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In the last decade, the concept of I'-convergence of functionals has been widely investigated; to clarify its
link with mechanics, consider the following simple consequence of I'-convergence.

Assume (F},) is a sequence of functionals defined, say, on H¢, and all satisfying

(1) Fy,(u) > /|Du|2d:c ,

and let F, be another functional. If the sequence (F},) is I'~(L?)-converging to F., then for every g € H 1
and every minimizing sequence (up) of
F(u) + (g, u)

we may select a subsequence (up, ) converging in L? to a minimum point of
Foo(u) + (g, u) -

If the functionals Fj, are the free energies of some materials, then we may well say that the material repre-
sented by F} tends to behave as the one associated with Fi.

The usefulness of I'-convergence lies in the several compactness results available, although the identification
of the limit F, is sometimes not straightforward.

Most frequently in the literature, I'-convergence appears in the context of homogenization: suppose you are
given a structure, in the unit cube @, whose free energy is given by

Fi(u) —/Qf(:zr,Du) dx |

and repeat it periodically in the space. Rescale everything of a factor 1/h, and you obtain in the unit cube
a tighter structure whose energy is

Fp,(u) —/Qf(h:c,Du)d:c,

where f is now l-periodic in z. It is likely that, looking at this structure from “very far”, it will seem a
homogeneous material.

Every homogenization result thus consists in proving that (F,) converges, in the I'-sense, to some functional
F, and identifying F., as an energy functional:

Foo(u) = /QQS(Du) dx .



In this field, many results have been obtained, especially in the scalar case, i.e., u takes its values in R, or
when condition (1) is attained through the coerciveness of f:

fz, &) > [€]? forall a.

This condition, unfortunately, rules out many interesting cases: in order to represent an inhomogeneous
elastic structure with holes, the integrand

f:QxR=R
must satisfy only
(2) flw,) > |6 onlyifad H
where the hole H is a subset of () with nice boundary and well contained in Q.

A homogenization result under these assumptions is contained in [1], where in addition the dependence of f
on u is not through the gradient, but through the strain tensor e(u): if f is convex in ¢ and satisfies (2) and

3) 0< f(z,8) <c(1+ &)

then the functionals

Fh(u):/Qf(h:C,e(u))d:E

'~ (L?)-converge to the homogenized functional
Folu) = [ ole(w)ds
Q
where ¢(¢) is given by
inf{/ f(z,e(u)dr : uwe HL (R®), u—&xis Q—periodic} .
Q

As a matter of fact, the result is more general: for example, in conditions (2) and (3) we may have a generic
growth p > 1, instead of 2. The main tools employed in the proof are an abstract ['-compactness theorem,
various forms of Korn’s inequality and the following interesting extension lemma:

Let p > 1 and let Q,w be bounded open subsets of R™ with lipschitz boundary, such that w C ). Then
there exists a constant ¢(§,w) such that for every u € W1P(w; R") there exists & € W1P(; R") such that

U = u inw
/Q le(w)|P da < c(Q,w)/ le(u)|P dx .
Moreover c(tQ), tw) = ¢(Q, w) for every t > 0.
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