Limit Problems for Plates Surrounded by Soft Material

Emilio Acerbi \& Giuseppe Buttazzo
Communicated by E. Giusti

I. Introduction

Consider an inhomogeneous clamped plate D, submitted to an external force $g(x)$. The (small) vertical displacement $u(x)$ solves the minimum problem

$$
\min \left\{\int_{D}\left[\frac{E(x)}{1-\sigma^{2}(x)}\left(|\Delta u|^{2}-2(1-\sigma(x)) \operatorname{det} D^{2} u\right)+g(x) u\right] d x: u \in H_{0}^{2}(D)\right\}
$$

where E and σ are the Young modulus and the Poisson coefficient respectively, and $D^{2} u$ denotes the 2×2 matrix of second derivatives of u. We study a plate having a central part Ω surrounded by an increasingly narrow annulus Σ_{ε} made of an increasingly soft material (i.e. the Young modulus E_{ε} tends to zero in Σ_{ε}). The free energy of the plate is then

$$
\begin{align*}
F_{\varepsilon}(u)= & \int_{\Omega} \frac{E}{1-\sigma^{2}}\left(|\Delta u|^{2}-2(1-\sigma) \operatorname{det} D^{2} u\right) d x \tag{1.1}\\
& +\int_{\Sigma_{\varepsilon}} \frac{E_{\varepsilon}}{1-\sigma_{\varepsilon}^{2}}\left(|\Delta u|^{2}-2\left(1-\sigma_{\varepsilon}\right) \operatorname{det} D^{2} u\right) d x
\end{align*}
$$

We study in particular the behavior as $\varepsilon \rightarrow 0$ of the solution u_{ε} of

$$
\begin{equation*}
\min \left\{F_{\varepsilon}(u)+\int_{\Omega \Sigma_{\varepsilon}} g(x) u d x: u \in H_{0}^{2}\left(\bar{\Omega} \cup \Sigma_{\varepsilon}\right)\right\} . \tag{1.2}
\end{equation*}
$$

If r_{ε} is the width of Σ_{ε}, we may have different limit problems depending on the relation between r_{ε} and E_{ε} : let $\sigma_{0}=\lim _{\varepsilon \rightarrow 0} \sigma_{\varepsilon}$ and set

$$
G(u)=\int_{\Omega} \frac{E}{1-\sigma^{2}}\left(|\Delta u|^{2}-2(1-\sigma) \operatorname{det} D^{2} u\right) d x
$$

Then, if $E_{\varepsilon} \geqslant r_{\varepsilon}$, the limit problem is

$$
\min \left\{G(u): u \in H_{0}^{2}(\Omega)\right\}
$$

(clamped plate); if $\lim _{\varepsilon \rightarrow 0} E_{\varepsilon} / r_{\varepsilon}=M \neq 0$, the limit problem is

$$
\min \left\{G(u)+M \int_{\partial \Omega} \frac{1}{1-\sigma_{0}^{2}}\left|\frac{\partial u}{\partial v}\right|^{2} d s: u \in H^{2}(\Omega) \cap H_{0}^{\mathrm{l}}(\Omega)\right\}
$$

(the plate becomes simply supported, but a price is paid for having non-zero normal derivative); if $r_{\varepsilon} \gg E_{\varepsilon} \gg r_{\varepsilon}^{3}$ the limit problem is

$$
\min \left\{G(u): u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right\}
$$

(simply supported plate); if $\lim _{\varepsilon \rightarrow 0} E_{\varepsilon} / r_{\varepsilon}^{3}=L$ the limit problem is

$$
\min \left\{G(u)+12 L \int_{\partial \Omega} \frac{1}{1-\sigma_{0}^{2}}|u|^{2} d s: u \in H^{2}(\Omega)\right\}
$$

(the plate may take off, but a price is paid for having a non-zero boundary value). In all four cases, if $\lim _{\varepsilon \rightarrow 0} E_{\varepsilon} / r_{\varepsilon}^{3}>0$, we prove that the solutions u_{ε} converge in $L^{2}\left(\mathbb{R}^{2}\right)$ to the solution of the limit problem.

The foregoing example is a particular case of our theorem [II.3] and our results in section IV in which we consider the general energy integral

$$
F_{\varepsilon}(u)=\int_{\Omega} g_{\varepsilon}\left(x, u, D u, D^{2} u\right) d x+\varepsilon \int_{\Sigma_{\varepsilon}} f_{\varepsilon}\left(x, D^{2} u\right) d x
$$

where g_{ε} is quasi-convex in $D^{2} u$ and f_{ε} is convex in $D^{2} u$. In addition the functions g_{ε} and f_{ε} need not be quadratic, but they satisfy coerciveness and growth conditions of the form

$$
\begin{gathered}
\left|D^{2} u\right|^{p} \leqq g_{\varepsilon}\left(x, u, D u, D^{2} u\right) \leqq c\left(1+\left|D^{2} u\right|^{p}\right), \\
\left|D^{2} u\right|^{p} \leqq f_{\varepsilon}\left(x, D^{2} u\right) \leqq c\left(1+\left|D^{2} u\right|^{p}\right)
\end{gathered}
$$

with $p>1$.
A similar problem in the case of membranes (i.e. when the energy integral contains only the first derivatives $D u$ and not $D^{2} u$) has been studied by several authors: see for example [2], [3], [4], [8] if the energy is a quadratic form, and [1] in the general case.

II. Notations and Statement of the Result

We use the following symbols:

```
\Omega a bounded open subset of }\mp@subsup{\mathbb{R}}{}{n}\mathrm{ , with }\mp@subsup{C}{}{2,1}\mathrm{ boundary;
v the outward normal vector to \Omega;
\delta the function }\delta(x)=\operatorname{dist}(x,\overline{\Omega})
a a smooth function from }\partial\Omega\mathrm{ into ]0, +- [;
```

$\left\{r_{\varepsilon}\right\}_{\varepsilon>0}$ a set of positive real numbers such that $\lim _{\varepsilon \rightarrow 0} r_{\varepsilon}=0$;
$\Sigma_{\varepsilon} \quad$ the set $\left\{\sigma+t \nu(\sigma): \sigma \in \partial \Omega, 0<t<r_{\varepsilon} h(\sigma)\right\} ;$
$\Omega_{\varepsilon} \quad$ the set $\bar{\Omega} \cup \Sigma_{\varepsilon} ;$
$p \quad$ a real number greater than 1 ;
$f \quad$ a function from $\mathbb{R}^{n} \times \mathbb{R}^{n \times n}$ into $[0,+\infty[$;
G a functional from $W^{2, p}(\Omega)$ into $[0,+\infty[$.
By the regularity assumptions on $\partial \Omega$, the mapping $(\sigma, t) \mapsto \sigma+t v(\sigma)$ is invertible on Σ_{ε} if ε is small enough; in particular the point $\sigma(x) \in \partial \Omega$ of minimum distance from $x \in \Sigma_{\varepsilon}$ is a regular function of x. We shall write $h(x)$ and $v(x)$ for $h(\sigma(x))$, $\nu(\sigma(x))$. We make the following assumptions on the function f :
(2.1) the function $f(x, z)$ is continuous in x and convex in z;
(2.2) for all $x \in \mathbb{R}^{n}, z \in \mathbb{R}^{n \times n}$

$$
|z|^{p} \leqq f(x, z) \leqq c\left(1+|z|^{p}\right) ;
$$

(2.3) there is a non-negative continuous function $\gamma(x, z)$ which is convex and p-homogeneous as a function of z and satisfies

$$
\sup \left\{|f(x, z)-\gamma(x, z)|: x \in \mathbb{R}^{n}\right\} \leqq \varrho(|z|)\left(1+|z|^{p}\right)
$$

for all $z \in \mathbb{R}^{n \times n}$, where $\varrho:[0,+\infty[\rightarrow[0,+\infty[$ is a continuous, decreasing function which vanishes at infinity.

As for the functional G, we suppose that
(2.4) $\quad G$ is lower semicontinuous in the topology $L^{p}(\Omega)$;
(2.5) $\quad G$ is continuous in the strong topology of $W^{2, p}(\Omega)$;

$$
\begin{equation*}
G(u) \geqq \int_{\Omega}\left|D^{2} u\right|^{p} d x \text { for every } u \in W^{2, p}(\Omega) \tag{2.6}
\end{equation*}
$$

If $u \in L^{p}\left(\mathbb{R}^{n}\right)$ is such that $\left.u\right|_{\Omega} \in W^{2, p}(\Omega)$, we write simply $G(u)$ instead of $G\left(\left.u\right|_{\Omega}\right)$. We remark that conditions (2.4), (2.5), (2.6) are fulfilled by a broad class of functionals, for example the integrals $\int_{\Omega} g\left(x, u, D u, D^{2} u\right) d x$ where $g\left(x, s, s^{\prime}, s^{\prime \prime}\right)$ is a Carathéodory function convex (or quasi-convex in the sense of Morrey [7]) in $s^{\prime \prime}$ and satisfying

$$
\left|s^{\prime \prime}\right|^{p} \leqq g\left(x, s, s^{\prime}, s^{\prime \prime}\right) \leqq c\left(1+\left|s^{\prime \prime}\right|^{o}\right)
$$

For every $u \in L^{p}\left(\mathbb{R}^{r}\right)$ and $\varepsilon>0$ set

$$
F_{\varepsilon}(u)= \begin{cases}G(u)+\varepsilon \int_{\Sigma_{\varepsilon}} f\left(x, D^{2} u\right) d x & \text { if } \quad u \in W_{0}^{2, p}\left(\Omega_{\varepsilon}\right) \\ +\infty \quad \text { otherwise } .\end{cases}
$$

We wish to characterize the Γ-limit of F_{ε} in the topology $L^{p}\left(\mathbb{R}^{n}\right)$, depending on the behavior of r_{ε}. Indeed, it is well known that the Γ-convergence of a sequence
of functionals is strictly related to the convergence of their minimum points and minimum values: more precisely, let X be a metric space, let $\left(F_{\varepsilon}\right)_{\varepsilon>0}$ be mappings from X into $\overline{\mathbb{R}}$, and let $x \in X$. We set

$$
\begin{aligned}
& \Gamma^{-}(X) \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}(x)=\inf \left\{\liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(x_{\varepsilon}\right): x_{\varepsilon} \rightarrow x \text { in } X\right\}, \\
& \Gamma^{-}(X) \limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}(x)=\inf \left\{\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(x_{\varepsilon}\right): x_{\varepsilon} \rightarrow x \text { in } X\right\} .
\end{aligned}
$$

If these two Γ-limits are the same at x, their common value will be denoted by

$$
I^{-}(X) \lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(x)
$$

Theorem [II.1] (see [5], Theorem 2.3). If $\Phi: X \rightarrow \mathbb{R}$ is continuous, then

$$
\begin{aligned}
& \Gamma^{-}(X) \liminf _{\varepsilon \rightarrow 0}\left(\Phi+F_{\varepsilon}\right)(x)=\Phi(x)+\Gamma^{-}(X) \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}(x), \\
& \Gamma^{-}(X) \limsup _{\varepsilon \rightarrow 0}\left(\Phi+F_{\varepsilon}\right)(x)=\Phi(x)+\Gamma^{-}(X) \limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}(x) .
\end{aligned}
$$

Theorem [II.2] (see [5], Theorem 2.6). Assume that
(i) the family $\left(F_{\varepsilon}\right)$ is equicoercive, i.e., for every $c>0$ there is a compact subset K_{c} of X such that

$$
\left\{x \in X: F_{\varepsilon}(x) \leqq c\right\} \leqq K_{c} \text { for every } \varepsilon>0
$$

(ii) for every $x \in X, \Gamma^{-}(X) \lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(x)$ exists.

Set $F=\Gamma^{-}(X) \lim _{\varepsilon \rightarrow 0} F_{\varepsilon}$. Then F has a minimum on X and $\min _{X} F=\lim _{\varepsilon \rightarrow 0}\left(\inf _{X} F_{\varepsilon}\right)$; moreover if $\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(x_{\varepsilon}\right)=\lim _{\varepsilon \rightarrow 0}\left(\inf _{X} F_{\varepsilon}\right)$ and $x_{\varepsilon} \rightarrow \hat{x}$ in X, then \hat{x} is a minimum point for F.

We now state the main result: set

$$
K_{p}=2^{p}\left(\frac{2 p-1}{p-1}\right)^{p-1}
$$

for every $u \in W^{2, p}(\Omega)$ and $L \in[0,+\infty[$ we define

$$
G_{L}^{\prime}(u)=G(u)+L K_{p} \int_{\partial \Omega}|u(\sigma)|^{p} h^{1-2 p}(\sigma) \gamma(\sigma, v(\sigma) \otimes \nu(\sigma)) d H^{n-1}(\sigma)
$$

Let $u \in W^{2, p}(\Omega)$ and $M \in[0,+\infty]$. If $M<+\infty$ we define
$G_{M}^{\prime \prime}(u)=\left\{\begin{array}{l}G(u)+M \int_{\partial \Omega}\left|\frac{\partial u}{\partial v}(\sigma)\right|^{p} h^{1-p}(\sigma) \gamma(\sigma, v(\sigma) \otimes v(\sigma)) d H^{n-1}(\sigma) \quad \text { if } u \in W_{0}^{1, p}(\Omega) \\ +\infty \quad \text { otherwise; }\end{array}\right.$
if $M=+\infty$ we define

$$
G_{\infty}^{\prime \prime}(u)= \begin{cases}G(u) & \text { if } u \in W_{0}^{2, p}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

In Section III we shall prove
Theorem [II.3]. Assume that (2.1), ..., (2.6) hold and that both $\lim _{\varepsilon \rightarrow 0} \varepsilon / r_{\varepsilon}^{2 p-1}=$ $L \in[0,+\infty]$ and $\lim _{\varepsilon \rightarrow 0} \varepsilon / r_{\varepsilon}^{p-1}=M \in[0,+\infty]$ exist. Then for every $u \in W^{2, p}(\Omega)$, $\Gamma^{-}\left(L^{p}\left(\mathbb{R}^{n}\right)\right) \lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(u)$ exists, and
(i) if $L<+\infty$, then $F=G_{L}^{\prime}$;
(ii) if $L=+\infty$, then $F=G_{M}^{\prime \prime}$.

Moreover if $L>0$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, with $\frac{1}{p}+\frac{1}{q}=1$, then from every sequence of minimum points of

$$
F_{\varepsilon}(u)+\int_{\Omega_{\varepsilon}} g u d x
$$

we may extract a subsequence converging in $L^{p}\left(\mathbb{R}^{n}\right)$ to a minimum point of

$$
F(u)+\int_{\Omega} g u d x
$$

III. Proof of the Result

In what follows the letter c will denote any positive constant, and if no confusion is possible we will not write the variables x and σ in the integrals. We shall later need the following lemma:

Lemma [III.1[. Let $b \in L^{\infty}(0,1), a \in C\left(\mathbb{R}^{\eta}\right)$ and $u_{\varepsilon} \rightarrow u$ strongly in $W^{1, p}\left(\mathbb{R}^{n}\right)$. If we set $\bar{b}=\int_{0}^{1} b(t) d t$, then

$$
\begin{aligned}
& \lim \frac{1}{r_{\varepsilon}} \int_{\Sigma_{\varepsilon}}\left|u_{\varepsilon}(x)\right|^{p} a(x) b\left(\frac{\delta(x)}{r_{\varepsilon} h(x)}\right) d x \\
& =\bar{b} \int_{\partial \Omega}|u(\sigma)|^{p} a(\sigma) h(\sigma) d H^{n-1}(\sigma)
\end{aligned}
$$

Proof. Let $v \in W^{1, p}\left(\mathbb{R}^{n}\right)$; then

$$
\begin{aligned}
& \left.\quad \int_{\partial \Omega} d H^{n-1}(\sigma) \int_{0}^{r_{\varepsilon} h(\sigma)}| | v(\sigma+t v(\sigma))\right|^{p}-|v(\sigma)|^{p} \mid d t \\
& \leqq c \int_{\partial \Omega} d H^{n-1}(\sigma) \int_{0}^{r_{\varepsilon} h(\sigma)}|v(\sigma+t v(\sigma))-v(\sigma)| \cdot\left[|v(\sigma+t v(\sigma))|^{p-1}+|v(\sigma)|^{p-1}\right] d t \\
& \leqq c \int_{\partial \Omega} d H^{n-1}(\sigma) \int_{0}^{r_{\varepsilon} h(\sigma)}\left[\int_{-0}^{r_{\varepsilon} h(\sigma)}|D v(\sigma+s v(\sigma))| d s\right] \\
& \times\left[\mid v\left(\sigma+\left.t v(\sigma)\right|^{p-1}+|v(\sigma)|^{p-1}\right] d t\right. \\
& \leqq c \int_{\partial \Omega} d H^{n-1}(\sigma)\left[\int_{0}^{r_{\varepsilon} h(\sigma)}|D v(\sigma+s v(\sigma))|^{p} d s\right]^{1 / p} \\
& \\
& \times r_{\varepsilon}^{\frac{p-1}{p}}\left[\int_{0}^{r_{e} h(\sigma)}\left[|v(\sigma+t v(\sigma))|^{p}+|v(\sigma)|^{p}\right] d t\right]^{\frac{p-1}{p}} r_{e}^{1 / p} \\
& \leqq \\
& \\
& c r_{\varepsilon}\left[\int_{\Sigma_{\varepsilon}}|D v|^{p} d x\right]^{1 / p}\left[\int_{\Sigma_{\varepsilon}}|v|^{p} d x+r_{\varepsilon} \int_{\partial \Omega}|v|^{p} d H^{n-1}\right]^{\frac{p-1}{p}},
\end{aligned}
$$

with c independent of v. This inequality with $v=u_{\varepsilon}$ yields

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left|\frac{1}{r_{\varepsilon}} \int_{\Sigma_{\varepsilon}}\left[\left|u_{\varepsilon}(x)\right|^{p}-\left|u_{\varepsilon}(\sigma(x))\right|^{p}\right] a(x) b\left(\frac{\delta(x)}{r_{\varepsilon} h(x)}\right) d x\right|=0 . \tag{3.1}
\end{equation*}
$$

Because $a(x)$ is assumed continuous,

$$
\begin{equation*}
\left.\left.\lim _{\varepsilon \rightarrow 0}\left|\frac{1}{r_{\varepsilon}} \int_{\Sigma_{\varepsilon}}\right| u_{\varepsilon}(\sigma(x))\right|^{p}[a(x)-a(\sigma(x))] b\left(\frac{\delta(x)}{r_{\varepsilon} h(x)}\right) d x \right\rvert\,=0 \tag{3.2}
\end{equation*}
$$

finally, since $u_{\varepsilon} \rightarrow u$ in $L^{p}(\partial \Omega)$,

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \frac{1}{r_{\varepsilon}} \int_{\partial \Omega} d H^{n-1}(\sigma)\left|u_{\varepsilon}(\sigma)\right|^{p} a(\sigma) \int_{0}^{r_{\varepsilon} h(\sigma)} b\left(\frac{t}{r_{\varepsilon} h(\sigma)}\right) d t \tag{3.3}\\
& =\lim _{\varepsilon \rightarrow 0} \bar{b} \int_{\partial \Omega}\left|u_{\varepsilon}\right|^{p} a h d H^{n-1}=\bar{b} \int_{\partial \Omega}|u|^{p} a h d H^{n-1},
\end{align*}
$$

and the conclusion follows by (3.1), (3.2) and (3.3).
We divide the proof of Theorem [II.3] into several steps. For every $u \in W^{2, p}(\Omega)$, set

$$
\begin{aligned}
& F^{+}(u)=\Gamma^{-}\left(L^{p}\left(\mathbb{R}^{n}\right)\right) \limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}(u), \\
& F^{-}(u)=\Gamma^{-}\left(L^{p}\left(\mathbb{R}^{n}\right)\right) \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}(u) .
\end{aligned}
$$

In the first "critical" case $\varepsilon \sim r_{\varepsilon}^{2 p-1}$ (i.e. $0<L<+\infty$) we prove separately the two inequalities $F^{+} \leqq G_{L}^{\prime}$ and $G_{L}^{\prime} \leqq F^{-}$; analogously, we prove that
$F^{+} \leqq G_{M}^{\prime \prime}$ and $G_{M}^{\prime \prime} \leqq F^{-}$in the second "critical" case $\varepsilon \sim r_{\varepsilon}^{p-1}$ (i.e. $0<M<$ $+\infty)$. The result in the remaining cases will be deduced easily.

$$
\text { Case } \varepsilon \sim r_{\varepsilon}^{2 p-1}, F^{+} \leqq G_{L}^{\prime} .
$$

Let $u \in W^{2, p}(\Omega)$: the regularity of $\partial \Omega$ lets us suppose that $u \in W^{2, p}\left(\mathbb{R}^{n}\right)$. For every $\varepsilon>0$ set

$$
\varphi_{\varepsilon}(x)= \begin{cases}1 & \text { if } x \in \bar{\Omega}, \\ \Phi\left(\frac{\delta(x)}{r_{s} h(x)}\right) & \text { if } x \in \Sigma_{\varepsilon}, \\ 0 & \text { if } x \notin \Omega_{s}\end{cases}
$$

where $\Phi:[0,1] \rightarrow \mathbb{R}$ is the solution of the minimum problem

$$
\min \left\{\int_{0}^{1}\left|\psi^{\prime \prime}(t)\right|^{p} d t: \psi \in W^{2, p}(0,1), \psi(0)=1, \psi(1)=\psi^{\prime}(0)=\psi^{\prime}(1)=0\right\}
$$

Some easy computation shows that

$$
\begin{gathered}
\Phi(t)=\frac{p-1}{p} 2^{\frac{p}{p-1}}\left|t-\frac{1}{2}\right|^{\frac{p}{p-1}}\left(t-\frac{1}{2}\right)-\frac{2 p-1}{p}\left(t-\frac{1}{2}\right)+\frac{1}{2}, \\
\int_{0}^{1}\left|\Phi^{\prime \prime}(t)\right|^{p} d t=K_{p}
\end{gathered}
$$

and

$$
\begin{equation*}
\left|\Phi^{\prime \prime}(t)\right|^{p-2} \Phi^{\prime \prime}(t)=K_{p}\left(t-\frac{1}{2}\right) \tag{3.4}
\end{equation*}
$$

In particular, the function Φ is of class C^{2}, and by our assumptions on $\partial \Omega$ and on the function h we have in Σ_{ε}

$$
\begin{gather*}
\left|D \varphi_{\varepsilon}-\frac{1}{r_{\varepsilon}} \Phi^{\prime}\left(\frac{\delta}{h r_{\varepsilon}}\right) \frac{v}{h}\right| \leqq c, \\
\left|D^{2} \varphi_{\varepsilon}-\frac{1}{r_{\varepsilon}^{2}} \Phi^{\prime \prime}\left(\frac{\delta}{h r_{\varepsilon}}\right) \frac{\nu \otimes v}{h^{2}}\right| \leqq \frac{c}{r_{\varepsilon}} . \tag{3.5}
\end{gather*}
$$

Setting $u_{\varepsilon}=u \varphi_{\varepsilon}$ we have $u_{\varepsilon} \in W_{0}^{2, p}\left(\Omega_{\varepsilon}\right)$ and $u_{\varepsilon} \rightarrow u \cdot 1_{\Omega}$ in $L^{p}\left(\mathbb{R}^{n}\right)$. By the convexity of f we have for every $t \in(0,1)$

$$
\begin{aligned}
F_{\varepsilon}\left(u_{\varepsilon}\right) \leqq & G(u)+\varepsilon \int_{\Sigma_{\varepsilon}}\left[t f\left(x, \frac{1}{t} u D^{2} \varphi_{\varepsilon}\right)\right. \\
& \left.+(1-t) f\left(x, \frac{1}{1-t}\left(D u \otimes D \varphi_{\varepsilon}+D \varphi_{\varepsilon} \otimes D u+\varphi_{\varepsilon} D^{2} u\right)\right)\right] d x \\
\leqq & G(u)+t \varepsilon \int_{\Sigma_{\varepsilon}} f\left(x, \frac{1}{t} u D^{2} \varphi_{\varepsilon}\right) d x \\
& +c \varepsilon\left[\operatorname{meas}\left(\Sigma_{\varepsilon}\right)+r_{\varepsilon}^{-p}(1-t)^{-p}\|u\|_{W^{2, p}\left(R^{n}\right)}^{p}\right] ;
\end{aligned}
$$

therefore

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) \leqq G(u)+t \limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} f\left(x, \frac{1}{t} u D^{2} \varphi_{\varepsilon}\right) d x . \tag{3.6}
\end{equation*}
$$

Fix $R>0$ and set $A_{R, \varepsilon}=\left\{x \in \Sigma_{\varepsilon}:\left|u D^{2} \varphi_{\varepsilon}\right|<R t\right\}$; then by (2.3), (3.5)

$$
\begin{aligned}
\varepsilon \int_{\Sigma_{\varepsilon}} f(x, & \left.\frac{1}{t} u D^{2} \varphi_{\varepsilon}\right) d x \leqq \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, \frac{1}{t} u D^{2} \varphi_{\varepsilon}\right) d x+\varepsilon \int_{A_{R, \varepsilon}} \varrho(0)\left(1+R^{p}\right) d x \\
& +\varepsilon \varepsilon_{\Sigma_{\varepsilon} \backslash A_{R, \varepsilon}} \varrho(R)\left(1+\left|\frac{c u}{t r_{\varepsilon}^{2}}\right|^{p}\right) d x \leqq \frac{\varepsilon}{t^{p}} \int_{\Sigma_{\varepsilon}} \gamma\left(x, u D^{2} \varphi_{\varepsilon}\right) d x \\
& +\varepsilon \varrho(0)\left(2+R^{p}\right) \text { meas }\left(\Sigma_{\varepsilon}\right)+\varrho(R) \frac{c \varepsilon}{t^{p} r_{\varepsilon}^{2 p}} \int_{\Sigma_{\varepsilon}}|u|^{p} d x .
\end{aligned}
$$

Now let $\varepsilon \rightarrow 0$, apply Lemma [III.1], and then let $R \rightarrow+\infty$; we obtain

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} f\left(x, \frac{1}{t} u D^{2} \varphi_{\varepsilon}\right) d x \leqq t^{-p} \limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, u D^{2} \varphi_{\varepsilon}\right) d x . \tag{3.7}
\end{equation*}
$$

As above, by (3.5) and by the assumptions on γ we have for every $s \in(0,1)$

$$
\begin{aligned}
& \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, u D^{2} \varphi_{\varepsilon}\right) d x \leqq c(1-s)^{1-p} \frac{\varepsilon}{r_{\varepsilon}^{p}} \int_{\Sigma_{\varepsilon}}|u|^{p} d x \\
& \quad+\frac{\varepsilon}{r_{\varepsilon}^{2 p} S^{p-1}} \int_{\Sigma_{\varepsilon}} \frac{\gamma(x, v \otimes v)}{h^{2 p}}|u|^{p}\left|\Phi^{\prime \prime}\left(\frac{\delta}{h r_{\varepsilon}}\right)\right|^{p} d x,
\end{aligned}
$$

and by Lemma [III.1]
(3.8) $\quad \limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, u D^{2} \varphi_{\varepsilon}\right) d x \leqq L s^{1-2 p} K_{p} \int_{\partial \Omega}|u|^{p} h^{1-2 p} \gamma(\sigma, v \otimes \nu) d H^{n-1}$.

Using (3.6), (3.7), (3.8) and letting $t \rightarrow 1, s \rightarrow 1$, we obtain

$$
F^{+}(u) \leqq \limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) \leqq G_{L}^{\prime}(u) .
$$

Case $\varepsilon \sim r_{\varepsilon}^{2 p-1}, G_{L}^{\prime} \leqq F^{-}$.
Take $u \in W^{2, p}(\Omega)$; again we may assume that $u \in W^{2, p}\left(\mathbb{R}^{n}\right)$. Letting $u_{\varepsilon} \in W_{0}^{2, p}\left(\Omega_{\varepsilon}\right)$ be such that $u_{\varepsilon} \rightarrow u 1_{\Omega}$ in $L^{p}\left(\mathbb{R}^{n}\right)$, we have to prove that

$$
G_{L}^{\prime}(u) \leqq \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) ;
$$

hence we may suppose

$$
\liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)=\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)<+\infty
$$

whence

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u_{\varepsilon}\right|^{p} d x+\varepsilon \int_{\Sigma_{\varepsilon}}\left|D^{2} u_{\varepsilon}\right|^{p} d x \leqq c . \tag{3.9}
\end{equation*}
$$

In particular, without loss of generality we may assume that $u_{\varepsilon} \rightarrow u$ weakly in $W^{2, p}(\Omega)$.

By the semicontinuity of G it will suffice to prove that

$$
\liminf _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} f\left(x, D^{2} u_{s}\right) d x \geqq L K_{p} \int_{\partial \Omega}|u|^{p} h^{1-2 p} \gamma(\sigma, v \otimes \nu) d H^{n-1} .
$$

Fix $R>0$ and set $B_{R, \varepsilon}=\left\{x \in \mathbb{R}^{n}:\left|D^{2} u_{\varepsilon}\right|<R\right\}$; by (2.3), (3.9)

$$
\begin{aligned}
\varepsilon \int_{\Sigma_{\varepsilon}} f\left(x, D^{2} u_{\varepsilon}\right) d x \geqq & \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, D^{2} u_{\varepsilon}\right) d x \\
& \quad-\varepsilon \int_{\Sigma_{\varepsilon} \wedge B_{R, \varepsilon}} \varrho(0)\left(1+R^{p}\right) d x-\varepsilon \int_{\Sigma_{\varepsilon} \backslash B_{R, s}} \varrho(R)\left(1+\left|D^{2} u_{\varepsilon}\right|^{p}\right) d x \\
\geqq & \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, D^{2} u_{\varepsilon}\right) d x-\varepsilon \operatorname{meas}\left(\Sigma_{\varepsilon}\right) \varrho(0)\left(2+R^{p}\right)-c \varrho(R) .
\end{aligned}
$$

Since R is arbitrary, we have only to prove that
(3.10) $\quad \liminf _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, D^{2} u_{\varepsilon}\right) d x \geqq L K_{p} \int_{\partial \Omega}|u|^{p} h^{1-2 p} \gamma(\sigma, \nu \otimes v) d H^{n-1}$.

It is easy to construct by convolutions a sequence $\left(\gamma_{k}\right)$ of functions from $\mathbb{R}^{n} \times \mathbb{R}^{n \times n}$ into $[0,+\infty$ [such that
(i) for every $x \in \mathbb{R}^{n}$ the function $\gamma_{k}(x, \cdot)$ is convex and p-homogeneous;
(ii) γ_{k} is of class C^{∞} on $\mathbb{R}^{n} \times\left(\mathbb{R}^{n \times n} \backslash\{0\}\right)$;
(iii) for every $x \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{n \times n}$

$$
|z|^{p} \leqq \gamma_{k}(x, z) \leqq c|z|^{p} ;
$$

(iv) for every $x \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{n \times n}$

$$
\left|\gamma_{k}(x, z)-\gamma(x, z)\right| \leqq \frac{1}{k}|z|^{p} .
$$

By (3.9), (3.11) (iv) we obtain

$$
\begin{gathered}
\lim _{k \rightarrow \infty}\left[\liminf _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} \gamma_{k}\left(x, D^{2} u_{\varepsilon}\right) d x-L K_{p} \int_{\partial \Omega}|u|^{p} h^{1-2 p} \gamma_{k}(\sigma, \nu \otimes \nu) d H^{n-1}\right] \\
\quad=\liminf _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, D^{2} u_{\varepsilon}\right) d x-L K_{p} \int_{\partial \Omega}|u|^{p} h^{1-2 p} \gamma(\sigma, \nu \otimes \nu) d H^{n-1},
\end{gathered}
$$

and so in (3.10) we may assume that γ is of class C^{∞} on $\mathbb{R}^{n} \times\left(\mathbb{R}^{n \times n} \backslash\{0\}\right)$. For simplicity we set

$$
\begin{aligned}
\Phi_{e}^{\prime \prime}(x) & =\frac{1}{r_{\varepsilon}^{2} h^{2}(x)} \Phi^{\prime \prime}\left(\frac{\delta(x)}{r_{\varepsilon} h(x)}\right), \\
\gamma_{i j}^{\prime}(x) & =\frac{\partial \gamma}{\partial z_{i j}}(x, v(x) \otimes v(x))
\end{aligned}
$$

moreover, we adopt the usual summation convention over repeated indices. Because γ is convex and p-homogeneous,

$$
\begin{aligned}
\gamma\left(x, D^{2} u_{\varepsilon}\right) & \geqq \gamma\left(x, u \Phi_{\varepsilon}^{\prime \prime} v \otimes v\right)+\left(D_{i j}^{2} u_{\varepsilon}-u \Phi_{\varepsilon}^{\prime \prime} v_{i} v_{j}\right) \frac{\partial \gamma}{\partial z_{i j}}\left(x, u \Phi_{\varepsilon}^{\prime \prime} v \otimes v\right) \\
& =\left|u \Phi_{\varepsilon}^{\prime \prime}\right|^{p} \gamma(x, v \otimes v)+\left(D_{i j}^{2} u_{\varepsilon}-u \Phi_{\varepsilon}^{\prime \prime} v_{i} v_{j}\right)\left|u \Phi_{\varepsilon}^{\prime \prime}\right|^{p-2} u \Phi_{\varepsilon}^{\prime \prime} \gamma_{i j}^{\prime}
\end{aligned}
$$

and by (3.4)

$$
\begin{align*}
\gamma\left(x, D^{2} u_{\varepsilon}\right) \geqq & \geqq\left. u \Phi_{\varepsilon}^{\prime \prime}\right|^{p} \gamma(x, v \otimes v) \tag{3.12}\\
& +K_{p}\left(D_{i j}^{2} u_{\varepsilon}-u \Phi_{\varepsilon}^{\prime \prime} v_{i} v_{j}\right) \frac{|u|^{p-2} u}{h^{2 p-2} r_{\varepsilon}^{2 p-2}}\left(\frac{\delta}{h r_{\varepsilon}}-\frac{1}{2}\right) \gamma_{i j}^{\prime}
\end{align*}
$$

Applying Lemma [III.1] yields
(3.13) $\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}}\left|u \Phi_{\varepsilon}^{\prime \prime}\right|^{p} \gamma(x, \nu \otimes v) d x=L K_{p} \int_{\partial \Omega}|u|^{p} h^{1-2 p} \gamma(\sigma, v \otimes v) d H^{n-1}$.

Inequalities (3.5) imply that

$$
\left|u \Phi_{\varepsilon}^{\prime \prime} v \otimes v-D^{2}\left(u \varphi_{\varepsilon}\right)\right| \leqq \frac{c}{r_{\varepsilon}}\left(|u|+|D u|+\left|D^{2} u\right|\right)
$$

so that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}}\left|u \Phi_{\varepsilon}^{\prime \prime} v \otimes v-D^{2}\left(u \varphi_{\varepsilon}\right)\right||u|^{p-1} r_{\varepsilon}^{2-2 p} d x=0 \tag{3.14}
\end{equation*}
$$

By (3.12), (3.13), (3.14) to conclude the proof of (3.10) we have only to show that

$$
\lim _{\varepsilon \rightarrow 0} r_{\varepsilon} \int_{\Sigma_{\varepsilon}} D_{i j}^{2}\left(u_{\varepsilon}-u \varphi_{\varepsilon}\right) \frac{|u|^{p-2} u}{h^{2 p-2}}\left(\frac{\delta}{h r_{\varepsilon}}-\frac{1}{2}\right) \gamma_{i j}^{\prime} d x=0 .
$$

Integrating by parts, and recalling that $u_{\varepsilon}-u p_{\epsilon} \in W_{0}^{2, p}\left(\Omega_{\varepsilon}\right)$, we make the integral above become

$$
\begin{aligned}
& r_{\varepsilon} \int_{\Sigma_{\varepsilon}}\left(u_{\varepsilon}-u \varphi_{\varepsilon}\right) D_{i j}^{2}\left[\frac{|u|^{p-2} u}{h^{2 p-2}}\left(\frac{\delta}{h r_{\varepsilon}}-\frac{1}{2}\right) \gamma_{i j}^{\prime}\right] d x \\
&+\frac{r_{\varepsilon}}{2} \int_{\partial \Omega} D_{i}\left(u_{\varepsilon}-u\right) \frac{|u|^{p-2} u}{h^{2 p-2}} \gamma_{i j}^{\prime} v_{j} d H^{n-1} \\
&+r_{\varepsilon} \int_{\partial \Omega}\left(u_{\varepsilon}-u\right) D_{j}\left[\frac{|u|^{p-2} u}{h^{2 p-2}}\left(\frac{\delta}{h r_{\varepsilon}}-\frac{1}{2}\right) \gamma_{i j}^{\prime}\right] \boldsymbol{v}_{i} d H^{n-1}
\end{aligned}
$$

It is easy to see that the boundary integrals vanish as $\varepsilon \rightarrow 0$ since $u_{\varepsilon} \rightarrow u$ in $W^{i, p}(\partial \Omega)$. Moreover

$$
\left|D_{i j}^{2}\left[\frac{|u|^{p-2} u}{h^{2 p-2}}\left(\frac{\delta}{h r_{\varepsilon}}-\frac{1}{2}\right) \gamma_{i j}^{\prime}\right]\right| \leqq \frac{c}{r_{\varepsilon}}\left(|u|^{p-1}+|D u|^{p-1}+\left|D^{2} u\right|^{p-1}\right),
$$

and so also the first integral vanishes as $\varepsilon \rightarrow 0$.

Remark [III.2]. If $\varepsilon \geqslant r_{\varepsilon}^{2 p-1}$ (i.e. $L=+\infty$), then, for any $L>0$ we have for small enough ε

$$
F_{s}(u) \geqq G(u)+L r_{\varepsilon}^{2 p-1} \int_{\Sigma_{\varepsilon}} f\left(x, D^{2} u\right) d x
$$

for every $u \in W^{2, p}\left(\Omega_{\varepsilon}\right)$; hence by the foregoing discussion

$$
F^{-}(u) \geqq G(u)+L K_{p} \int_{\partial \Omega}|u|^{\rho} h^{1-2 p} \gamma(\sigma, v \otimes v) d H^{n-1} .
$$

Since L is arbitrary, this implies that $F \backsim(u)=+\infty$ if $u \notin W_{0}^{1, p}(\Omega)$.

Case $\varepsilon \sim r_{\varepsilon}^{p-1}, F^{+} \leqq G_{M}^{\prime \prime}$.

By the definition of $G_{M}^{\prime \prime}$, we have to prove the inequality $F^{+}(u) \leqq G_{M}^{\prime \prime}(u)$ only for $u \in W^{2, p}\left(\mathbb{R}^{n}\right) \cap W_{0}^{1, p}(\Omega)$. Choose such a function u, and let $v_{t} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that

$$
v_{\varepsilon} \rightarrow u \quad \text { strongly in } W^{2, p}\left(\mathbb{R}^{n}\right), \quad\left\|v_{\varepsilon}\right\|_{\mathcal{C}^{s}\left(\mathbb{R}^{n}\right)} \leqq r_{\varepsilon}^{-\frac{1}{2}}
$$

Let Ψ_{ε} be the solution of the minimum problem

$$
\min \left\{\int_{\Omega}\left|D^{2} \psi\right|^{p} d x:(D \psi, \nu)=0 \quad \text { and } \quad \psi=-v_{\varepsilon}-\frac{r_{\varepsilon} h}{2}\left(D v_{\varepsilon}, v\right) \quad \text { on } \quad \partial \Omega\right\}
$$

Since $u=0$ on $\partial \Omega, \Psi_{\epsilon} \rightarrow 0$ strongly in $W^{2, p}(\Omega)$. Set

$$
\begin{gathered}
\vartheta_{\varepsilon}(x)=-\frac{\left\langle D v_{\varepsilon}(\sigma(x)), v(x)\right\rangle}{r_{\varepsilon} h(\sigma(x))} \\
w_{\varepsilon}(x)= \begin{cases}v_{\varepsilon}(x)+\Psi_{\varepsilon}(x) & \text { in } \Sigma_{\varepsilon}, \\
\frac{\left[\delta(x)-r_{\varepsilon} h(\sigma(x))\right]^{2}}{2} \vartheta_{\varepsilon}(x) & \text { in } \Sigma_{\varepsilon} ;\end{cases}
\end{gathered}
$$

then $w_{\varepsilon} \in W_{0}^{2, p}\left(\Omega_{\varepsilon}\right), w_{\varepsilon} \rightarrow u \cdot 1_{\Omega}$ in $L^{p}\left(\mathbb{R}^{n}\right)$ and $w_{\varepsilon} \rightarrow u$ in $W^{2, p}(\Omega)$. Moreover

$$
\begin{equation*}
\left\|D^{2} w_{\varepsilon}-\vartheta_{\varepsilon} \nu \otimes \nu\right\|_{L^{p}\left(\Sigma_{\varepsilon}\right)} \leqq c . \tag{3.15}
\end{equation*}
$$

If we use (2.5), the argument employed in the proof of (3.6), (3.7) yields for every $t \in(0,1)$

$$
\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(w_{\varepsilon}\right) \leqq G(u)+t^{1-p} \limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, \vartheta_{\varepsilon} v \otimes v\right) d x
$$

By the homogeneity of γ, it is enough to apply Lemma [III.1] and to let $t \rightarrow 1$ to obtain $F^{+} \leqq G_{M}^{\prime \prime}$.

Case $\varepsilon \sim r_{\varepsilon}^{p-1}, G_{M}^{\prime \prime} \leqq F^{-}$.
Let $u \in W^{2, p}\left(\mathbb{R}^{n}\right) \cap W_{0}^{1, p}(\Omega)$ and take $u_{\varepsilon} \in W_{0}^{2, p}\left(\Omega_{\varepsilon}\right)$ such that $u_{\varepsilon} \rightarrow u \cdot 1_{\Omega}$ in $L^{p}\left(\mathbb{R}^{n}\right)$. As we did in the part $G_{L}^{\prime} \leqq F^{-}$, we may assume that (3.9) holds and that $u_{s} \rightarrow u$ weakly in $W^{2, p}(\Omega)$, and it suffices to prove that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} \gamma\left(x, D^{2} u_{\varepsilon}\right) d x \geqq M \int_{\partial \Omega}|\langle D u, v\rangle|^{p} h^{t-p_{\gamma}} \gamma(\sigma, v \otimes v) d H^{n-1}, \tag{3.16}
\end{equation*}
$$

with γ of class C^{∞} on $\mathbb{R}^{n} \times\left(\mathbb{R}^{n \times n} \backslash\{0\}\right)$.

If we define $\gamma_{i j}^{\prime}$ as when $G_{L}^{\prime} \leqq F^{-}$and $\vartheta_{\varepsilon}, w_{\varepsilon}$ as when $F^{+} \leqq G_{M}^{\prime \prime}$, then we have on Σ_{ε}

$$
\begin{align*}
\gamma\left(x, D^{2} u_{\varepsilon}\right) \geqq & \gamma\left(x, \vartheta_{\varepsilon} \nu \otimes \nu\right)+\left(D_{i j}^{2} u_{\varepsilon}-\vartheta_{\varepsilon} \nu_{i} v_{j}\right) \frac{\partial \gamma}{\partial z_{i j}}\left(x, \vartheta_{\varepsilon} \nu \otimes \nu\right) \tag{3.17}\\
= & \left|\vartheta_{\varepsilon}\right|^{p} \gamma(x, \nu \otimes \nu)+D_{i j}^{2}\left(u_{\varepsilon}-w_{\varepsilon}\right)\left|\vartheta_{\varepsilon}\right|^{p-2} \vartheta_{\varepsilon} \gamma_{i j}^{\prime} \\
& +\left(D_{i j}^{2} w_{\varepsilon}-\vartheta_{\varepsilon} v_{i} v_{j}\right)\left|\vartheta_{\varepsilon}\right|^{p-2} \vartheta_{\varepsilon} \gamma_{i j}^{\prime} .
\end{align*}
$$

By (3.15)

$$
\begin{equation*}
\varepsilon \int_{\Sigma_{\varepsilon}}\left|D_{i j}^{2} w_{\varepsilon}-\vartheta_{\varepsilon} v_{i} v_{j}\right|\left|\vartheta_{\varepsilon}\right|^{p-1}\left|\gamma_{i j}^{\prime}\right| d x \leqq c\left(\int_{\Sigma_{\varepsilon}}\left|D v_{\varepsilon}\right|^{p} d x\right)^{\frac{p-1}{p}}, \tag{3.18}
\end{equation*}
$$

which vanishes as $\varepsilon \rightarrow 0$. Moreover by Lemma [III.1]
(3.19) $\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}}\left|\vartheta_{\varepsilon}\right|^{p} \gamma(x, v \otimes v) d x=M \int_{\partial \Omega}|\langle D u, v\rangle|^{p} h^{1-p} \gamma(\sigma, v \otimes v) d H^{n-1}$.

An integration by parts yields

$$
\begin{align*}
& \varepsilon \int_{\Sigma_{\varepsilon}} D_{i j}^{2}\left(u_{\varepsilon}-w_{\varepsilon}\right)\left|\vartheta_{\varepsilon}\right|^{p-2} \vartheta_{\varepsilon} \gamma_{i j}^{\prime} d x \tag{3.20}\\
&=-\varepsilon \int_{\Sigma_{\varepsilon}} D_{i}\left(u_{\varepsilon}-w_{\varepsilon}\right) D_{j}\left(\left|\vartheta_{\varepsilon}\right|^{p-2} \vartheta_{\varepsilon} \gamma_{i j}^{\prime}\right) d x \\
& \quad-\varepsilon \int_{\partial \Omega} D_{i}\left(u_{\varepsilon}-w_{\varepsilon}\right)\left|\vartheta_{\varepsilon}\right|^{\mid-2} \vartheta_{\varepsilon} \gamma_{i j}^{\prime} v_{j} d H^{n-1}
\end{align*}
$$

The last term vanishes as $\varepsilon \rightarrow 0$: indeed $\varepsilon\left|\vartheta_{\varepsilon}\right|^{p-1} \leqq c\left|D v_{\varepsilon}\right|^{p-1}$ and $u_{\varepsilon}-w_{\varepsilon} \rightarrow 0$ weakly in $W^{2, p}(\Omega)$, so that $D\left(u_{\varepsilon}-w_{e}\right) \rightarrow 0$ strongly in $L^{p}(\partial \Omega)$. As for the first term we have

$$
\begin{align*}
& \left|\varepsilon \int_{\Sigma_{\varepsilon}} D_{i}\left(u_{\varepsilon}-w_{\varepsilon}\right) D_{j}\left(\left|\vartheta_{\varepsilon}\right|^{p-2} \vartheta_{\varepsilon} \gamma_{i j}^{\prime}\right) d x\right| \tag{3.21}\\
& \quad \leqq c \int_{\Sigma_{\varepsilon}}\left|D\left(u_{\varepsilon}-w_{\varepsilon}\right)\right|\left(\left|D v_{\varepsilon}\right|^{p-1}+\left|D v_{\varepsilon}\right|^{p-2}\left|D^{2} v_{\varepsilon}\right|\right) d x \\
& \quad \leqq c\left[\int_{\Sigma_{e}}\left|D\left(u_{\varepsilon}-w_{\varepsilon}\right)\right|^{p} d x\right]^{1 / p}
\end{align*}
$$

since $\left(v_{\varepsilon}\right)$ is bounded in $W^{2, p}\left(\mathbb{R}^{n}\right)$. For every $x \in \Sigma_{\varepsilon}$

$$
\begin{aligned}
\left|D\left(u_{\varepsilon}-w_{\varepsilon}\right)(x)\right|^{p} & \leqq\left[\int_{0}^{r_{\varepsilon} h(x)}\left|D^{2}\left(u_{\varepsilon}-w_{\varepsilon}\right)(\sigma(x)+t v(x))\right| d t\right]^{p} \\
& \leqq c r_{\varepsilon}^{p-1} \int_{0}^{r_{\varepsilon} h(x)}\left|D^{2}\left(u_{\varepsilon}-w_{\varepsilon}\right)(\sigma(x)+t v(x))\right|^{p} d t
\end{aligned}
$$

so that, by (3.9) and (3.15),

$$
\begin{aligned}
\int_{\Sigma_{\varepsilon}}\left|D\left(u_{\varepsilon}-w_{\varepsilon}\right)\right|^{p} d x & \leqq c r_{\varepsilon}^{p} \int_{\Sigma_{\varepsilon}}\left|D^{2}\left(u_{\varepsilon}-w_{\varepsilon}\right)\right|^{p} d x \\
& \leqq c r_{\varepsilon} \varepsilon \int_{\Sigma_{\varepsilon}}\left(\left|D^{2} u_{\varepsilon}\right|^{p}+\left|D^{2} w_{\varepsilon}\right|^{p}\right) d x \leqq c r_{\varepsilon} ;
\end{aligned}
$$

together with (3.20), (3.21) this implies

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Sigma_{\varepsilon}} D_{i j}^{2}\left(u_{\varepsilon}-w_{\varepsilon}\right)\left|\vartheta_{\varepsilon}\right|^{p-2} \vartheta_{\varepsilon} \gamma_{i j}^{\prime} d x=0
$$

and (3.16) follows by (3.17), (3.18), (3.19).
Case $\varepsilon \ll r_{\varepsilon}^{2 p-1}$. The inequality $F^{-} \geqq G_{0}^{\prime}=G$ is trivial. On the other hand, for every $L>0$ we have for all sufficiently small ε

$$
F_{\varepsilon}(u) \leqq G(u)+L r_{\varepsilon}^{2 p-1} \int_{\Sigma_{\varepsilon}} f\left(x, D^{2} u\right) d x,
$$

whence $F^{+} \leqq G_{L}^{\prime}$ for all $L>0$, and $F^{+} \leqq G_{0}^{\prime}$ follows as $L \rightarrow 0$.
Case $r_{\varepsilon}^{2 p-1} \ll \varepsilon \ll r_{\varepsilon}^{p-1}$. We already proved in Remark [III.2] that $F^{-} \geqq G_{0}^{\prime \prime}$, and the inequality $F^{+} \leqq G_{0}^{\prime \prime}$ is proved as in the case above.

Case $\varepsilon \gg r_{\varepsilon}^{p-1}$.
Since $F^{+} \leqq G_{\infty}^{\prime \prime}$ is trivial, we need only prove the inequality $F^{-} \geqq G_{\infty}^{\prime \prime}$, which is derived from the case $\varepsilon \sim r_{\varepsilon}^{p-1}$ by an argument like to the one we used in Remark [III.2].

We pass now to the last assertion of Theorem [II.3]. Let $\lim _{\varepsilon \rightarrow 0} \varepsilon / r_{\varepsilon}^{2 p-1}>0$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$. By Theorem [II.1] the functionals

$$
\tilde{F}_{\varepsilon}(u)=F_{\varepsilon}(u)+\int_{\Omega_{e}} g u d x
$$

are $\Gamma^{-}\left(L^{p}\left(\mathbb{R}^{n}\right)\right)$-convergent to $F(u)+\int_{\Omega} g u d x$; hence they satisfy condition (ii) of Theorem [II.2]. To conclude the proof of Theorem [II.3] we only have to show that the functionals \tilde{F}_{ε} satisfy also condition (i), that is

$$
\tilde{F}_{e}\left(u_{\varepsilon}\right) \leqq c \quad \text { for all } \varepsilon \Rightarrow\left(u_{\varepsilon}\right) \text { is relatively compact in } L^{p}\left(\mathbb{R}^{n}\right)
$$

By (2.2), (2.6) we may assume that

$$
\int_{\Omega}\left|D^{2} u_{\varepsilon}\right|^{p} d x+\varepsilon \int_{\Sigma_{\varepsilon}}\left|D^{2} u_{\varepsilon}\right|^{p} d x+\int_{\Omega_{\varepsilon}} g u_{\varepsilon} d x \leqq c .
$$

Take any $\eta>0$; for a suitable constant C_{η}

$$
\begin{equation*}
\int_{\Omega}\left|D^{2} u_{\varepsilon}\right|^{p} d x+\varepsilon \int_{\Sigma_{\varepsilon}}\left|D^{2} u_{\varepsilon}\right|^{p} d x \leqq C_{\eta}+\eta \int_{\Omega_{\varepsilon}}\left|u_{\varepsilon}\right|^{p} d x . \tag{3.22}
\end{equation*}
$$

For every $\sigma \in \partial \Omega$ and $t \in\left[0, r_{\varepsilon} h(\sigma)\right]$

$$
\begin{aligned}
\left|u_{\varepsilon}(\sigma+t v(\sigma))\right|^{p} & =\left|\int_{t}^{r_{\varepsilon} h(\sigma)}(s-t)\left\langle D^{2} u_{\varepsilon}(\sigma+s v(\sigma)), v \otimes v\right\rangle d s\right|^{p} \\
& \leqq c r_{\varepsilon}^{2 p-1} \int_{0}^{r_{\varepsilon} h(\sigma)}\left|D^{2} u_{\varepsilon}(\sigma+s v(\sigma))\right|^{p} d s
\end{aligned}
$$

so that

$$
\begin{gather*}
\int_{\partial \Omega}\left|u_{\varepsilon}\right|^{p} d H^{n-1} \leqq c r_{\varepsilon}^{2 p-1} \int_{\Sigma_{\varepsilon}}\left|D^{2} u_{\varepsilon}\right|^{p} d x, \tag{3.23}\\
\int_{\Sigma_{\varepsilon}}\left|u_{\varepsilon}\right|^{p} d x \leqq c r_{\varepsilon}^{2 p} \int_{\Sigma_{\varepsilon}}\left|D^{2} u_{\varepsilon}\right|^{p} d x . \tag{3.24}
\end{gather*}
$$

On the other hand for every $v \in W^{2, p}(\Omega)$

$$
\int_{\Omega}|v|^{p} d x \leqq c\left[\int_{\Omega}\left|D^{2} v\right|^{p} d x+\int_{\partial \Omega}|v|^{p} d H^{n-1}\right],
$$

with c depending only on Ω and p; hence by (3.23) and since $\lim _{\varepsilon \rightarrow 0} \varepsilon / r_{\varepsilon}^{2 p-1}>0$

$$
\begin{equation*}
\int_{\Omega}\left|u_{\varepsilon}\right|^{p} d x \leqq c\left(\int_{\Omega}\left|D^{2} u_{e}\right|^{p} d x+\varepsilon \int_{\Sigma_{\varepsilon}}\left|D^{2} u_{\varepsilon}\right|^{p} d x\right) . \tag{3.25}
\end{equation*}
$$

If η is properly chosen, inequalities (3.22), (3.24), (3.25) yield

$$
\int_{\Omega}\left|D^{2} u_{\varepsilon}\right|^{p} d x+\varepsilon \int_{\Sigma_{\varepsilon}}\left|D^{2} u_{\varepsilon}\right|^{p} d x \leqq c ;
$$

then $\int_{\Sigma_{\varepsilon}}\left|u_{e}\right|^{p} d x \rightarrow 0$ by (3.24) and $\left\|u_{\varepsilon}\right\|_{W^{2, p(\Omega)}} \leqq c$ by (3.25).

IV. Remarks

In this section we give some extensions of Theorem [II.3], and we show how this applies to the mechanical problem mentioned in the introduction.

Remark [IV.1]. The function $h: \partial \Omega \rightarrow] 0,+\infty[$ may be assumed to be only continuous: in this case it is enough to approximate h uniformly by smooth functions h_{j}; applying Theorem [II.3] to h_{j} and passing to the limit in j gives the result for h.

Remark [IV.2]. Theorem [II.3] can be extended by a slight modification of the proof to the case

$$
F_{\varepsilon}(u)=G_{\ell}(u)+\varepsilon \int_{\Sigma_{\varepsilon}} f\left(x, D^{2} u\right) d x,
$$

where the functionals G_{ε} satisfy

$$
\begin{array}{cl}
\liminf _{\varepsilon \rightarrow 0} G_{\varepsilon}\left(u_{\varepsilon}\right) \geqq G(u) & \text { if } u_{\varepsilon} \rightarrow u \text { weakly in } W^{2, p}(\Omega) \\
\lim _{\varepsilon \rightarrow 0} G_{\varepsilon}\left(u_{\varepsilon}\right)=G(u) & \text { if } u_{\varepsilon} \rightarrow u \text { strongly in } W^{2, p}(\Omega) \\
G_{\varepsilon}(u) \geqq \int_{\Omega}\left|D^{2} u\right|^{p} d x & \text { for every } \varepsilon>0 \text { and } u \in W^{2, p}(\Omega) . \tag{4.3}
\end{array}
$$

The Γ-limits G_{L}^{\prime} and $G_{M}^{\prime \prime}$ are the functionals defined in Section II.
Remark [IV.3]. It is clear that if one of the two limits $\lim _{\varepsilon \rightarrow 0} \varepsilon / r_{\varepsilon}^{2 p-1}$ and $\lim _{\varepsilon \rightarrow 0} \varepsilon / r_{s}^{p-1}$ fails to exist, then the functionals F_{ε} do not $\Gamma^{-}\left(L^{p}\left(\mathbb{R}^{n}\right)\right)$-converge.

We are now able to study the convergence of the solutions u_{s} of (1.2): it is enough to prove that the functionals F_{ε} defined in (1.1) satisfy the requirements of Remark [IV.2].

We recall that the Young modulus E_{ε} of the material in Σ_{ε} vanishes as $\varepsilon \rightarrow 0$, and the Poisson coefficient σ_{ε} converges to some $\sigma_{0}>-1$. Since for every $u \in H_{0}^{2}\left(\Omega_{e}\right)$

$$
\int_{\Omega_{B}} \operatorname{det} D^{2} u d x=0
$$

we may write

$$
F_{\varepsilon}(u)=G_{\varepsilon}(u)+\frac{E_{\varepsilon}}{1-\sigma_{\varepsilon}^{2}} \int_{\Sigma_{\varepsilon}} f\left(D^{2} u\right) d x
$$

where

$$
\begin{gathered}
G_{e}(u)=\int_{\Delta}\left[\frac{E}{1-\sigma^{2}}|\Delta u|^{2}-2\left(\frac{E}{1+\sigma}+\frac{\left(\sigma_{\varepsilon}-\sigma_{0}\right) E_{\varepsilon}}{1-\sigma_{\varepsilon}^{2}}\right) \operatorname{det} D^{2} u\right] d x \\
f\left(D^{2} u\right)=|\Delta u|^{2}-2\left(1-\sigma_{0}\right) \operatorname{det} D^{2} u
\end{gathered}
$$

Since the Poisson coefficients are numbers less than $\frac{1}{2}$ (and greater than 0 for all known materials: see [6]), the function f satisfies hypotheses (2.1), (2.2), (2.3); moreover it is easy to see that G_{ε} satisfies hypotheses (4.1), (4.2), (4.3). Then Remark [IV.2] applies, and so the conclusion described in the introduction is attained.

References

1. Acerbi, E., \& G. Buttazzo: Reinforcement problems in the calculus of variations. Ann. Inst. H. Poincaré, Analyse Non-Linéaire, to appear.
2. Atтоuch, H.: Variational convergence for functions and operators. Applicable Math. Series, Pitman, London, 1984.
3. Brezis, H., L. Caffarelli, \& A. Friedman: Reinforcement problems for elliptic equations and variational inequalities. Ann. Mat. Pura Appl. (4) 123 (1980), p. 219-246.
4. Caffarelli, L., \& A. Friedman: Reinforcement problems in elastoplasticity. Rocky Mountain J. Math. 10 (1980), p. 155-184.
5. De Giorgi, E., \& G. Dal Maso: Γ-convergence and calculus of variations. Mathematical theories of optimization. Proceedings, 1981. Ed. by J. P. Cecconi \& T. Zolezzi. Lecture Notes Math. 979. Springer, Berlin, Heidelberg, New York 1983.
6. Landau, L., \& E. Lifschitz: Théorie de l'élasticité. MIR, Moscow, 1967.
7. Morrey, C. B., Jr.: Quasi-convexity and the semicontinuity of multiple integrals. Pacific J. Math. 2 (1952), p. 25-53.
8. Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Lecture Notes Phys. 127. Springer, Berlin, Heidelberg, New York 1980.

Scuola Normale Superiore Pisa, Italy
(Received July 15, 1985)

