturbances we mentioned). Also, it is impossible
to write the energy in a compact form.

We then rescale the magnetizations m; in order to obtain an auxiliary mag-
netization field which will contain all the information, and which will allow us to

write the energy in an easy, implicit form. We set for i =1,..., K
K
. 1My Z
ui:Z'_Sv u = uiHQi ’
ms -

so that in particular

uc SBV(Q;R?) |

QO ={z:|u/=i} and Io(2)=[2— (lu@)]—G-1)"]" = m(u@)),

K s K s
m = m(u) = (3 o, Ju = (3 Zpi(u)))u = Au)u

and the jump set J, of u consists exactly of the union of the interfaces between
grains and the inner magnetick cracks. We remark that given u one easily deduces
m and may also decide whether a jump of u represents an interface or an inner
crack: the former is also a jump of |ul, the second is not.

We may now rescale all other factors: take any bounded, positive, continuous
function a satisfying

a : [0, +o00[—]0, +o0[ , a(i) = (m$)*a; fori=1,...,K

and we have

K
Exch:Z/ ai|Vmi|2d:c:/a(|u|)|Vu|2d:c
T Ju Q
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(the extension of the function a outside the points 1,. .., K is not really necessary,
but then this energy is defined on all SBV); analogously, take any bounded, non-
negative, continuous function satisfying

¢ : R — [0, 400] ¢| (z) = ¢pi(mjz) fori=1,....K

and
K

Anys = Z ¢i(m;) dx = /Q o(u)de .

o,
Now, since the mapping u — m(u) = A(|u|)u is continuous in every LP, so is the
mapping
u — h[m(u)] := h[u]
(although it is no longer linear because A is not), and we may write the whole
energy as

E(u) = /Q[a(|u|)|Vu|2+¢(u) —f~m(u)—f1[u] -m(u)] d:c+/ y(ut,um,v)dH?

where the function v encompasses all the surface terms we met before. We make on
~ the subadditivity assumptions that are customary to have subadditivity (see [2]
p.77?7), and due to the discussion above we also set

vZ%>0.

The optimal design problem then becomes
min{é‘(u): uc SBV(;RY), [ul€{1,...,K}in Q}

a Mumford-Shah-type problem with a constraint on K different surfaces (see
e.g. [3] for a single constraint in a simpler setting).

In a forthcoming paper it is proved that £ is semicontinuous and the minimum
exists (also in the fixed-volume-fraction case), and a regularity theorem for the
solution and the interfaces is given.
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