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1. Introduction

Consider an inhomogeneous clamped plate D, submitted to an external force
g(x). The (small) vertical displacement #(x) solves the minimum problem

min {Df [T% (jAu|* — 2(1 — a(x)) det D%u) + g(x) u] dx:ué€ H&(D)},

where E and ¢ are the Young modulus and the Poisson coefficient respectively,
and D?u denotes the 2 x 2 matrix of second derivatives of u. We study a plate
having a central part £ surrounded by an increasingly narrow annulus X, made
of an increasingly soft material (i.e. the Young modulus E, tends to zero in X,).
The free energy of the plate is then

1 — o2

(1.1) Fe(u)zf E (14u)? — 2(1 — o) det D?u) dx

E,
2 — 2
+2f1 — 5z ([4ul* — 201 — o) det D*u) dx.
We study in particular the behavior as ¢ — 0 of the solution ¥, of

(1.2) min {Fs(u) + [ gduds:ue HYQY 25)}.

Uz,

If r. is the width of X,, we may have different limit problems depending on the
relation between r, and E,: let o, = li_I)I(l) o, and set

Gu) = fl _E02(|Aulz — (1 — o) det D) dx.
2
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Then, if E, > r,, the limit problem is
min {G(u) : u € H(£)}
(clamped plate); if 181_13(1) Efr, = M & 0, the limit problem is

min {G(u) + M fl

ds uc H* (N HO(Q)’
(the plate becomes simply supported, but a price is paid for having non-zero
normal derivative); if r, > E, > r?} the limit problem is
min {G(u) : u€ H*(2) N\ HY(2)}
(simply supported plate); if 1% E,/r} = L the limit problem is

min 1G(u) + 12L
jow

1
s |ul?ds:uc HZ(Q)}
(the plate may take off, but a price is paid for having a non-zero boundary value).
In all four cases, if limE ./rl > 0, we prove that the solutions u, converge in
L*(R?) to the solutnon of the limit problem.
The foregoing example is a particular case of our theorem [II 3] and our
results in section IV in which we consider the general energy integral

F(u) = [ g(x, u, Du, D*u) dx + ¢ [ fo(x, D*u) dx
Q =5

where g, is quasi-convex in D2 and f; is convex in D*u. In addition the functions
g. and f, need not be quadratic, but they satisfy coerciveness and growth condi-
tions of the form

[D*ul? < g.(x, u, Du, D*u) < (1 + | D*ul?),
| D*uf® < fi(x, D*u) = (1 + | D*u|?)

with p > 1.

A similar problem in the case of membranes (i.e. when the energy integral
contains only the first derivatives Du and not D?u) has been studied by several
authors: see for example [2], [3], [4], [8] if the energy is a quadratic form, and
[1] in the general case.

II. Notations and Statement of the Result

We use the following symbols:

a bounded open subset of R", with C*! boundary;
the outward normal vector to 2;

the function &(x) = dist (x, !2),

a smooth function from 22 into ]0, +oof;

e Ry
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{rd,., a set of positive real numbers such that limr, = 0;

2, the set {o + #(0):0€ 02, 0 < t < rh(o)};
2, the set Q\V ZX,;

)/ a real number greater than 1;

f a function from R"xR"*" into [0, +oo[;
G a functional from W2>?(Q) into [0, --oo[.

By the regularity assumptions on 212, the mapping (o, t)+> ¢ + (o) is invertible
on X, if e is small enough; in particular the point o(x) € 2 of minimum distance
from x¢ X, is a regular function of x. We shall write /(x) and »(x) for h(c(x)),
v(a(x)). We make the following assumptions on the function f:

2.1 the function f(x, z) is continuous in x and convex in z;
2.2) for all x¢R", zcR"*"
[z]P < fx, 2) = (1 + |2]7);

2.3) there is a non-negative continuous function »(x, z) which is convex and
p-homogeneous as a function of z and satisfies

sup {|f(x, 2) — 7(x, 2)| : xR} = o(|z]) (1 + |2[")

for all ze R"*", where g: [0, +oo[ — [0, +oo[ is a continuous, de-
creasing function which vanishes at infinity.

As for the functional G, we suppose that

2.9 G is lower semicontinuous in the topology LF(£2);
2.5 G is continuous in the strong topology of W2>7(£);
(26) G = [|D?ul’ dx for every uc W**(Q).

Q

If uc LP(R") is such that u|, € W>7(£), we write simply G(u) instead of G(u]g).

We remark that conditions (2.4), (2.5), (2.6) are fulfilled by a broad class of

functionals, for example the integrals [ g(x, u, Du, D*u) dx where g(x,s,s’, s”
Q2

is a Carathéodory function convex (or quasi-convex in the sense of MORREY [7])
in s and satisfying

|s” P < glx, s, 5", ") < (1 + |5”]7).
For every u€ L’(R™) and &> 0 set

G) +¢ [fix,D’wydx if ue W3P(82,)
z,

F(u) = ¢

+oo  otherwise.

We wish to characterize the I™-limit of F, in the topology L?(R"), depending on
the behavior of r,. Indeed, it is well known that the I-convergence of a sequence
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of functionals is strictly related to the convergence of their minimum points
and minimum values: more precisely, let X be a metric space, let (F.),..o be mapp-
ings from X into R, and let x€ X. We set

I-(x) liq}i(}lng(x) = inf {liren_)iglfFe(xs) IX,~—> X In X},

I—(X) lim_§(}1p F.(x) = inf {“T—ﬁ}lp F(x): x.— x in X}.
If these two I-limits are the same at x, their common value will be denoted by
I'(X) li_{% F.(x).
Theorem [II.1] (see [5], Theorem 2.3). If @: X —R is continuous, then
I-(x) lim»i(}'lf(tli 4+ F) (x) = D(x) + I'(X) linlioane(x),
I'-(X) 1im_)s(;.1p (@ + F,)(x) = D) + I'(X) linel_)s(}lp F.(x).

Theorem [I1.2] (see [5], Theorem 2.6). Assume that

(i) the family (F,) is equicoercive, i.e., for every c¢ >0 there is a compact
subset K, of X such that

{xe X: F.(x) = ¢} C K, for every ¢ > 0;

(ii) for every x< X, I'-(X) lir(r)l F(x) exists.
Set F = I~(X) ]in(')l F,. Then F has a minimum on X and m/‘i,n F= lgxg) (if\;fFE) ;

moreover if ling F.(x,) = lin(} (i)r}f Fe) and x,—>Xx in X, then X is a minimum
E—>! £—>

point for F.

We now state the main result: set

{2p — )P !
= p N
5 2(.0—1) ’

for every uc W*P(2) and L€ [0, oo we define

Grw) = G) + LK, [|u(o)l’h'~*(0) (0, %(0) ® ¥(0)) dH" ' (0).
o
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Let uc W??(2) and Mc [0, +ool. If M < J-oco we define

i K 2(6) y(0, v(c) ®(0)) dH" (o) if uc WyP(Q)

ou
% @

G) + M
G =1 mf

+oo  otherwise;

if M = 4oco we define
Gy if uc W (Q)
Ga) = |
Jo0o  otherwise.

In Section III we shall prove

Theorem [I1.3]). Assume that (2.1),...,(2.6) hold and that both 1i_r>r(%e/r€2"’_1 =
Le [0, +oo] and 11_{1(')1 gfr? ! = M€ [0, +oo] exist. Then for every uc W>P(Q),
I=(LY®R"™) li_g(} F,(u) exists, and

(@) if L < +oo, then F= Gp;
(ii) if L = +oo, then F= Gy.

: 1 1
Moreover if L >0 and g€ LY(R"), with 7 -+ —q— = 1, then from every sequence

of minimum points of
Fu)+ [gudx
98

we may extract a subsequence converging in L°(R") to a minimum point of

Fu) + [gudx.
2

III. Proof of the Result

In what follows the letter ¢ will denote any positive constant, and if no con-
fusion is possible we will not write the variables x and o in the integrals. We
shall later need the following lemma:

Lemma [III.1{. Ler bc LY0,1), ac CR") and u,—>u strongly in Wi (R™).
_ 1
If we set b= [ b(t)dt, then
0

lim rl [ a0 a(x) b (-—6-(1) dx

e Z, reh(x)

=b [|u@)| a(o) o) dH" (o).
2]
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Proof. Let v W (R"); then

reh(o)

a [dH" (@) [ |v(o + (@) ) — |v(0) 7] dt
2 0

roh(o)

=< c [dH" V(o) f lo(o + (o)) — v(o)] - [{o(o + t(e)) 7" + |o(o) |?~"] de

o

rgh(o) rr.h(o)
¢ [dH" (o) [ [f
a0 [¢] L0

X [Jv(o + (@)~ + |v(@) [P~ dt
rch(o)

Up
<c¢ [dH" ') [f | Do(a + sv(a))|” ds]
o0 0

IA

| Dv(o + sv(0))| ds]

pzt

p—1 reh(o)
[ [{v(e + t(0))|? + |v(0)|"] a’t] Pyl

X r P f
0
1 p—1
<o J 1ok ax] [ Jlet s 1ok anr] T
Ze e o2
with ¢ independent of v. This inequality with v = u, yields

1
(3‘1) an‘} -sz [|ue(X) Ip ,us(o'(x:)) |p] a(X) b( /(())) ' 0.

Because a(x) is assumed continuous,

3.2 l f lu(o(x)) |7 [a(x) — a(o(x))] & ( (EC))) dxl = 0;

finally, since u,— u in LP(0£2),

1 reh(o) t
(3.3) lim o= [ dH"!(0) |u )l a(a)of b (r;h(a)) a

=lim b [lu.l? ah dH" ' = b [ lul? ahad™ ",
=0 40 FY
and the conclusion follows by (3.1), (3.2) and (3.3). OO

We divide the proof of Theorem [I1.3] into several steps. For every u¢ W27(9),
set

Fr(u) = I (L7(B") lim sup F,(u),
F~(u) = T'~(L°(R") lim inf F ().

In the first “critical” case ¢~ r?~! (i.e. 0 <L < 4o00) we prove separately
the two inequalities F+ < G, and Gy < F-; analogously, we prove that
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F+ < Gy and Gy < F- in the second “critical” case e ~ ™! (ie. 0 < M <
-+o0). The result in the remaining cases will be deduced easily.

Case e ~r?~! F+ < Gj.
Let uc W21’(.Q) the regularity of 8Q lets us suppose that u€& W*?(R"). For
every € >0 set

1 if xe 2,
(%) .
= f 233
)= @ (rsh(x)) Hxe
0 if x¢ Q,

where @: [0,1] >R is the solution of the minimum problem

1
min {J () dt: p € W20, 1), p(0) = 1, p(1) = /(0) = p'(1) = 0}.

Some easy computation shows that

o) =2 = LT — T - "p‘la—«%)ﬂ-
1
[ 18" =
and
(3.4) 18P 01 = Kot — 3).

In particular, the function @ is of class C?, and by our assumptions on 202 and
on the function 4 we have in X,

1 _(6\ v
D%__qj(hr)_

1 y Qv
D? @' <
e r2 (hr ) h?

=c,

(3.5)

re

Setting u, = up, we have u,€ W@?(2,) and u,—>u-1lg, in L°(R"). By the
convexity of f we have for every € (0, 1)

RS 60 +e [ [ —u D)

+ Q1 - t)f(x,1 1_ t(Du ® D¢, + Dy, ®Du—l—(p€D2u))] dx

1
<Gw)+1t [f (x, —u DZ%) dx
Ze
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therefore

(3.6) lim sup F(u) =< G(u) + ¢lim sup e [f (x, % u DZ%) dx.
£ &> =

Fix R>0 and set Az, = {x€ X, :|uD%p,| < Rt}; then by (2.3), (3.5)

. ff(x Tubp) dese fy(x,iunz%) dc+e [ o) (1 + R dx

Re

+e [ o® 1+‘ l § f)’(x,uszs)dx

Ze\4 R,e

ce
+ &2(0) (2 + R") meas (Z;) + o(R) prRT zf lul? dx.
Now let £¢— 0, apply Lemma [[II.1], and then let R — +oo; we obtain
1
3D lim supe ff(x, T thps) dx < "7 lim sup e [ 7(x, u D*p,) dx.
£—>! ze &£ 25

As above, by (3.5 and by the assumptions on ¥ we have for every s¢ (0, 1)

dx,

€ fy(x, uD*@)dx < (1 — 5)' P — flul" dx
£ y(x, v Q)
T r2rse! );-f h*? ul?

a(O\F
? (;,—r)
and by Lemma [IIL.1]
(3:8)  limsupe [y, u D) dx < L' K, [|ul? i' *p(o,v ®») dH""".
i = o

Using (3.6), (3.7), (3.8) and letting t— 1, s— 1, we obtain
Fru) < limsup Fo(u) = Go(). 0O

Case e ~ r¥7 !, G, < F-.
Take u€ W?P(2); again we may assume that u € W>?(R"). Letting u, € WE*(Q,)
be such that u», — ul, in LP(R™), we have to prove that

Gr(w) < liminf F,(u.);
hence we may suppose
lim ionf F(u) = lin(} F(u) < +oo,
whence

3.9) [1D*u P dx+¢e [|D?w}dx<c.
g =z
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In particular, without loss of generality we may assume that u,—> « weakly in

WP(£). :
By the semicontinuity of G it will suffice to prove that

liminfe [f(x, D*u)dx =LK, [|ul’ R Py(o, v @ v) dH™ L,
& z, o

Fix R>0 and set By, = {x€R":|D%,| < R}; by (2.3), (3.9)
£ ff(x, Du)dx = ¢ fy(x, D2u,) dx
Zg Ze

—& [ @MU +RY)dx—¢ [ o(R( + |D%,|")dx

ZSABR,S Ze \BR,s

= e [ p(x, D?u,) dx — & meas (Z,) 0(0) (2 + R”) — co(R).

Since R is arbitrary, we have only to prove that

(3.10) lim i(}afe [ v(x, D*u;) dx = LK, [ |ul’ W ~2Py(e, v @ v) dH" L,
& = 80 _

It is easy to construct by convolutions a sequence (y;) of functions from R”*xR"*"
into [0, +oof such that

(i) for every x€R" the function y,(x, -) is convex and p-homogeneous;
(ii) 7, is of class C™ on R"X(R"*"\ {0});
(iii) for every xc¢R"” and ze¢R"*"

2P = yalx, 2) < |27

(iv) for every x€R” and zeR"*"

1
h/k(x’ Z) - V(X, Z)I é _k'Ile'

By (3.9), (3.11) (iv) we obtain
Jim [“‘,}L ionfszsf yue D) dx — LK, [ |ul K=y 0,v ©) dH"—I]
= lirgrl_jglfszsf y(x, D*u,) dx — LK, a;{ lu|? B =%Py(e,» @ v) dH" !,
and so in (3.10) we may assume that y is of class C* on R"Xx(R"*"\ {0}). For

simplicity we set
rr 1 24 6(x)
2 =5 (o)

7]
Vi) = a—jﬂ (%, (%) ® ¥(¥);
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moreover, we adopt the usual summation convention over repeated indices.
Because y is convex and p-homogeneous,

v(x, D*u;) = y(x, u®.' v @ v) + (Diu, — u®.v,; v,) (x, ud® v @)

= |u®, ? y(x,v @) + (Diu, — ud;vy) |u®" 1?=2 u®;'yy;
and by (3.4)

(3.12)  y(x, D*u) = |ud, " y(x,v ®)
' JulP™u (8N,
K (Dju, — u®'vp) 7752 Gy, ~2) Vi
Applying Lemma [II1.1] yields
(3.13) lin(}e [1u@]”y(x,y ® v)dx = LK, [|ul’ ' =%Py(o, v @ v) dH" .
0 5 o0

Inequalities (3.5) imply that

|u®l's @ — Dug)| < — (|ul + | Du| + | D2ul),
so that
(3.19) lime [|udv @ v — D*(up,)]| |ulP=' r2727dx = 0.
ZE

By (3.12), (3.13), (3.14) to conclude the proof of (3.10) we have only to show that

)2 u (5

llmre fD (4 — utps)—th—z— —};———%)y{jdx———o.

Integrating by parts, and recalling that u, — ugp, € WZ*(£2,), we make the inte-
gral above become

lulP">u (& ,
7s Zf (u. — ugp,) D [W (— -~ %) }’:;] dx

hr,

lul"u

Fe -
+—2—m[D,-(u5— u) vy AH" !

DT AW o
—I—rsa![(us u)D —lz—pT' hre—‘f Vii| v, dH .

It is easy to sze that the boundary integrals vanish as ¢->0 since u,—u in
W'7(2). Moreover

|ul?u (b ,
D}, [WT (Zr: - %) %'j]

and so also the first integral vanishes as ¢ - 0. []

-—(lul" ' | DulPTt 4 | D2ufPTY,
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Remark [II1.2]. If &> r¥7! (i.e. L = 4o0), then, for any L >0 we have
for small enough ¢

F,(u) = G(u) + Lr2* ! [ f(x, D*u) dx
25

for every uc W*?(2,); hence by the foregoing discussion

F-(u) = G(u) + LK, [ |ul” i'~ {0,y @ ») dH""".
o
Since L is arbitrary, this implies that F~(u) = too if u¢ Wg?(£). |

Case e ~ P71 F+ < Gy,
By the definition of Gy, we have to prove the inequality F(u) =< Ga(u) only
for ue WHR") N W{P(R2). Choose such a function u, and let v, € CZ°(R")
be such that

v,—u strongly in W (R, ||v.|lcsan )= ro

Let ¥, be the solution of the minimum problem
PN
min‘ f|D2yJ|" dx:(Dyp,v) =0 and = —v, — —2—1(Dv€, ¥)  on ag}.
0

Since u =0 on 22, ¥, > 0 strongly in W*?(Q). Set

{Dv,(o(x)), (x)>
_ e ——— 2
’05(36) Fe /’I(D'( x)) n €

v,(x) + P(x) n £,

we(x) = — r.h 2

[6(x) "2 (o(x))] 8.0 in I;
then w, € W2*(R2,), w.— u-lq in L°(R") and w,—u in W>?(£2). Moreover
(3.15) 1D?w, — B ® ¥l oy = €

If we use (2.5), the argument employed in the proof of (3.6), (3.7) yields for every
te(0,1)
lim sup Fw) < G(u) + t' P lim sup & [y(x, 9y @) dx.
> g—> z

By the homogeneity of v, it is enongh to apply Lemma [III.1] and to let 7 — 1
to obtain FF < Gy. [J

Case & ~ Pl Gy = F.
Let u€ W22 (R") N\ W3?(R) and take u,€ W§P(£2,) such that u,—>u-1g in
L?(R"). As we did in the part G; = F~, we may assume that (3.9) holds and that
u,— u weakly in W>?(£2), and it suffices to prove that

(3.16)  liminfe [9(x, Du)dx = M [|<Du,»>|" h' Py, v @ v) dH" !,
F e d ag

Zs

with ¥ of class C® on R*x (R"*"\ {0}).
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If we define y;; as when G, = F~ and ¥,, w, as when F+ < G,7, then we
have on 2,

0
(317) '}/(X, Dzus) Z '}/(x, ﬁev ® 1’) + (Dizjue - 19511,'1’1') a;/“(x’ 08’” ® 'V)
1

= |27 y(x,v @) + Diju, — we) | 9,7 Iy}
+ (Dizjwe - ﬂsvivj) lﬁe [p—Z 29é'yllj
By (3.15)

b=t
G18) ¢ [|Diw. — o) lﬁs]”"[y,-'j]dxgc(f[Dv,,[”dx) v
Ze

e

which vanishes as ¢ — 0. Moreover by Lemma [III.1]

(.19 lime 1O yCe,» @v)ydx = M [[{Du,»> [? B! Py(e, v ® v) dH"'.
MR 20

An integration by parts yields

(3:20) & [ Diu, — w) |9, Doy} dx
25
= —¢& fDi(us - we) Dj(l ﬂelp42 195‘)/1;) dx
26
— & [ Di(u, — wo) | 9.7 7% Oy dH 1.
on

The last term vanishes as ¢ — 0: indeed ¢ |9,]7 ! < ¢ |Dv,|?"! and u, — w, > 0
weakly in WP(Q), so that D(u, — w,) — 0 strongly in L?(82). As for the first
term we have

(3.21)

e [ Diu, — wy) DA|9.|P~2 Doyp) dx
2&

= ¢ [|D(. — w)| (| Do, [?~" + | Dv.|P~*| D*v,|) dx

<o Lf DG — wole x| v

since (v,) is bounded in W?*?(R"). For every x¢€ 2,
Feh(x)

[ D@, — w,) (0|7 = [ Of | D*(u, — we) (a(x) + 2(x))| dt]

reh(x)
et [ | DY u. — wy) (o(x) + tn(x)) | dt,
(V]
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so that, by (3.9) and (3.15),

[1D. — wo)? dx < er? [ | D*u, — w)l? dx
P ze

€

= cre [ (| D" + | D*w,[7) dx < cre;
28

together with (3.20), (3.21) this implies
}zi_l;l(’)lé‘zf ‘Dizj(us - we) Iﬂslp—z ﬁsylfj dx = 0;

and (3.16) follows by (3.17), (3.18), (3.19). [

Case ¢ < r?~!. The inequality F~= G, = G is trivial. On the other hand,
for every L >0 we have for all sufficiently small ¢

F ) = Gw) + Lr2 ™ [f(x, D*u) dx,

whence F+ < Gy for all L >0, and F+ = G; follows as L—>0. []

Case r?~' <& < r?”!. We already proved in Remark [II.2] that F~ = Gy,
and the inequality F+ < G, is proved as in the case above. []

Case ¢ > P,
Since F+ < G4, is trivial, we need only prove the inequality F- = G,,, which
is derived from the case &~ r?~! by an argument like to the one we used in
Remark [II1.2]. [

We pass now to the last assertion of Theorem [II.3]. Let li_x)row/rf"‘1 >0
and g¢ LYR". By Theorem [I1.1] the functionals

F()=Fw+ [gudx
98
are I'—(LP(R"™)-convergent to F(u) - f gu dx; hence they satisfy condition (i)
£
of Theorem [IL.2]. To conclude the proof of Theorem [I1.3] we only have to show
that the functionals F, satisfy also condition (i), that is
f‘e(ue) =c¢ for all e= (u,) is relatively compact in L?(R").

By (2.2), (2.6) we may assume that
f | D%u,|P dx + ¢ f{Dzusll’ dx + fgu8 dx < c.
@ = 2,

Take any % > 0; for a suitable constant C,
(3.22) [|1D*u,|Pdx +& [|Dw|dx<C,+n f NP dx.
g £, g,
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For every o€ 0L and € [0, r.h(o)]

reh(o)
luo 4+ (@) [P =| [ (s — 1) {D*u,(0 + s%(0)), v ® »> dsr

rch(o)
St [ | Do + sw(0)) | ds,
1]

so that
(3.23) [lul? dH" 1 < ! [ | D?ul? dx,
o e
3.29) [lu )P dx < erl? [|Du,)” dx.
b

€ €

On the other hand for every ve W>?(Q)
[lofpdx < e [f]Dzvlvdx 4 lvll’dH"“’],
g 2 o

with ¢ depending only on 2 and p; hence by (3.23) and since lim gfr?F =1 >0
(3.25) f[uS]"dxéc(lezuel"dx—}—s f]Dzuelpdx).
Q 4 z

If » is properly chosen, inequalities (3.22), (3.24), (3.25) yield

[1D%u,|Pdx + & [1D%u, |7 dx < ¢;
9 =,

then [ |u[Pdx—0 by (3.24) and |u,|ly2pq = ¢ by (3.25). [
28

IV. Remarks

In this section we give some extensions of Theorem [I1.3], and we show how
this applies to the mechanical problem mentioned in the introduction.

Remark [IV.1]. The function h: 082 — 10, +oo[ may be assumed to be only
continuous: in this case it is enough to approximate 4 uniformly by smooth
functions 4;; applying Theorem [II.3] to #; and passing to the limit in j gives the
result for A.

Remark [1V.2]. Theorem [11.3] can be extended by a slight modification of the
proof to the case

F(u) = G,(u) + ¢ f f(x, D?u) dx,
ZE
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where the functionals G, satisfy

4.1) Hr&; iglf G,(u) = Gu) if u, — u weakly in W2P(Q).

4.2) lg% Gu,) = G(u)  if u,— u strongly in W2>7(Q).

4.3) G()= [|D*ulPdx for every ¢ >0 and uc W>*(%).
a

The I'-limits G, and G); are the functionals defined in Section II.

Remark [1V.3]. It isclear that if one of the two limits lim gfr2?~! and lim gfre1
fails to exist, then the functionals F, do not I'-(L?(R"))-converge.

We are now able to study the convergence of the solutions #, of (1.2): it is
enough to prove that the functionals F, defined in (1.1) satisfy the requirements
of Remark [IV.2].

We recall that the Young modulus E, of the material in X, vanishes as ¢ =0,
and the Poisson coefficient ¢, converges to some ¢, > —1. Since for every
u€ Hy(Q.)

f det D?udx = 0,
95

we may write

E,
= [ /D) dx,

Fy(u) = Go(uw) +

where

E E  (6,—00)E,
— 2 __ 2
G.(u) = Qf[l — [ 4u|? — 2 (1 e B )detD u] dx,

f(D?u) = |Aul?> — 2(1 — a,) det D?u.

Since the Poisson coefficients are numbers less than 4 (and greater than O for all
known materials: see [6]), the function f satisfies hypotheses (2.1), (2.2), (2.3);
moreover it is easy to see that G, satisfies hypotheses (4.1), (4.2), (4.3). Then
Remark [IV.2] applies, and so the conclusion described in the introduction is
attained.
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