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Limit Problems for some
Linear and Nonlinear Systems

Emilio Acerbi

This paper contains the summary of a talk given by the author at the Loyola
University of Chicago, during a workshop on “Weak Convergence Methods in Nonlinear
PDEs”.

We will examine some limit problems for elliptic systems with discontinuous coeffi-
cients: assume Ω = Ω1 ∪Ω2 ∪Σ, where Ω1 and Ω2 are open and Σ is the common part
of their boundaries, and consider the problem

(1)





Au = ϕ in Ω1

Bu = ϕ in Ω2

transmission conditions on Σ
boundary conditions on ∂Ω,

where A and B are elliptic operators.
We are interested in the behaviour of the solutions to problem (1) when both Ω2

shrinks to Σ and B varies — its coefficients might vanish or explode. Therefore, we deal
with a sequence of problems, and we seek their limit (in a suitable sense).

Many noteworthy cases may be considered in which Ω1 is surrounded by Ω2, that
is, ∂Ω2 = Σ ∪ ∂Ω: In this situation, one may expect that the solutions to (1) approach
the solution of a “limit problem” of the type

{
Au = ϕ in Ω1

new boundary conditions on ∂Ω1,
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where the new boundary conditions incorporate what is left of the former ones, of B,
Ω2 and the transmission conditions. Some examples in which this actually occurs (the
meaning of “approach” and “limit” still need a precise definition) are:

the torsion of a (linearly elastic) bar with cross-section Ω1, reinforced with a thin
shirt Ω2 of much harder material — here, both A and B are second-order operators;
see e. g.
• Caffarelli & Friedman, Rocky Mountain J. Math. 10, 1980.
• Brezis, Caffarelli & Friedman, Ann. Mat. Pura Appl. 123, 1980.
• Acerbi & Buttazzo, Ann. Inst. Henri Poincaré 3, 1986.

the buckling of a (linearly elastic) shell Ω1 surrounded by a thin annulus Ω2 of very
soft material — A and B are fourth-order operators; see e. g.
• Acerbi & Buttazzo, Arch. Rational Mech. Anal. 92, 1986.

We remark that in these examples problem (1) is a PDE, not a system. In the last
two papers, the point of view is that of calculus of variations, i.e., minimum points of
functionals instead of solutions of differential equations. This we also do henceforward.

We concentrate on a second family of problems: precisely, we study some cases
when Ω2 is inside Ω1.

Take a smooth, compact (n−1)-dimensional manifold Σ of R
n, an open set Ω which

encloses Σ, and an ε-neighbourhood of Σ:

Σε = {σ + tν(σ) : σ ∈ Σ, |t| < ε}.

Define on W 1,p(Ω; Rn)

Fε(u) =

∫

Ω\Σε

f
(
x, e(u)

)
dx + cε

∫

Σε

f
(
x, e(u)

)
dx,

where e(u) is the linearized strain tensor, f(x, ·) is a p-homogeneous convex function
satisfying

|z∗|p ≤ f(x, z) ≤ c(1 + |z∗|p)

with p > 1, depending only on the symmetric part z∗ = (z + zT )/2 of z, and well
continuous in x.

A useful notion in this situation is Γ-convergence, of which little knowledge is
needed here: what matters is that if Fε, F0 are real functions on a topological space X ,
then
Fε →Γ F0 is equivalent to

{
for every xε → x we have F0(x) ≤ lim inf Fε(xε);
for every x there exists xε → x such that F0(x) = limFε(xε);

whereas Fε →Γ F0 implies

{
if xε is a minimum point for Fε and xε → x then x is a minimum point for F0;
if C : X → R is continuous then (Fε + C) →Γ (F0 + C).
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Therefore, if we prove that Fε →Γ F0 in the weak topology of W 1,p we have that the
solutions of

(2) min{Fε(u) +

∫

Ω

(|u|p + gu) dx}

converge to the solution of

(3) min{F0(u) +

∫

Ω

(|u|p + gu) dx};

thus, Γ-convergence is a convenient way to say that (3) is the limit of problems (2).

A physical model for case (2) above is the inclusion of a thick slab Σε with Young
modulus proportional to cε in a fixed, “soft” body Ω: then we may say that the limit
functional F0 (if it exists) governs the inclusion of a plate, or a membrane, Σ, in the
body Ω. As physicists maintain that the energy of a membrane with thickness ε is
proportional to ε, that of a plate to ε3, we will study the case cε = 1/ελ for various
exponents λ. To state the result, we introduce:

the tangential derivative δu = Du − (Du ν) ⊗ ν

the tangential strain eτ (u) = [(I − ν ⊗ ν)Du]∗,

and finally the “tangential part” of f :

fτ (σ, z) = min{f
(
σ, z + ξ ⊗ ν(σ)

)
: ξ ∈ R

n}.

It turns out that the first interesting exponent is λ = 1, where we obtain the Γ-limit

F 1
0 (u) =

{ ∫
Ω

f
(
x, e(u)

)
dx + 2

∫
Σ

fτ

(
σ, eτ (u)

)
dσ if u − 〈u, ν〉ν ∈ W 1,p(Σ)

+∞ otherwise.

The second critical exponent is λ = p + 1, which amounts to 3 in the physical case of
quadratic-growth energy, and the limit is

F p+1
0 (u) =

{∫
Ω

f
(
x, e(u)

)
dx + 2

p+1

∫
Σ

fτ (σ, ν δδu) dσ if 〈u, ν〉 ∈ W 2,p(Σ), eτ (u) = 0
+∞ otherwise.

Mathematically, this is more surprising than the case above, since for λ = 1 the limit
contains only the (tangential) first derivatives of u, whereas here we have got second
derivatives from functionals Fε depending only on the first derivatives.

To have a glimpse at where this second differential comes from, we remark that to
prove Γ-convergence we must 1) find a sequence vε ⇀ u such that F0(u) = limFε(vε),
and 2) show that for all uε ⇀ u we have F0(u) ≤ lim inf Fε(uε).

Step 1) : we try with

vε =
(
u(σ) + tϕ(σ) +

t2

2
η(σ)

)
θε + u(x)(1 − θε),
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where θε is a cut-off function vanishing outside Σ2ε. Then, close to Σ, we have essentially
to deal with

(4)
1

εp+1

∫

Σε

f
(
σ, δu + ϕ ⊗ ν + t(−δu δν + δϕ + η ⊗ ν)

)
dx.

If δu+ϕ⊗ν 6= 0, the measure ε of Σε cannot compete with ε−p−1, and limFε(vε) = +∞.
Therefore we must take

(5) δu + ϕ ⊗ ν = 0,

and (homogeneity + integration in t) we get from (4)

2

p + 1

∫

Σ

f(σ,−δu δν + δϕ + η ⊗ ν) dσ.

By (5), the argument of f reduces to

ν δδu + ν ⊗ (η − ν δu δν),

and the first step follows since η is free (recall what fτ is).
Step 2) is quite lengthy (we will come back to it later), but it is essential in that

without it we cannot be sure that our choice of vε was the smartest one.
A (more intelligible) corollary: take the usual energy density

f(z) =
λ

2
(tr z)2 + µ|z∗|2.

For some Σ, the function fτ may be explicited, and ν δδ calculated; e. g., in the good
old flat case (substituting E, σ for λ, µ) we get for plates the limit

∫

Ω

f
(
e(u)

)
dx dy dz + 23 E

24(1 − σ2)

∫ ∫

Σ

[∆uz − 2(1 − σ)detD2uz] dx dy,

provided the horizontal displacement is a rigid motion in the plane (this comes from
the condition eτ = 0).

Again, some references:
• Caillerie, Math. Meth. Appl. Sci. 2, 1980.
• Ciarlet & Destuynder, J. Mécanique 18, 1979.
• Acerbi, Buttazzo & Percivale, J. reine angew. Math. 386, 1988.

Before going on, an objection is due: we are primarily concerned with the behaviour
of u on the manifold Σ, and we speak of weak W 1,p convergence in Ω; it would seem
a quite poor result, but in step 2 we actually prove that a stronger convergence takes
place.
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Anyway, we surely cannot rely on weak W 1,p convergence in Ω when investigating
wires in R

3; denote by Σ the one-dimensional string

Σ = {(x, 0, 0) : 0 ≤ x ≤ 1}

and by Σε the three-dimensional cylinder

Σε = {(x, y, z) : 0 ≤ x ≤ 1, y2 + z2 ≤ ε2}.

As we said, we expect some trouble if we make use of Ω. Then, we won’t use it. This
presents us another problem: to use Γ-convergence, all our functionals must be defined
on the same space X , whereas here the domain of Fε will consist of functions defined
on Σε. Then, we will not use Γ-convergence either.

The functionals we consider on Σε are

Fε(u) =

∫

Σε

f(Du) dx,

where f is a function — not required to be convex, which gives the nonlinearity of the
system — satisfying:

a) f : R
9 → R ∪ {+∞} is continuous

b) if det ξ ≤ 0 then f(ξ) = +∞

c) for all δ > 0 there exists cδ such that if det ξ ≥ δ then f(ξ) ≤ cδ(1 + |ξ|p)

d) f(ξ) ≥ c|ξ|p − c′.

Here, dependence on x too can be added with little effort; also, the shape of Σε need
not be exactly cylindrical. We remark that a,. . . ,d are very reasonable assumptions if
we have in mind an application to the physical situation, as b) prevents interpenetration
of matter.

Denote by (a|b|c) the matrix whose columns are a, b, c, and define the appropriate
tangential part of f as

fτ (a) = min{f(a|b|c) : b, c ∈ R
3};

then fτ is continuous and

|a| ≥ δ ⇒ fτ (a) ≤ cδ(1 + |a|p),

so that the convex envelope f∗∗
τ of fτ satisfies

f∗∗
τ (a) ≤ c(1 + |a|p)

for all a; we may then define on W 1,p(Σ; R3)

F0(u) =

∫

Σ

f∗∗
τ (u′) dt.
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Remark that the functionals Fε are defined only on a part of C1 or little more, so
that we will not speak of minimum points for them. Now we define for every function
v ∈ L1(Σε) the “normal average” as a function of x ∈ Σ:

ṽ(x) =
1

πε2

∫

{y2+z2≤ε2}

v(x, y, z) dy dz,

i.e., the average of v on a disk orthogonal to Σ at x. It is all too easy to see vhere the
functionals Fε go: as the domain vanishes, the energies vanish too, at least with speed
ε2: this is why we (take any continuous g : R

3 → R
3 and) define

Gε(u) =
Fε(u) +

∫
Σε

(|u|p + gu) dx

πε2

G0(u) = F0(u) +

∫

Σ

(|u|p + gu) dt.

Our result is then the following: let uε ∈ C1(Σε; R
3) be a minimizing sequence for Gε,

i.e., lim[Gε(uε) − inf Gε] = 0. Then:
(1) the sequence ũε is weakly compact in W 1,p(Σ; R3);
(2) if u0 is a limit point of ũε, then it is a minimum point for G0.

First, a remark: suppose f satisfies also
e) f is frame-indifferent, i.e., f(Qξ) = f(ξ) for every positive orthogonal matrix Q;
f) f(I) = min f = 0.

Under assumptions a,. . . ,f the functions fτ depends only on |a| and

f∗∗
τ (a) = 0 whenever |a| ≤ 1;

this means that for a string (as it should be) the energy is positive under traction, zero
under compression.

This applies in particular to a physically interesting class of functions (powers of
the gradient plus convex functions of the determinant), as e.g.

f(ξ) = |ξ|2 + (det ξ)−1/3 − 9,

which yields

f∗∗
τ (a) =

{
|a|2 + 8|a|−1/4 − 9 if |a| ≥ 1
0 if |a| ≤ 1.

A point in the proof of the result is worth a look, although it is very easy in our
situation: we prove the analogous of step 2 of the case of plates. We must take any
sequence vε such that ṽε ⇀ u, and prove that F0(u) ≤ lim inf Fε(vε)/πε2.

One begins with

1

πε2
Fε(vε) ≥ −

∫

Σε

fτ (Dx1
vε) dx ≥ −

∫

Σε

f∗∗
τ (Dx1

vε) dx;
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since f∗∗
τ is subdifferentiable, and |∂f∗∗

τ (a)| ≤ c(1 + |a|p−1), we have

· · · ≥

∫

Σ

f∗∗
τ (u′) dt + −

∫

Σε

〈∂f∗∗
τ (u′), Dx1

vε − u′〉 dx

= F0(u) +

∫

Σ

〈∂f∗∗
τ (u′), ṽε

′ − u′〉 dt.

In the last integral, the first half is in Lp′

and the second converges weakly to zero in
Lp, and this step is proved.

This is the way which is generally followed in proof of results alike — but usually
it comes out to be precisely the hardest part. In the case of plates, a suitable normal
average of the functions vε and their gradients and strains is defined, and step 2 consists
essentially in proving that these averages converge to something which leads to the limit
function u.

The complete proofs for the result on nonlinear strings may be found in
• Acerbi, Buttazzo & Percivale, SISSA preprint, 1988.


