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I. In~oducfion 

Consider an inhomogeneous clamped plate D, submitted to an external force 
g(x). The (small) vertical displacement u(x) solves the minimum problem 

min { / [ . 1  'E(x) } -g~x) (l~ul2 - 2(1 - cr(x)) detD2u) -r g(x) u] dx: u E HI(D) , 

where E and a are the Young modulus and the Poisson coefficient respectively, 
and D2u denotes the 2 • 2 matrix of  second derivatives of  u. We study a plate 
having a central p a r t / 2  surrounded by an increasingly narrow annulus Z', made 
of  an increasingly soft material (i.e. the Young modulus E, tends to zero in X8)- 
The free energy of  the plate is then 

(1.1) F,(u) = _f l E--ff--~ (]Aul 2 - 2(1 - a) det Dzu) dx 
/ /  

+ 2 - 2Cl-, ,)det , u dx 

We study in particular the behavior as e--> 0 of  the solution u~ of  

(1.2) min {F~(u)§ f g ( x )  udx:uEH~(~kJSe)}. 
- Q V ~  e 

I f  re is the width of  Se, we may have different limit problems depending on the 
relation between re and Ee: let (r o ----- lim (r8 and set 

e---~O 

E 
f l  _---s-~ (l~ul ~ - 2(1 - ~r) det D2u) dx. G(u) 

s 
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Then, if E, ~ r,, the limit problem is 

min (G(u) : u C H~(f2)} 

(clamped plate); if l~mooE~/r~ = M 4= O, the limit problem is 

rain G(u) + M o g l - - - - ~  ~ ds : u E H2(~)  A HI(D)  

(the plate becomes simply supported, but a price is paid for having non-zero 
normal derivative); if r~ >) E, >> r~ the limit problem is 

min {G(u) : u E H2(D) A/-/~(~)} 

(simply supported plate); if lim Ed'r ~ = L the limit problem is 
e ~ 0  

rain G(u)+ 12I. 7--.----~21ul2ds:uEH2(D) 
0D 

(the plate may take off, but a price is paid for having a non-zero boundary value). 
In all four cases, if lira E~/r~ > 0, we prove that the solutions u~ converge in 

e---~0 

/.2(R2) to the solution of  the limit problem. 
The foregoing example is a particular case of  our theorem [II.3] and our 

results in section IV in which we consider the general energy integral 

F,(u) ~- f g,(x, u, Du, DZu) dx + e f f ,(x, D2u) dx 

where g, is quasi-convex in OZu and f ,  is convex in OZu. In addition the functions 
g, and f ,  need not be quadratic, but they satisfy coerciveness and growth condi- 
tions of  the form 

IDZul p ~ g,(x, u, Ou, OZu) ~ c(1 + tDZuIP), 

Ih2ut p ~ f,(x, DZu) ~ c(1 + I D2ul p) 

with p > 1. 
A similar problem in the case of  membranes (i.e. when the energy integral 

contains only the first derivatives Du and not DZu) has been studied by several 
authors: see for example [2], [3], [4], [8] if the energy is a quadratic form, and 
[1] in the general case. 

II. Notations and Statement of  the Result 

We use the following symbols: 

-(2 a bounded open subset of  R n, with C 2'1 boundary; 
v the outward normal vector to .(2; 

the function ~(x) = dist (x, .Q); 
h a smooth function from &Q into ]0, +c~[ ;  
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{r~}~>o 

s 

P 
f 
G 

a set of  positive real numbers such that lim r~ = O; 
e~O 

the set {a + iv(a) : a E 0s 0 < t < rfl~(a)}; 
the set s W Z'~; 
a real number greater than 1; 
a function from R " x R n  • into [0, § 
a functional from WzP(~2) into [0, §162 

By the regularity assumptions on ~.Q, the mapping (a, t) ~+ a + t~,(a) is invertible 
on Z'~ i fe  is small enough; in particular the point a(x) E 8/2 of  minimum distance 
from x E X~ is a regular function of  x. We shall write h(x) and ~(x) for h(a(x)), 
v(a(x)). We make the following assumptions on the function f :  

(2.1) the function f(x,  z) is continuous in x and convex in z; 

(2.2) for all x E R  n, z E R  n• 

Izl v ~ f ( x ,  z) ~ r § IzlV), 

(2.3) there is a non-negative continuous function 7(x, z) which is convex and 
p-homogeneous as a function of  z and satisfies 

sup (If(x, z) - 7(x,  z)[ : xER"} < q(lz[) (1 § ]z] p) 

for all z E R  "• where ~: [0, § [0, -~oo[ is a continuous, de- 
creasing function which vanishes at infinity. 

As for the functional G, we suppose that 

(2.4) G is lower semicontinuous in the topology LP(~); 

(2.5) G is continuous in the strong topology of  W2'P(f2); 

(2.6) G(u) > f l O Z u l P d x  for every uE WzP(~). 

I f  u E LP(R n) is such that u la E W2'P(~2), we write simply G(u) instead of  G(u[a). 
We remark that conditions (2.4), (2.5), (2.6) are fulfilled by a broad class of 
functionals, for example the integrals f g(x, u, Du, D2u) dx where g(x, s, s', s") 

is a Carath6odory function convex (or quasi-convex in the sense of  MORREY [7]) 
in s"  and satisfying 

Is" I ~ <= g(x, s, s', s") _--< c(l + Is" D .  

For  every u ELP(R n) and ~ > 0  set 

G(u) § e f f ( x ,  D2u) dx if  u E W2'p({2~) 

Fdu)  = ~ 
t o o  otherwise. 

We wish to characterize the / '-limit of  F~ in the topology Lv(R~), depending on 
the behavior of  r,. Indeed, i t is  well known that the/ ' -convergence of  a sequence 
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of functionals is strictly related to the convergence of  their minimum points 
and minimum values: more precisely, let X be a metric space, let (F,),>o be mapp- 
ings from X i n t o R ,  and let x E X .  We set 

F-(X)  limionf F~(x) = inf {limionf F~(x~):x~-+x in X}, 

If  these two T-limits are the same at x, their common value will be denoted by 

r-(X) !~  F~(x). 

Theorem [II.1] (see [5], Theorem 2.3). I f  q9 : X--> R is continuous, then 

/ ' - (X)  limionf(~ + F,) (x) = ~(x) + I~(X)li ,minfF~(x),  

F- (X)  l imsup ( 4  + F,) (x) = ~(x) + U-(X) limsup F,(x). 

Theorem [II.2] (see [5], Theorem 2.6). Assume that 

(i) the family (F~) is equicoercive, i.e., for every c > 0 there is a compact 
subset K, of  X such that 

{xE X: F~(x) ~ c} ~_ Kc for every e > 0; 

(ii) .for every xE X, I ' - (X)! im F,(x) exists. 

Set F =  F-(X) l im F,.,_~o ThenFhasamin imu m~  mixnF=i im ' 

lim \/~infF*~ and x , -+ Sc in X, then 3c is a minimum moreover if 
e---~O 

point for F. 

We now state the main result: set 

. 1 2 p -  1\ p-1 
; 

for every u E WZP(f2) and L E [0, +~x~[ we define 
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Let  uE W2'p(~) and M E  [0, + e o ] .  I f  M <  + ~  we define 

I !  

GM(U ) : 

M f Ou (a) p h 1-p(a) 7(~, ~(a) | ~(a)) dH"-l(a)  

+ 0o otherwise;  

i f  uE W~'P(O) 

if  M = -koo we define 

G(u) 
62(u) = [ 

/ + o o  

In  Section I I I  we shall p rove  

if u E W~'P(t2) 

otherwise.  

Theorem 1II.31. Assume that (2.1), (2.6) hold and that both lime/r~ p - I =  
* ' ' ~  ~---~0 

L E  [0, + o o ]  and lime/r~ -1 = M E  [0, -t-oo] exist. Then for every uE WzP([2), 
e---~O 

/- '-(LP(R")) l im F~(u) exists, and 
~-->0 

(i) i f  L <  q-oo, then F =  G'L; 

(ii) i f  L =  +0% then F =  G~. 
1 1 

Moreover i f  L ~ 0 and g E Lq(Rn), with - -  + - -  = 1, then from every sequence 
P q 

o f  minimum points o f  

F,(u) + f gu dx 

we may extract a subsequence converging in LP(R ~) to a minimum point o f  

F(u) + f gudx .  
t2 

HI. Proof of the Result 

In  wha t  follows the letter c will denote  any  posit ive constant ,  and  if  no con-  
fusion is possible we will no t  write the variables  x and a in the integrals.  We 
shall later need the fol lowing l emma:  

Lemma [ I I I . l [ .  Let b E L~176 1), a E C(R") and u8 --> u strongly in W1'P(Rn). 
1 

I f  we set b =  f b(t) dt, then 
0 

1 ip ~ ~(x)~ l im - -  f [uXx) a(x) b dx 
r~ z. \r,h(x) ] 

= T, f lu(~)l ~' a(~) hO) dH"-'(~). 
OD 
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we prove separately 
inequalities F+~G'L and G L ~ F - ;  analogously, we prove that 

vE WI'P(R"); then 

fdH"-'(~) f [Iv(G + n,((r))l" - -  [v(~)2P[ dt 
OD 0 

reh(a) 
<= c fan"-'(~,) f Iv(,~ + t~(,r)) -- ~(o)t " [Iv(,r + t~(~))7  ' + I~(~)1 "-~] at 

0 0  0 

reh(a) Ifreh(~) ] 
<= c f dn"-'(,r) f ,. ,  lDv('~ + s,~(~))[ as 

(30 0 LO 

• [Iv(o" + tr(c))I p-' + lv(a)['-'] dt 
f?o, 1 .p 

c faH"-'(~) 10.(~ + s~(~))l"as 

..p..,:p 
• r e p [[ v(a + t,(a)) I p + ] v(a)[P] dt r, 

I f  dx]':P[j I ~ ]~ '  <: cr~ [Dr[ p Iv dx + r, f lvl~ dH ~-' " , 
0~2 

with e independent of  v. This inequality with v = u~ yields 

(3.1) lim 1__ f [i u,(x)[" -- [u,(a(x))I p] a(x) b \rfl~(x)] dx : O. 
e~O F e Xe 

Because a(x) is assumed continuous, 

[1 ,r~h(x)( t~(X) ~ dx[ = (3.2) lira f ] u/(r(x))]P [a(x) -- a(r b 
e--+O ~ .Xe 

finally, since u~-~ u in LP(O~2), 

1 ",h(") ( t ) 
(3.3) lira ~ f dH"-'((r) [u~(a)f a(~) f b ~ dt 

e~O ~ 0.(2 0 

=limb f l u ,  l~ahdn"- '=  g f l u l " a h d n  ~-' 
Or2 ~.Q 

and the conclusion follows by (3.1), (3.2) and (3.3). [ ]  

We divide the proof  of  Theorem [II.3] into several steps. For every u E W2"V(O), 
set 

F+(u) = F-(LP(R")) lims0u p V,(u), 

F-(u) = U-(LV(R")) lira inf F,(u). 
e--+O 

In the first "critical" ease e ~-~ r~ p-I (i.e. 0 < L -< +0o)  
the two 
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F + ~ G~t and G~ <= F -  in the second "critical" case e ~-~ re p-1 (i.e. 0 < M < 
+e~) .  The result in the remaining cases will be deduced easily. 

�9 . 2 p ~ l  F +  < G' Case e , ~  1 8  , ~ L "  

Let u E W2'P(Q): the regularity of ~s lets us suppose that u E W2'P(R~). For  
every e > 0  set 

1 if x E ~ ,  

%(x) = ~ [ 6(x) ~ if x E Z'~ 
\r,h(x) ] 

0 if xC D~ 

where 4 :  [0,1]---~P~ is the solution of  the minimum problem 

min{6/l~p"(t)lPdt:~pEW2"p(O, 1),~p(O)= 1, ~p(l)= ~p'(O) = ~,'(1) ---- 0}. 

Some easy computation shows that 

~(t)  p -  1 P P 
- -  - -  2p-1" It - -  11 p - '  (t  - - t )  

P 
1 

f I~"(t)[" dt = Kp 
0 

and 

(3.4) 

2 p - - 1  

[ ~ " ( t ) [ ' - 2  ~"( t )  = Kp(t -- 1). 

- -  (t - �89 + 1,  

In particular, the function ~ is of  class C 2, and by our assumptions on OD and 
on the function h we have in Z'. 

(3.5) 

Setting us = u% we have u, E Wo2'P(~2~) and u, ~ u" 1 
convexity o f f  we have for every t E (0, 1) 

in LP(R"). By the 

1 
FXu~) ~ 6(u) + ~ f t f ( x , - 7  u 9 ~ )  

(1  )] 
+ ( 1 - - t ) f  x , ~ ( D u  | | dx 

<-- O(u) + te ~f f ( x ' l u  D2~.) dx 
- -  \ t 

- - p  p 
+ ee [meas (Z'~) + r/-" (1 . t) Ilul[w2,.(R.)l, 
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therefore 

1 1 \  
(3.6) lim sup F,(u0 < , ~ o  = G(u)§ tlimsupezff(x,+uD2p~)dx.,~o 

Fix R > 0 and set AR,, = {xEZ',:  luD2p~l < Rt}; then by (2.3), (3.5) 

) ( + )  x, t u D 2 ~ ,  dx<=~ f r  x, uD~,  d x + e  f e ( o ) o + R g d x  
2~e AR,e 

+ e f e(a) l + , trZ , , I x <  ~,(x, u D'%) dx 
~e \AR,e  

eE 
+ ep(0) (2 + R p) meas (S,) q- Q(R) ~ z f  [u [u dx. 

Now let e -+ 0, apply Lemma [III.1], and then let R -+ -k-oo; we obtain 

(3.7) lim supe z f  f f x, 4 u D2%) dx <= t-1' lim sup e f T(x, u D'%) dx. 

As above, by (3.5) and by the assumptions on ~ we have for every s E (0, 1) 

2:, t~ z e 

+ ,p.sp_, .~ h~, lul" ~" dx, 

and by Lemma [III. 1] 

(3.8) limsoUPe f v (x ,  uD2%)dx<=Ls'-2pKp f lulPh'-2'5@,v | dn  ~-'. 
z 6 s o  

Using (3.6),  (3.7),  (3.8)  and letting t ~ 1, s ~ 1, we obtain 

F+(u) <= lirnsgp F,(uO <= G'L(u). [] 

Case e ,'~ r zp- 1 , -~ , G'L~F-.  
Take u 6 W2'p((2); again we may assume that u E W2'p(B"). Letting u, E Wo2'p(t2,) 
be such that u, ~ ula in LP(R"), we have to prove that 

G'z(u) <= lim infF6(u,); 
e---~ 0 

hence we may suppose 

lim i0nfF,(u, ) = ~im F,(uO < +0% 

whence 

(3 .9)  f )D2u~ ]P dx + e f I O2u, 1" dx <= c. 



Plates in Soft Material 363 

In  part icular ,  wi thout  loss o f  generali ty we m a y  assume tha t  
W2,p(~~), 

By the semieont inui ty  o f  G it will suffice to  prove  tha t  

u, -+  u weakly  in 

limi0nfe f f fx ,  D2u,) dx ~ LKp f l ul" h ' - 2 ~ ( ~ ,  v | ~) dH n-' �9 
z, 8 s o  

Fix R > 0 and  set BR.~ = { x E R " :  ID'u,[ < R}; 

e f f (x ,  D=u,) ax >= ~ f y(x, D2u,) dx 

- e  f o(O)(l + Rr') d x - e  
X~CWR,~ 

by (2.3)i (3.9) 

f e (R) (1 + I D=u.IO dx 
Xe~BR,8 

>= e f y(x, D2u.) dx -- e meas  (Z.)  ~(0) (2 + R p) -- co(R ). 

Since R is arbi t rary ,  we have only to prove  tha t  

(3.10) l i m i n f e  f y (x ,  D2u,)dx>_LKp f[ulPh'-2py(~r,v |  "-~. 
e-+O 

X~ ~ D 

I t  is easy to construct  by convolut ions  a sequence (Yk) of  functions f r o m  R n •  n • n 
into [0, + o o [  such tha t  

(i) for  every x E R n the funct ion yk(X, ") is convex and  p - h o m o g e n e o u s ; :  
(ii) Yk is o f  class C ~ on R ~ • (R ~ • ~ \ (0)); 

(iii) for  every x 6 R ~ and  z E R ~ • ~ 

Izl" < r~(x, z) < c I z l ' ;  

(iv) for  every x E R  n and  z E R  "x" 

1 
I ~(x,  z) - r(x, z) l ~ T I zl.. 

By (3.9), (3.11) (iv) we obta in  

l im [ l i m i n f e  f yk(X, DZu,) dx -- LKp f [ul ~ hl-ZPrk(a,v |  n-x] 
k -~  L , - ,o  z ,  80 J 

= lim in fe  f y(x, DZu,) dx -- rKp ~f[u I p h'-Zry(a, v | ~) dH"-' ,  
e-+O ,v 8 

and so in 43.10) we m a y  assume tha t  y is o f  class C ~ on R " •  "• \ {0)). F o r  
simplicity we set 

~;'(x) - r~h~(x-------3 \r,h(x)I '  

~,,j(x) = ~ (x, ,,Cx) | ~(x)); 
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moreover, we adopt the usual summation convention over repeated indices. 
Because ?, is convex and p-homogeneous, 

,, 87 r(x, z)2u~) _-> r(x,  ur ,, | ,.) + (o~u, - ur  ,v,j) ~ (x, ur ,, | ,.) 

= I " " (O~u, u ~ , , , , , 9  l u~','l "-~ ur  :, , j  u * * l  7 ( x , v |  - ' . . . .  

and by (3.4) 

(3.12) 7(x, D2u,) >" ] "~" ,u . : u~,  i 7tx, v |  

Applying Lemma [III.1 ] yields 

(3.13) l ime flua~71"r(x,,, | flul~h'-%,(a,,, | ~-'. 
e'-+-O 

Inequalities (3,5) imply that 

[uq~"~, |  -- O=(u~0,)l = < ~ ( l u l  + [Dul § IOZu[), 
r ~  

so that 

(3.14) l i m e  f luq~'~'~, | v - D2(u~,)l lul  ~ - '  r~-ZPdx ~ -  O. 
t-~-O 

By (3.12), (3.13), (3.14) to conclude the proof  of  (3.10) we have only to show that 

l imr,  f D ~ ( u , - u c p , ) l u ] P - Z u (  b ) ' 
~-~0 r~  h 2p---''-'T- ~ -- �89 eli dx = O. 

Integrating by parts, and recalling that u, -- ug), E Wd" (s we make the inte- 
gral above become 

r~ f (u, - ug,) D~j [. h-yf-_ 2 ~ -- { Yij dx 
z~ 

r, lull--" u , 
+ " ~  f Di(u , - -  u) hEp_ 2 7 0 v j d H  "-1 

+ r, eo f (u, - u) Dj [h2-~=~_ 2 -- -~ yq vi . 

It is easy to see that the boundary integrals vanish as e -+  0 since u ,  ~ u in 
Wt'P(Of2). Moreover 

ID~ [I u f , -2  u ~ , c 
LTSm-_~ (~-~)~,,j] I~ Z(,u,~-' + ,D.,.-' + ID2u,~-'). 

and so also the first integral vanishes as e ~ 0. /-] 
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Remark [III.2]. If e >> r 2e-1 (i.e. L = +c~) ,  then, for any L > 0 we have 
for small enough e 

F,(u) ~ G(u) + Lr~ ~'-t f f ( x ,  D~u) dx 

for every u E w2,p(n,); hence by the foregoing discussion 

F-(u) ~ G(u) + LKp f lul p hl-2pr(o', Y | ~) a l l " - '  

Since L is arbitrary, this implies that F~(u) ---- - k ~  if u ~[ W~'P(.Q). [] 

p - 1  F +  ~ ,, Case e ~.~ r~ , : G M. 
By the definition of  G~, we have to prove the inequality F+(u) <= G~(u) only 
for u 6 Wz'P(R n) A w~.,(n).  Choose such a function u, and let v~ E C~~ ~) 
be such that 

v, --~ u strongly in W2'P(Bn), [Iv~]rc~(~t,~ ~ r~ -�89 

Let ~ be the solution of  the minimum problem 

min ID%V dx : (Dv2, v) = 0 and v 2 = --v,  -- --~-(Dv~,~) on On . 

Since u ~ 0 on On, ~ ~ 0 strongly in W2'P(f2). Set 

<Dv~(~(x)), ~,(x)> 
~,(x) = -- &h(a(x)) in Z'~, 

[ v~(x) + ~'dx) in n ,  

w~(x) = [~(x) - r,h(,~(x))] ~ ~ (x )  in 2:~" 
2 

then w~E W2o'P(n,), w~--~ u .  1~ in LP(R ~) and w~---~ u in w2,p(n). Moreover 

(3.15) ]JDZw~ -- ~q~, | r[lLP(z~) ~ C. 

I f  we use (2.5), the argument employed in the proof  of (3.6), (3.7) yields for every 
tE (0, 1) 

lira supF~(w~) < G(u) + t l - P l i m s u p e  f y(x, #,v | ~) dx. 
e-~O = e-+O 

By the homogeneity of 7, it is enough to apply Lemma [III,1] and to let t--> 1 
to obtain F + ~ G~. [ ]  

p - 1  t t  Case ~ ~.~ r~ , GM ~ F-.  
Let u 6 WzP(R ") A Wol'P(n) and take u~ E wo2,P(n~) such that us --> u- 1~ in 
LP(R"). As we did in the part G~ ~ F- ,  we may assume that (3.9) holds and that 
u~--~ u weakly in w2,p(n), and it suffices to prove that 

(3.16) lim+/0nfe r f  ?(x, OZu~) dx ~ M e  f l ( Du, ~)1 ~' ht -Vy(a, v | ~) dH"-  ' , 

with y of  class C ~ on Rnx  (Pd '• \ {0}). 
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I f  we define ~'o as when 
have on Z'~ 

(3.17) 

By (3.15) 

G~ ~ F -  and v%, we as when F + ~ G~t, then we 

~7 ~(x, D2u~) ~ ~'(x, v~ev @ v) ~- (D~u~ --  O,vivj) ~ (x, O~v | ~) 

--: t0~ f 7(x, v | v) + D~(ue -- w,) [O~ I p-20eTb 

+ (D~w~ --  vaevp,i) I Oe [p-20~7,ij" 

(3.18) e f l o~w ,  - O~vi~,j] [O~l'- '  Irbl dx <= c Dyer  " , 
Z" e 

which vanishes as e -+  0. Moreover by Lemma [III.1] 

(3.19) lime fto.lOv(x,~ | = M f [ ( D u ,  r ) lPh' -PT(a ,v  | 
e-+O 

X e 012 

An integration by parts yields 

(3.20) e f D~(u, --  we) ] vae f - 2  0e~;j dx  
re 

= -e  f D,(ue --  we) Dj([ O~ ]p-2 vaT~) dx 

-- e f Di(u e -- we) 10e [p-2 OeTbvj d H n - , .  

Thelas t  term vanishes as e -+  0: indeed e JOel p-I  ~ c ]Dvef  -1 and ue -- we---> 0 
weakly in wZ'P(/2), so that D(u, --  we) ---> 0 strongly in LP(OI2). As for the first 
term we have 

c f l D ( u e -  we)[ ( IDve[ ' -~+  lDv~['-21D2ve[)dx 
Xe 

c I D(ue --  we) f  dx 

since (ve) is bounded in W2'p(Rn), For every x E Z'e 

[r~(x) ] p 
I D(u~ - -  we) (x)l  ~ < I D2( . e  -- we) (~(x) + t,,(x))l at 

reh(x)  

cr~ -1 f ID2(ue - we)(a(x) + tv(x))lV dt, 
0 
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SO that, by (3.9) and (3.15), 

f [D(u~ - w,)1" dx <= cr~ f I D2(ue - wD [" dx 
"v8 ~e 

cree f (ID~u~l" § ID~we[ ") dx ~ cre; 

together with (3.20), (3.21) this implies 

lim e f D~(ue -- w,) lyre l ~'-2 v~er~ dx = O, 
e---~O ze 

and (3.16) follows by (3.17), (3.18), (3.19). [ ]  

Case e ~ re 2p--1. The inequality F -  >= G0' ~- G is trivial. On the other hand, 
for every L > 0 we have for all sufficiently small e 

Fe(u) ~ G(u) + Lr~ ~-1 f f ( x ,  D2u) dr,  
Z e 

whence F+ < G' = L for all L > 0 ,  and F +=<G0 follows as L - + 0 .  [ ]  

Case r~ p-I ~ e ~ r~ -1. We already proved in Remark [III.2] that F -  ~ Go ~' 
and the inequality F + =< Go' is proved as in the case above. [ ]  

Case e >> r~ -1. 
Since F + ~ G~ is trivial, we need only prove the inequality F -  ~ G~, which 
is derived from the case e ~ r~ -1 by an argument like to the one we used in 
Remark [III.2]. [ ]  

We pass now to the last assertion of Theorem [II.3]. Let l ime/r 2p-l > 0 
e--)'0 

and g E Lq(R"). By Theorem [II.1] the functionals 

FXu) = i~,(u) + f gu dx 
De 

are /'-(LP(g"))-convergent to F(u) + f gu dx; hence they satisfy condition (ii) 

of  Theorem [II.2]. To conclude the proof of Theorem [II.3] we only have to show 
that the functionals F, satisfy also condition (i), that is 

F,(u,) ~ e for all e ~ (ue) is relatively compact in LP(Rn). 

By (2.2), (2.6) we may assume that 

flO2u, l"dx+e flD2uel~'dx+ fguedx<e. 
a "re ~e 

Take any ~ />  O; for a suitable constant C~ 

(3.22) flD2ueI~dx+~ flO'-uel~dx<C~+~ fluel'dx. 
x, 8 a e  
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For every a E 0/2 and t E [0, r~h(a)] 

so that 

rdl('D I l u.(~ + t,,(,~))I" = t f (s - t )  <o.u.( ,~ + s,,(,D), ,, | ,,> ds 

r#(,,) 

cr:, p - '  f lb'..(<, + ~,(o))l"a~, 
0 

(3.23) f l.:l" dH"-' ~ cry'-' f lD'.,l" dx, ~ti ~e 
(3.24) f lu.l" ax <= crp f lD'.:l" ax. 

On the other hand for every v E Wz'P(f2) 

sl.l.,,x.. [s,,,..l.,,x + s,.l.,,,.-,}, 
D O.,i 

with c depending only on ~ and p; hence by (3.23) and since lime/r 2p-1 > 0 
e-+O 

(3.25) fIueiPdx~c(/ID2lleIPdx-i-E flD2bl~l'dxl~ 

If  ~/ is properly chosen, inequalities (3.22), (3.24), (3.25) yield 

f l D2u. l" dx -r- e f [ O2u. lP dx ~ c ; 
D .S e 

then f ] u, ]P d x  - +  0 by (3.24) and I1 u, I[ w2e(o) < e by (3.25). [ ]  

IV. Remarks 

In this section we give some extensions of Theorem [I1.3], and we show how 
this applies to the mechanical problem mentioned in the introduction. 

Remark [IV. l] .  The function h : 092 -+ ]0, +oo[ may be assumed to be only 
continuous: in this case it is enough to approximate h uniformly by smooth 
functions hi; applying Theorem [II.3] to hj and passing to the limit in j gives the 
result for h. 

Remark [IV.2]. Theorem [11.3] can be extended by a slight modification of the 
proof to the case 

F,(u) = G,(u) + e f f (x ,  D2u) dx, 
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where the functionals G8 satisfy 

(4.1) l iminfGs(u,)  ~ G(u) 
e-+0 

(4.2) lim Gs(u~) = G(u) 
8-+0 

(4.3) Gs(u) ~ f lO2ul" dx 
D 

if u8 ~ u weakly in W2'P(Ar 

if u, ~ u strongly in W2'p(12). 

for every e > 0 and u 6 W2"p(O). 

The / '-limits G' " z and GM are the functionals defined in Section II. 

Remark [IV.3].  I t  is clear that if one of the two limits lim e/r 2p-1 and lim e/r~ - t  
8-+0 e-~0 

fails to exist, then the functionals F8 do not / '-(LP(R"))-converge. 

We are now able to study the convergence of the solutions u8 of  (1.2): it is 
enough to prove that  the functionals F, defined in (1.1) satisfy the requirements 
of  Remark  [IV.2]. 

We recall that the Young modulus E,  of  the material in Z'8 vanishes as e --~ 0, 
and the Poisson coefficient a ,  converges to some o" o > -  1. Since for every 
u E H~(Qs) 

f det D2u dx = O, 

we may write 

where 

s s 

e,(u) = G,(u) + 
E ,  ~ 2 

1 ~ ~r~ s!f(D u) dx,  

G~(u) = ~ IAul 2 - 2 ~ + .  1 - ~2 det D2u dx, 
..Q 

f(D2u) --- [Aul 2 - 2(1 - ~o) det D2u. 

Since the Poisson coefficients are numbers less than �89 (and greater than 0 for all 
known materials: see [6]), the function f satisfies hypotheses (2.1), (2.2), (2.3); 
moreover it is easy to see that G, satisfies hypotheses (4.1), (4.2), (4.3). Then 
Remark  [IV.2] applies, and so the conclusion described in the introduction is 
attained. 
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