ON THE LIMITS OF PERIODIC RIEMANNIAN METRICS[†]

By

EMILIO ACERBI AND GIUSEPPE BUTTAZZO

I. Introduction

In this paper we study the asymptotic behaviour as $\varepsilon \rightarrow 0^+$ of the infima of the functionals

$$F_{\varepsilon}(u) = \int_{0}^{1} f\left(\frac{u(t)}{\varepsilon}, u'(t)\right) dt$$

on the space $W(z_0, z_1) = \{u \in W^{1,p}(0, 1; \mathbf{R}^n) : u(0) = z_0, u(1) = z_1\}$, where p > 1, $z_0, z_1 \in \mathbf{R}^n$ and f(s, z) is a Borel function which is convex in z, periodic in s and satisfying

$$\lambda |z|^p \le f(s,z) \le \Lambda(1+|z|^p) \qquad (0 < \lambda \le \Lambda)$$

for every $(s, z) \in \mathbb{R}^n \times \mathbb{R}^n$.

Our main result (Theorem III.1) may be stated as follows:

There exists a convex function $\varphi: \mathbb{R}^n \to \mathbb{R}$ satisfying

$$\lambda |z|^p \leq \varphi(z) \leq \Lambda(1+|z|^p)$$
 for every $z \in \mathbb{R}^n$,

such that for every $z_0, z_1 \in \mathbb{R}^n$ and for every bounded continuous function $g: \mathbb{R}^n \to \mathbb{R}$

$$\lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(u) + \int_0^1 g(u) dt : u \in W(z_0, z_1) \right\}$$

$$= \min \left\{ \int_0^1 \left[\varphi(u') + g(u) \right] dt : u \in W(z_0, z_1) \right\}.$$

If f(s, z) is p-homogeneous with respect to z, then φ is p-homogeneous. Moreover if $(u_{\varepsilon})_{\varepsilon>0} \subset W(z_0, z_1)$ is such that

$$\lim_{\varepsilon \to 0^+} \left[F_{\varepsilon}(u_{\varepsilon}) + \int_0^1 g(u_{\varepsilon}) dt - \inf \left\{ F_{\varepsilon}(u) + \int_0^1 g(u) dt : u \in W(z_0, z_1) \right\} \right] = 0$$

[†] Financially supported by a national research project of the Italian Ministry of Education.

then from $u_{\varepsilon} \to u$ in $L^{p}(0,1;\mathbf{R}^{n})$ it follows that

$$\int_{0}^{1} [\varphi(u') + g(u)]dt = \min \left\{ \int_{0}^{1} [\varphi(u') + g(u)]dt : u \in W(z_{0}, z_{1}) \right\}.$$

To prove this result we make use of the techniques of Γ -convergence, a concept first introduced by E. De Giorgi and T. Franzoni [4] in 1975 and later developed by several authors (for further references see [3]).

In Section IV we produce an example showing that in the case $f(s,z) = a(s)|z|^2$ the function φ need not be a quadratic form. Note that the energy integrals $\int_0^1 a(u/\varepsilon)|u'|^2 dt$ are associated with Riemannian metrics, while $\int_0^1 \varphi(u') dt$ is not (although we may say that it is associated with a Finsler metric). Therefore the space of Riemannian metrics is not closed in the space of Finsler metrics, with respect to the Γ -convergence of the energy integrals.

II. Preliminary lemmas

We give hereafter the definitions and main results of the Γ -convergence theory, which will be used in the proofs of the theorems in Section III. The general statements and the proofs of what follows may be found in [1], [4].

Let X denote a topological space, and for every $h \in \mathbb{N}$ take a function $F_h: X \to [-\infty, +\infty]$.

Definition II.1. For all $x \in X$ we set

(2.1)
$$\Gamma^{-}(X) \liminf_{h} F_{h}(x) = \sup_{U \in \mathcal{F}(x)} \liminf_{h} \inf_{y \in U} F_{h}(y),$$

(2.2)
$$\Gamma^{-}(X) \limsup_{h} F_{h}(x) = \sup_{U \in \mathcal{F}(x)} \limsup_{h} \sup_{y \in U} F_{h}(y),$$

where $\mathcal{T}(x)$ is the family of the neighbourhoods of x in X. If the two Γ -limits (2.1), (2.2) coincide at the point x, their common value will be indicated by $\Gamma^{-}(X) \lim_{h} F_{h}(x)$.

Proposition II.2. The Γ -limits (2.1), (2.2), regarded as functions of x, are lower semicontinuous with respect to the topology of X.

Proposition II.3. If $G: X \to \mathbb{R}$ is continuous, then for every $x \in X$

$$\Gamma^{-}(X) \liminf_{h} (G + F_h)(x) = G(x) + \Gamma^{-}(X) \liminf_{h} F_h(x),$$

$$\Gamma^{-}(X) \limsup_{h} (G + F_{h})(x) = G(x) + \Gamma^{-}(X) \limsup_{h} F_{h}(x).$$

Proposition II.4. Let the functions F_h be equi-coercive on X, i.e. for every **Froposition 11.4.** Let the functions F_h be equi-coercive on A, i.e. for every

 $c \in \mathbb{R}$ there exists a compact set $K \subseteq X$ such that, for all h, $\{x \in X : F_h(x) \le c\} \subseteq K$. Assume also that for all $x \in X$ there exists

$$\Gamma^{-}(X) \lim_{h} F_{h}(x) = F(x).$$

Then we have

$$\lim_{h} \inf_{x \in X} F_h(x) = \min_{x \in X} F(x).$$

If in addition (x_h) is a sequence such that

$$\lim_{h} F_{h}(x_{h}) = \lim_{h} \inf_{x \in X} F_{h}(x),$$

then by $x_n \to x_0$ in X it follows that $F(x_0) = \min_{x \in X} F(x)$.

Proposition II.5. Assume X is a metric space; then for every $x \in X$

$$\Gamma^{-}(X) \liminf_{h} F_{h}(x) = \min \left\{ \liminf_{h} F_{h}(x_{h}) : x_{h} \to x \text{ in } X \right\},$$

$$\Gamma^{-}(X) \limsup_{h} F_{h}(x) = \min \left\{ \limsup_{h} F_{h}(x_{h}) : x_{h} \to x \text{ in } X \right\}.$$

Proposition II.6. Assume X is a separable metric space; then from every sequence (F_h) of functions from X into $[-\infty, +\infty]$ we may select a subsequence (F_{h_k}) such that for every $x \in X$ there exists $\Gamma^-(X) \lim_k F_{h_k}(x)$.

Remark. If instead of a sequence $(F_h)_{h\in\mathbb{N}}$, with $h\to +\infty$, we deal with a family $(F_\varepsilon)_{\varepsilon>0}$, with $\varepsilon\to 0^+$, of functions from X into $[-\infty,+\infty]$, we may define $\Gamma^-(X)\liminf_\varepsilon F_\varepsilon(x)$ and $\Gamma^-(X)\limsup_\varepsilon F_\varepsilon(x)$ by modifying (2.1), (2.2) in the natural way. Propositions II.2, II.3 and II.4 still hold for $(F_\varepsilon)_{\varepsilon>0}$, with the obvious changes in the statements.

in the statement = A Tr ... II. - Tr mi cii

Proposition II.7. Assume X is a metric space, and let $x \in X$. The following conditions are equivalent:

$$\Gamma^{-}(X) \lim_{\varepsilon} F_{\varepsilon}(x) = L;$$

from every sequence $\varepsilon_h \to 0^+$ we may select a subsequence (ε_{h_k}) such that $\Gamma^-(X)\lim_k F_{\varepsilon_{h_k}}(x) = L$.

III. Results

Let $n \ge 1$ be an integer, p > 1 a real number. We will denote by I the interval (0,1), and by \mathscr{A} the family of the open sets of I. If $A \in \mathscr{A}$, the symbols $L^p(A)$,

 $W^{1,p}(A)$ will always stand for $L^p(A; \mathbf{R}^n)$, $W^{1,p}(A; \mathbf{R}^n)$ respectively. If $A, B \in \mathcal{A}$, by $A \subset\subset B$ we mean that $\bar{A} \subset B$. Finally, we will denote by Y the cube $[0,1)^n$. Let $f: \mathbf{R}^n \times \mathbf{R}^n \to [0, +\infty[$ be a Borel function satisfying:

(3.1)
$$\lambda |z|^p \le f(s, z) \le \Lambda(1 + |z|^p)$$
 for all $(s, z) \in \mathbf{R}^n \times \mathbf{R}^n$ $(0 < \lambda \le \Lambda)$; the function $z \mapsto f(s, z)$ is convex on \mathbf{R}^n , for every $s \in \mathbf{R}^n$; the function $s \mapsto f(s, z)$ is Y -periodic, for every $z \in \mathbf{R}^n$.

For all $\varepsilon > 0$, $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$ we define

$$F_{\varepsilon}(u,A) = \int_{A} f\left(\frac{u}{\varepsilon}, u'\right) dt;$$

moreover if $v \in W^{1,p}(A)$ we set

$$\Phi_v(u, A) =
\begin{cases}
0 & \text{if } u - v \in W_0^{1,p}(A), \\
+\infty & \text{otherwise.}
\end{cases}$$

Our main result is the following.

Theorem III.1. Let f satisfy the hypotheses above. Then there exists a convex function $\varphi : \mathbf{R}^n \to [0, +\infty[$ satisfying

$$\lambda |z|^p \le \varphi(z) \le \Lambda(1+|z|^p)$$
 for all $z \in \mathbf{R}^n$

such that for every $A \in \mathcal{A}$ and $u, u_0 \in W^{1,p}(A)$

$$\Gamma^{-}(L^{p}(A)) \lim_{\varepsilon} F_{\varepsilon}(u,A) = \int_{A} \varphi(u')dt,$$

(3.2)
$$\Gamma^{-}(L^{p}(A)) \lim_{n \to \infty} [F_{n}(u, A) + \Phi_{n}(u, A)] = \int_{-\infty}^{\infty} \omega(u') dt + \Phi_{n}(u, A).$$

(3.2)
$$\Gamma^{-}(L^{p}(A)) \lim_{\varepsilon} \left[F_{\varepsilon}(u,A) + \Phi_{u_{0}}(u,A) \right] = \int_{A} \varphi(u')dt + \Phi_{u_{0}}(u,A).$$

Moreover for every $z \in \mathbb{R}^n$ the following representation formula for the function φ holds:

$$\varphi(z) = \lim_{\varepsilon} \inf\{F_{\varepsilon}(u, I) : u \in W^{1,p}(I), \ u(0) = 0, \ u(1) = z\}$$

$$= \lim_{\varepsilon} \inf\{F_{\varepsilon}(u, I) : u \in W^{1,p}(I), \ u(1) - u(0) = z\}.$$

We remark that from Proposition II.3 and Theorem III.1 it follows that for every bounded continuous function $g: \mathbb{R}^n \to \mathbb{R}$, for every $A \in \mathcal{A}$ and $u, u_0 \in W^{1,p}(A)$

$$\Gamma^{-}(L^{p}(A)) \lim_{\varepsilon} \left[F_{\varepsilon}(u,A) + \int_{A} g(u)dt \right] = \int_{A} \left[\varphi(u') + g(u) \right] dt,$$

$$\Gamma^{-}(L^{p}(A)) \lim_{\varepsilon} \left[F_{\varepsilon}(u,A) + \int_{A} g(u)dt + \Phi_{u_{0}}(u,A) \right]$$

$$= \int_{A} \left[\varphi(u') + g(u) \right] dt + \Phi_{u_{0}}(u,A).$$

We shall prove Theorem III.1 after some propositions.

Fix a sequence $\varepsilon_h \to 0^+$; for all $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$ we define

$$\bar{F}(u,A) = \Gamma^{-}(L^{p}(A)) \limsup_{h} F_{\varepsilon_{h}}(u,A).$$

Proposition III.2. Let $A, B, C \in \mathcal{A}$, with $C \subset A \cup B$. For every $u \in W^{1,p}(A \cup B)$

$$\bar{F}(u, C) \leq \bar{F}(u, A) + \bar{F}(u, B).$$

Proof. Let K be a compact subset of A such that $\overline{C} \setminus B \subset \mathring{K}$, and put $\delta = \operatorname{dist}(K, \partial A)$. Fix an integer $\nu \ge 1$ and define for $i = 1, \ldots, \nu$

$$A_i = \left\{ t \in I : \operatorname{dist}(t, K) < i \frac{\delta}{\nu} \right\}.$$

Set $A_0 = \mathring{K}$, and let $\varphi_i \in C_0^{\infty}(A_i)$ be such that

$$0 \le \varphi_i \le 1,$$

$$\varphi_i = 1 \quad \text{on } A_{i-1},$$

$$|\varphi_i'| \le 2 \frac{\nu}{8}.$$

We denote hereafter by the same letter c all the positive constants which do not We denote hereafter by the same letter c all the positive constants which do not depend on K, i, ν and δ .

By Proposition II.5 there exist two sequences (u_h) , (v_h) such that $u_h \to u$ in $L^p(A)$, $v_h \to u$ in $L^p(B)$ and

(3.3)
$$\bar{F}(u,A) = \lim_{h} \sup_{F_{\varepsilon_h}} F_{\varepsilon_h}(u_h,A),$$

(3.4)
$$\bar{F}(u,B) = \limsup_{h} F_{\varepsilon_h}(v_h,B).$$

Set

$$w_{ih} = \varphi_i u_h + (1 - \varphi_i) v_h ;$$

we have

$$\begin{split} F_{\varepsilon_{h}}(w_{i,h},C) & \leq F_{\varepsilon_{h}}(u_{h},C\cap A_{i-1}) + F_{\varepsilon_{h}}(v_{h},C\setminus \bar{A}_{i}) \\ & + \Lambda \int\limits_{C\cap(A_{i}\setminus A_{i-1})} \left[1 + \left|\varphi_{i}'(u_{h}-v_{h}) + \varphi_{i}u_{h}' + (1-\varphi_{i})v_{h}'\right|^{p}\right]dt \\ & \leq F_{\varepsilon_{h}}(u_{h},A) + F_{\varepsilon_{h}}(v_{h},B) \\ & + c\left[\left(\frac{\nu}{\delta}\right)^{p}\int\limits_{C} \left|u_{h}-v_{h}\right|^{p}dt + \int\limits_{C\cap(A\setminus A_{h})} (1 + \left|u_{h}'\right|^{p} + \left|v_{h}'\right|^{p})dt\right]. \end{split}$$

For every h, there exists an index $i_h \le \nu$ such that

$$\int_{C \cap (A_{i_{h}} \setminus A_{i_{h}-1})} (1 + |u'_{h}|^{p} + |v'_{h}|^{p}) dt \leq \frac{1}{\nu} \int_{C \cap A \cap B} (1 + |u'_{h}|^{p} + |v'_{h}|^{p}) dt$$
$$\leq \frac{c}{\nu} [1 + F_{\varepsilon_{h}}(u_{h}, A) + F_{\varepsilon_{h}}(v_{h}, B)],$$

so that

$$(3.5) F_{\varepsilon_h}(w_{i_h,h},C) \leq \left(1+\frac{c}{\nu}\right) \left[F_{\varepsilon_h}(u_h,A) + F_{\varepsilon_h}(v_h,B)\right] + \frac{c}{\nu} + c\left(\frac{\nu}{\delta}\right)^p \int\limits_C |u_h - v_h|^p dt.$$

It is easy to see that the sequence $(w_{i_h,h})$ converges to u in $L^p(C)$. Letting $h \to +\infty$ in (3.5), by (3.3) and (3.4) we obtain

$$\bar{F}(u,C) \leq \limsup_{h} F_{\varepsilon_{h}}(w_{i_{h},h},C)$$

$$\leq \left(1 + \frac{c}{\nu}\right) \left[F(u,A) + F(u,B)\right] + \frac{c}{\nu},$$

and the proof is completed since ν was arbitrary.

A slight modification of the proof above yields the following result.

Proposition III.3. For every $A, B \in \mathcal{A}$ with $B \subset CA$, for every compact subset K of B and every $u \in W^{1,p}(A)$ we have $\bar{F}(u,A) \leq \bar{F}(u,B) + \bar{F}(u,A \setminus K)$, so that $\bar{F}(u,A) = \sup\{\bar{F}(u,B): B \subset CA\}$.

Proposition III.4. We can select from (ε_h) a subsequence (ε_{h_k}) such that for all $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$ there exists

(3.6)
$$F(u,A) = \Gamma^{-}(L^{p}(A)) \lim_{k} F_{\varepsilon_{h_{k}}}(u,A).$$

In addition for all $u \in W^{1,p}(I)$ the set function $A \mapsto F(u, A)$ is the restriction to \mathcal{A} of a regular Borel measure.

Proof. Choose a countable base \mathcal{U} for the open sets of I, closed under finite unions. By Proposition II.6 we may construct (by a diagonal process) a subsequence (ε_{h_k}) such that for all $B \in \mathcal{U}$ there exists

$$G(u, B) = \Gamma^{-}(L^{p}(B)) \lim_{\varepsilon_{h_{n}}} F_{\varepsilon_{h_{n}}}(u, B)$$

for all $u \in W^{1,p}(B)$. Set for all $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$

$$F(u, A) = \sup\{G(u, B) : B \in \mathcal{U}, B \subset\subset A\}.$$

Applying Proposition III.2 and Proposition III.3 to the sequence (ε_{h_k}) we obtain that the set function $B \mapsto G(u, B)$ is subadditive on \mathcal{U} . Moreover it is clear, by the definition of G, that for all $A, B \in \mathcal{U}$ with $A \cap B = \emptyset$ and for all $u \in W^{1,p}(A \cup B)$

$$G(u, A \cup B) \ge G(u, A) + G(u, B)$$
.

Then the set function $A \mapsto F(u, A)$ is subadditive and superadditive on \mathcal{A} , and it is also regular from the inside. By proposition (5.5) and theorem (5.6) of [5], for all $u \in W^{1,p}(I)$ the set function $A \mapsto F(u, A)$ is the restriction to \mathcal{A} of a regular Borel measure.

We still have to prove (3.6). Put for all $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$

$$\underline{H}(u,A) = \Gamma^{-}(L^{p}(A)) \lim_{k} \inf F_{\varepsilon_{h_{k}}}(u,A),$$

$$\bar{H}(u,A) = \Gamma^{-}(L^{p}(A)) \limsup_{k} F_{\varepsilon_{h_{k}}}(u,A).$$

Since $G = \underline{H} = \overline{H}$ on \mathcal{U} , by Proposition III.3

$$\bar{H}(u,A) = \sup\{\bar{H}(u,B) : B \subset\subset A\} = \sup\{G(u,B) : B \in \mathcal{U}, B \subset\subset A\} \leq \underline{H}(u,A),$$

$$H(u,A) = \sup\{H(u,B) : B \subset\subset A\} = \sup\{G(u,B) : B \in \mathcal{U}, B \subset\subset A\} \leq \underline{H}(u,A),$$
so that $H(u,A) = \bar{H}(u,A) = F(u,A).$

Proposition IIII.5. Let $A \in \mathcal{A}$, and $u \in \mathcal{W}^{1,p}(A)$. If F is the functional defined in (3.6), then

$$F(u,A) \ge \inf \left\{ \limsup_{k} F_{\varepsilon_{h_k}}(v_k,A) : v_k - u \in W_0^{1,p}(A), v_k \to u \text{ in } L^p(A) \right\}.$$

Proof. Let K be any compact subset of A and let δ , A_i , φ_i , (u_h) be as in the proof of Proposition III.2. Set

$$w_{i,k} = \varphi_i u_k + (1 - \varphi_i) u;$$

we have

$$\begin{split} F_{\varepsilon_{h_k}}(w_{i,k},A) & \leq F_{\varepsilon_{h_k}}(u_k,A) + \Lambda \int_{A \setminus K} (1 + |u'|^p) dt \\ & + \Lambda \int_{A \setminus A_{k+1}} \left[1 + |\varphi'_i(u_k - u) + \varphi_i u'_k + (1 - \varphi_i) u'|^p \right] dt. \end{split}$$

As in Proposition III.2, for a suitable (i_k) we obtain

$$\limsup_{k} F_{\varepsilon_{h_{k}}}(w_{i_{k},k},A) \leq \left(1+\frac{c}{\nu}\right) \left[F(u,A) + \Lambda \int_{A\setminus K} (1+|u'|^{p})dt + \frac{c}{\nu}\right],$$

and the result follows since ν and K were arbitrary.

Proposition III.6. Let F be as in (3.6). For all $A \in \mathcal{A}$ and $u, u_0 \in W^{1,p}(A)$ we have

(3.7)
$$F(u,A) + \Phi_{u_0}(u,A) = \Gamma^{-}(L^{p}(A)) \lim_{h} \left[F_{\varepsilon_{h_k}}(u,A) + \Phi_{u_0}(u,A) \right].$$

Proof. If $u - u_0 \not\in W_0^{1,p}(A)$, then the left-hand side in (3.7) is $+\infty$; let $u_k \to u$ in $L^p(A)$, and suppose that

$$\lim_{\iota}\inf\left[F_{\varepsilon_{h_{\iota}}}(u_{\iota},A)+\Phi_{u_{0}}(u_{\iota},A)\right]<+\infty.$$

Then $S = \{k \in \mathbb{N} : \Phi_{u_0}(u_k, A) < +\infty\}$ is infinite and by the coercivity (3.1) of f a subsequence of $\{u_k : k \in S\}$ converges weakly to u in $W^{1,p}(A)$, but then necessarily $u - u_0 \in W_0^{1,p}(A)$, which is a contradiction.

In the case $u - u_0 \in W^{1,p}(A)$, we have $\Phi_{u_0}(\cdot, A) = \Phi_u(\cdot, A)$, and by Propositions III.5 and II.5

$$F(u,A) \ge \inf \left\{ \limsup_{k} \left[F_{\varepsilon_{h_{k}}}(v_{k},A) + \Phi_{u}(v_{k},A) \right] : v_{k} \to u \text{ in } L^{p}(A) \right\}$$

$$= \inf \left\{ \limsup_{k} \left[F_{\varepsilon_{h_{k}}}(v_{k},A) + \Phi_{u_{0}}(v_{k},A) \right] : v_{k} \to u \text{ in } L^{p}(A) \right\}$$

$$= \Gamma^{-}(L^{p}(A)) \lim_{k} \sup \left[F_{\varepsilon_{h_{k}}}(u,A) + \Phi_{u_{0}}(u,A) \right]$$

$$\ge \Gamma^{-}(L^{p}(A)) \lim_{k} \inf \left[F_{\varepsilon_{h_{k}}}(u,A) + \Phi_{u_{0}}(u,A) \right]$$

$$\ge \Gamma^{-}(L^{p}(A)) \lim_{k} \inf F_{\varepsilon_{h_{k}}}(u,A)$$

$$= F(u,A) = F(u,A) + \Phi_{u_{0}}(u,A).$$

Proposition III.7. Let F be as in (3.6). There exists a convex function

 $\varphi: \mathbf{R}^n \to \mathbf{R}$, which is p-homogeneous if f(s, z) is p-homogeneous in z, such that for every $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$

$$F(u,A) = \int_{A} \varphi(u')dt.$$

Proof. Fix $A \in \mathcal{A}$, $u \in W^{1,p}(A)$, $a \in \mathbb{R}^n$. Then

(3.8)
$$F(u + a, A) = F(u, A).$$

To see this, take $u_k \to u$ in $L^p(A)$ such that

$$F(u,A) = \lim_{k} F_{\varepsilon_{h_k}}(u_k,A);$$

it is easy to find a sequence $a_k \to a$ in \mathbb{R}^n such that $(\varepsilon_{h_k})^{-1} a_k \in \mathbb{Z}^n$. The sequence $(u_k + a_k)$ tends to u + a in $L^p(A)$, therefore

$$F(u+a,A) \leq \liminf_{k} \int_{A} f((\varepsilon_{h_{k}})^{-1}(u_{k}+a_{k}), u_{k}')dt$$
$$= \lim_{k} \int_{A} f((\varepsilon_{h_{k}})^{-1}u_{k}, u_{k}')dt = F(u,A).$$

The opposite inequality may be proved in the same way, thus obtaining (3.8). Define for every $A \in \mathcal{A}$ and $v \in L^p(A)$

$$L(v, A) = F(w, A),$$

where $w \in W^{1,p}(A)$ is any function such that w' = v a.e. on A. By (3.8) the functional $v \mapsto L(v,A)$ is well defined; moreover, by Proposition II.2, it is lower semicontinuous on $L^p(A)$, and the set function $A \mapsto L(v,A)$ may be extended to a measure (defined on the Borel sets \mathcal{B} of I), which we denote by $\tilde{L}(v,\cdot)$. We prove that the functional \tilde{L} is local on \mathcal{B} , i.e. that $\tilde{L}(v_1,B) = \tilde{L}(v_2,B)$ whenever $v_1 = v_2$ that the functional \tilde{L} is local on \mathcal{B} , i.e. that $\tilde{L}(v_1,B) = \tilde{L}(v_2,B)$ whenever $v_1 = v_2$ a.e. on $B \in \mathcal{B}$.

Let $v_1, v_2 \in L^p(I)$ with $v_1 = v_2$ a.e. on $B \in \mathcal{B}$: it is not restrictive to assume that $v_1 = v_2$ everywhere on B, and that $v_1 \le v_2$ on I. By Lusin's theorem, for any $\varepsilon > 0$ there exists $A_{\varepsilon} \in \mathcal{A}$, with meas $(A_{\varepsilon}) < \varepsilon$, such that v_1 and v_2 are continuous on $I \setminus A_{\varepsilon}$. Then the set

$$B_{\varepsilon} = A_{\varepsilon} \cup \{t \in I : v_2(t) < v_1(t) + \varepsilon\}$$

is open, and $B \subseteq B_{\varepsilon}$. Define

$$v_{arepsilon} = \left\{ egin{array}{ll} v_2 & ext{on } B_{arepsilon} \ v_1 + arepsilon & ext{otherwise} \end{array}
ight.$$

so that $v_{\varepsilon} \to v_1$ in $L^p(I)$ as $\varepsilon \to 0^+$. Take $A \in \mathcal{A}$ and K compact such that $K \subseteq B \subseteq A$. Then, since $L(\cdot, A)$ is lower semicontinuous on $L^p(A)$, we have

$$egin{aligned} ilde{L}(v_1, B) & \leq L(v_1, A) \ & \leq \liminf_{arepsilon} L(v_{arepsilon}, A) \ & \leq \liminf_{arepsilon} \left[L(v_{arepsilon}, A \cap B_{arepsilon}) + L(v_{arepsilon}, A \setminus K)
ight] \ & \leq L(v_2, A) + \Lambda \lim_{arepsilon} \int\limits_{A \setminus K} (1 + ig| v_{arepsilon} ig) dt \ & = L(v_2, A) + \Lambda \int\limits_{A \setminus K} (1 + ig| v_1 ig|^p) dt \end{aligned}$$

whence $\tilde{L}(v_1, B) \leq \tilde{L}(v_2, B)$ since A and K are arbitrary. Taking $w_{\varepsilon} = v_1$ on B_{ε} and $w_{\varepsilon} = v_2 - \varepsilon$ otherwise, one proves the opposite inequality, thus obtaining the locality of \tilde{L} .

By theorem 1.4 of [2] there exists a function $\varphi(t, z)$ convex in $z \in \mathbb{R}^n$ and such that for every $B \in \mathcal{B}$ and $v \in L^p(I)$

$$\tilde{L}(v,B) = \int_{B} \varphi(t,v(t))dt.$$

It is easy to see that since f is independent of t, the same is true for φ . Then for every $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$

$$F(u,A) = L(u',A) = \tilde{L}(u',A) = \int_{A} \varphi(u')dt.$$

Using Proposition II.5 one may prove, after some simple calculations, that if f(s, z) is p-homogeneous in z, then also φ is p-homogeneous.

Define for every $z \in \mathbf{R}^n$ and T > 0

$$M'_{T}(z) = \inf \left\{ \frac{1}{T} \int_{0}^{T} f(u, u') dt : u \in W^{1,p}(0, T), u(T) - u(0) = Tz \right\},$$

$$M''_T(z) = \inf \left\{ \frac{1}{T} \int_0^T f(u, u') dt : u \in W^{1,p}(0, T), \ u(0) = 0, \ u(T) = Tz \right\}.$$

Clearly, $M'_T(z) \leq M''_T(z)$.

Proposition III.8. For every $z \in \mathbb{R}^n$ there exists $M''(z) = \lim_{T \to \infty} M''_T(z)$.

We shall divide the proof in several steps.

Step 1. For every $z \in \mathbb{Q}^n$ there exists S > 0 such that the limit $\lim_{k \to \infty} M_2^{n_k}(z)$ exists.

To see this, let $z = (p_1/q_1, \ldots, p_n/q_n)$ with p_i , q_i integers, $q_i > 0$, and put $S = q_1 \cdot \cdots \cdot q_n$. Take $k \in \mathbb{N}$ and $\varepsilon > 0$, and let $u \in W^{1,p}(0, 2^k S)$ be such that u(0) = 0, $u(2^k S) = 2^k S z$ and

$$\int_{0}^{2^{k}S} f(u, u')dt \leq 2^{k}S(M_{2^{k}S}^{"}(z) + \varepsilon).$$

Define

$$v(t) = \begin{cases} u(t) & \text{if } 0 \le t \le 2^k S, \\ u(t - 2^k S) + 2^k S z & \text{if } 2^k S \le t \le 2^{k+1} S. \end{cases}$$

Remarking that $Sz \in \mathbb{Z}^n$, we get

$$2^{k+1}SM_{2^{k+1}S}''(z) \leq \int_{0}^{2^{k+1}S} f(v,v')dt$$

$$= 2\int_{0}^{2^{k}S} f(u,u')dt \leq 2^{k+1}S(M_{2^{k}S}''(z)+\varepsilon).$$

Since ε was arbitrary, $M_{2^{k+1}S}^{"}(z) \leq M_{2^kS}^{"}(z)$ and the sequence decreases to a limit which we call M''(z).

Step 2. For all $z \in \mathbb{Q}^n$ we have $\lim_{T\to\infty} M_T''(z) = M''(z)$.

To prove this, fix $z \in \mathbf{O}^n$ and take S as in Step 1. For all T > 0 we may write To prove this, fix $z \in \mathbf{Q}^n$ and take S as in Step 1. For all T > 0 we may write

$$T = \sum_{k=0}^{+\infty} \alpha_k 2^k S + a \qquad (0 \le a < S)$$

for suitable coefficients $\alpha_k \in \{0, 1\}$, all vanishing for k large enough. Set $T_0 = 0$, $T_k = \sum_{i=0}^{k-1} \alpha_i 2^i S$; fix $\varepsilon > 0$ and for all $k \in \mathbb{N}$ let $u_k \in W^{1,p}(0, 2^k S)$ be such that $u_k(0) = 0$, $u_k(2^k S) = 2^k S z$ and

$$\int_{0}^{2kS} f(u_k, u'_k)dt \leq 2^k S(M''_{2^k S}(z) + \varepsilon).$$

$$v(t) = \begin{cases} u_k(t - T_k) + T_k z & \text{if } T_k \leq t \leq T_{k+1}, \\ tz & \text{if } T - a \leq t \leq T. \end{cases}$$

By simple changes of variables we obtain

$$TM''_{T}(z) \leq \int_{0}^{T} f(v, v') dt = \sum_{k=0}^{+\infty} \alpha_{k} \int_{0}^{2^{k}S} f(u_{k}, u'_{k}) dt + \int_{T-a}^{T} f(tz, z) dt$$
$$\leq \sum_{k=0}^{+\infty} \alpha_{k} 2^{k} S(M''_{2^{k}S}(z) + \varepsilon) + \int_{T-S}^{T} f(tz, z) dt.$$

By Step 1, for a suitable k_{ε} we have $M_{2^kS}'(z) < M''(z) + \varepsilon$ for every $k > k_{\varepsilon}$, so that

$$TM_T''(z) \leq \sum_{k=0}^{k_{\varepsilon}} 2^k SM_{2^k S}''(z) + 2^{k_{\varepsilon}+1} S\varepsilon + T(M''(z) + 2\varepsilon) + \int_{T-S}^T f(tz,z) dt.$$

Dividing both sides by T and letting $T \rightarrow +\infty$ we obtain, since ε was arbitrary,

(3.9)
$$\limsup_{T \to +\infty} M_T''(z) \leq M''(z).$$

We reason by contradiction: suppose that

$$\lim_{T \to +\infty} \inf M_T''(z) < M''(z).$$

Every T > 0 may be written as T = m(T)S - b(T), with $m(T) \in \mathbb{N}$ and $0 \le b(T) < S$. Fix $\varepsilon > 0$ and choose $u \in W^{1,p}(0,T)$ such that u(0) = 0, u(T) = Tz and $\int_0^T f(u,u')dt \le T(M''_T(z) + \varepsilon)$. Set

$$v(t) = \begin{cases} u(t) & \text{if } 0 \le t \le T, \\ tz & \text{if } T \le t \le T + b(T); \end{cases}$$

$$tz & \text{if } T \le t \le T + b(T);$$

reasoning as above we have

$$M''_{m(T)S}(z) \le \frac{T}{T+b(T)} M''_{T}(z) + \frac{1}{T+b(T)} \int_{-\infty}^{T+S} f(tz,z)dt.$$

If (3.10) holds, there exists T_0 such that $M''_{m(T_0)S}(z) < M''(z)$; since $m(T_0) \in \mathbb{N}$, the same argument used in Step 1 yields that the sequence $(M''_{2^k m(T_0)S}(z))$ decreases to a limit L < M''(z). On the other hand, we may prove an inequality analogous to (3.9) with $m(T_0)S$ in place of S, so that

$$\lim_{T \to +\infty} \sup_{T} M_T''(z) \leq \lim_{k} M_{2^k m(T_0)S}''(z) = L < M''(z).$$

But

$$M''(z) \leq \limsup_{T \to +\infty} M''_T(z),$$

therefore (3.10) is impossible.

Step 3. For every $z \in \mathbb{R}^n$ there exists $\lim_{T \to +\infty} M_T''(z)$.

Fix $z, w \in \mathbb{R}^n$, T > 0, $\frac{1}{2} < k < 1$ and $\varepsilon > 0$, and let $u \in W^{1,p}(0,T)$ be such that u(0) = 0, u(T) = Tw and $\int_0^T f(u, u') dt \le T(M''_T(w) + \varepsilon)$. Set

$$v(t) = \begin{cases} u(t/k) & \text{if } 0 \le t \le kT, \\ Tw + \frac{t - kT}{1 - k} (z - w) & \text{if } kT \le t \le T. \end{cases}$$

Since $f(s, \cdot)$ is convex and controlled by (3.1), for every $(s, z) \in \mathbb{R}^n \times \mathbb{R}^n$ and $1 < \alpha < 2$ we have

$$|f(s,\alpha z)-f(s,z)| \leq c(\alpha-1)(1+|z|^p)$$

with c independent of α , s, z. Then, denoting by the same letter c any positive constant which does not depend on z, w, T, k, ε , we have

$$TM_{T}''(z) \leq \int_{0}^{T} f(v, v')dt$$

$$\leq \int_{0}^{kT} f\left(u(t/k), \frac{1}{k} u'(t/k)\right) dt + (1-k)T\Lambda \left(1 + \frac{|z-w|^{p}}{(1-k)^{p}}\right)$$

$$= k \int_{0}^{T} [f(u, u'/k) - f(u, u')]dt + k \int_{0}^{T} f(u, u')dt$$

$$+ (1-k)T\Lambda \left(1 + \frac{|z-w|^{p}}{(1-k)^{p}}\right)$$

$$\leq c(1-k) \int_{0}^{T} (1 + |u'|^{p})dt + kT(M_{T}''(w) + \varepsilon)$$

$$+ (1-k)T\Lambda \left(1 + \frac{|z-w|^{p}}{(1-k)^{p}}\right)$$

$$\leq c(1-k)T \left[1 + M_{T}''(w) + \frac{|z-w|^{p}}{(1-k)^{p}}\right] + kT(M_{T}''(w) + \varepsilon).$$

Dividing both sides by T and letting $\varepsilon \to 0^+$ we have

(3.11)
$$M_T''(z) \le c(1-k) \left[1 + M_T''(w) + \frac{|z-w|^p}{(1-k)^p} \right] + kM_T''(w).$$

Now take $x \in \mathbb{R}^n$ and $y \in \mathbb{Q}^n$. Letting $T \to +\infty$ in (3.11), with z = x and w = y, we obtain

$$\limsup_{T \to +\infty} M_T''(x) \le c(1-k) \left[1 + M''(y) + \frac{|x-y|^p}{(1-k)^p} + kM''(y) \right];$$

letting $y \rightarrow x$ and then $k \rightarrow 1$ yields

(3.12)
$$\limsup_{T \to +\infty} M_T''(x) \leq \liminf_{\substack{y \to x \\ y \in O^n}} M''(y).$$

We use again (3.11), with z = y and w = x. As above we obtain

$$\limsup_{\substack{y \to x \\ y \in \mathbb{Q}^n}} M''(y) \leq \liminf_{T \to +\infty} M''_T(x),$$

which together with (3.12) completes the proof of Proposition III.8.

Let (ε_h) be any sequence such that $\varepsilon_h \to 0^+$ and that (F_{ε_h}) is Γ -converging to some limit F. By Proposition III.7 the limit may be written as

$$F(u,A) = \int_{A} \varphi(u')dt$$

for a suitable convex function φ . We want to identify φ in terms of M' and M''.

Proposition III.9. For every $z \in \mathbb{R}^n$, $\varphi(z) \ge M''(z)$.

Proof. Fix $z \in \mathbb{R}^n$; by Propositions III.6 and II.5 there exists a sequence $(u_h) \subset W^{1,p}(I)$ converging in $L^p(I)$ to the function u(t) = zt and satisfying $u_h(0) = 0$, $u_h(1) = z$, $\lim_h F_{\varepsilon_h}(u_h) = \varphi(z)$. Then we have

0, $u_h(1) - \lambda$, $\min_h \Gamma_{\varepsilon_h}(u_h) - \varphi(\lambda)$. Then we have

$$M''(z) = \lim_{L} M''_{1/\varepsilon_h}(z) \leq \lim_{L} F_{\varepsilon_h}(u_h) = \varphi(z).$$

Proposition III.10. For every $z \in \mathbb{R}^n$, $\varphi(z) \leq \liminf_h M'_{1/\varepsilon_h}(z)$.

Proof. Take $z \in \mathbb{R}^n$; we may assume that the sequence $M'_{1/\epsilon_h}(z)$ converges to some real number. By definition of $M'_T(z)$ there exists a sequence $(u_h) \subset W^{1,p}(I)$ such that

(3.13)
$$F_{\varepsilon_h}(u_h) \leq M'_{1/\varepsilon_h}(z) + 1/h, \qquad u_h(1) - u_h(0) = z.$$

Since f is periodic with respect to s, it is not restrictive to assume that $|u_h(0)| \le \varepsilon_h$. By (3.13) the sequence (u_h) is bounded in $W^{1,p}(I)$; so we may select a subsequence,

still denoted by (u_h) , which converges weakly in $W^{1,p}(I)$ to a function v such that $\int_0^1 v' dt = z$. Then Jensen's inequality yields

$$\varphi(z) \leq \int_{0}^{1} \varphi(v')dt \leq \lim_{h} F_{\varepsilon_{h}}(u_{h}) = \lim_{h} M'_{1/\varepsilon_{h}}(z).$$

Proof of Theorem III.1. Propositions III.9 and III.10 imply that for any sequence (ε_h) such that (F_{ε_h}) is Γ -convergent, the corresponding function φ satisfies $\varphi(z) = M''(z) = \lim_h M'_{1/\varepsilon_h}(z)$ for every $z \in \mathbf{R}^n$. Thus, for every $z \in \mathbf{R}^n$ the limit $\lim_{T \to +\infty} M'_T(z) = M'(z)$ exists and

$$\varphi(z) = M'(z) = M''(z).$$

Let $\varepsilon_h \to 0^+$; by Proposition III.4 we may select a subsequence (ε_{h_k}) such that the functionals $F_{\varepsilon_{h_k}}(u, A)$ are Γ -converging to a limit F(u, A) which by Proposition III.7 we may write as $\int_A \varphi(u')dt$. By the argument above

$$F(u,A) = \int_A M''(u')dt$$

for every $A \in \mathcal{A}$ and $u \in W^{1,p}(A)$. Then by Proposition II.7

$$\Gamma^{-}(L^{p}(A)) \lim_{\varepsilon} F_{\varepsilon}(u,A) = \int_{A} \varphi(u')dt.$$

To prove (3.2) apply Proposition III.6.

IV. An example

Let n = 2, and take two real constants α and β , with $0 < \alpha \le \beta$. Define on $[0,1) \times [0,1)$ the following function:

$$a(x) = \begin{cases} \beta & \text{if } x \in [(0, \frac{1}{2}) \times (\frac{1}{2}, 1)] \cup [(\frac{1}{2}, 1) \times (0, \frac{1}{2})] \\ \beta & \text{if } x \in [(0, \frac{1}{2}) \times (\frac{1}{2}, 1)] \cup [(\frac{1}{2}, 1) \times (0, \frac{1}{2})] \\ \alpha & \text{otherwise} \end{cases}$$

and extend it by periodicity to a function defined on \mathbf{R}^2 which we still denote by a. For every $\varepsilon > 0$ set

$$W_{\varepsilon} = \{x \in \mathbb{R}^2 : a(x/\varepsilon) = \alpha\}, \qquad B_{\varepsilon} = \{x \in \mathbb{R}^2 : a(x/\varepsilon) = \beta\}$$

(for every $\varepsilon > 0$ we may think of \mathbf{R}^2 as of a chessboard composed by the "white" squares, W_{ε} , and the "black" squares, B_{ε}).

Consider the functionals

$$F_{\varepsilon}(u) = \int_{0}^{1} a(u/\varepsilon) |u'|^{2} dt,$$

defined on $W^{1,2}(I)$. By Theorem III.1 there exists a convex function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\Gamma^{-}(L^{2}(I)) \lim_{\varepsilon} F_{\varepsilon}(u) = \int_{0}^{1} \varphi(u')dt$$

for every $u \in W^{1,2}(I)$. In this section we shall prove:

Theorem IV.1. If $\alpha \neq \beta$, the function $z \mapsto \varphi(z)$ is not a quadratic form.

Proof. Fix $z \in \mathbb{Z}^2$, $z \neq (0,0)$, and set $u_0(t) = tz$. For every $h \in \mathbb{N}$ the functional $F_{1/h} + \Phi_{u_0}$ is coercive and lower semicontinuous in the weak topology of $W^{1,2}(I)$; denote by u_h one of its minimum points. By the convexity of φ and by Proposition II.4

(4.1)
$$\varphi(z) = \min \left\{ \int_{0}^{1} \varphi(u')dt : u - u_0 \in W_0^{1,2}(I) \right\} = \lim_{h} F_{1/h}(u_h).$$

We divide the remaining part of the proof into several steps.

Step 1. For every h the function u_h is piecewise affine.

Indeed, let Q be one of the white squares of $W_{1/h}$ such that the set $T_Q = \{t : u(t) \in Q\}$ is not empty, and set $t_1 = \min T_Q$, $t_2 = \max T_Q$. If $t_1 < t_2$ set

$$v(t) = \begin{cases} u_h(t) & \text{if } t \le t_1 \text{ or } t \ge t_2 \\ \frac{u_h(t_2) - u_h(t_1)}{t_2 - t_1} (t - t_1) + u(t_1) & \text{if } t_1 \le t \le t_2 \end{cases}$$

and we have

$$\int_{t_{1}}^{t_{2}} \alpha |v'|^{2} dt \leq \int_{t_{1}}^{t_{2}} a(hu_{h}) |u'_{h}|^{2} dt,$$

$$\int_{t_{1}}^{t_{1}} \alpha |v'|^{2} dt \leq \int_{t_{1}}^{t_{2}} a(hu_{h}) |u'_{h}|^{2} dt,$$

where the equality holds only if $u_h \equiv v$ in $[t_1, t_2]$.

This argument shows that u_h is affine on each of the white squares it crosses (there are only finitely many such squares, because $|u_h|$ is bounded). The set $B_{1/h}(u_h) = \{t \in (0,1) : u_h(t) \in B_{1/h}\}$ is then composed by finitely many open intervals: on each of them u_h is affine, since it solves the Euler equation $\beta u_h'' = 0$.

Step 2. For every h the velocity $|u'_h(t)|$ is constant on the set $W_{1/h}(u_h) = \{t : u_h(t) \in W_{1/h}\}$ and on the set $B_{1/h}(u_h)$; the two constants need not be equal.

Let $[t_1, s_1]$ and $[t_2, s_2]$ be any two intervals contained in $W_{1/h}(u_h)$, and in each of which u_h is affine. We may assume $t_1 < s_1 \le t_2 < s_2$. Set

$$c = \frac{\left| u_h(s_1) - u_h(t_1) \right| + \left| u_h(s_2) - u_h(t_2) \right|}{(s_1 - t_1) + (s_2 - t_2)},$$

$$s'_1 = t_1 + \frac{\left| u_h(s_1) - u_h(t_1) \right|}{c}, \qquad t'_2 = s'_1 + (t_2 - s_1),$$

and define

$$v(t) = \begin{cases} u_h(t) & \text{if } t \leq t_1 \text{ or } t \geq s_2, \\ u_h(t_1) + \frac{u_h(s_1) - u_h(t_1)}{s_1' - t_1} (t - t_1) & \text{if } t_1 \leq t \leq s_1', \\ u_h(t - s_1' + s_1) & \text{if } s_1' \leq t \leq t_2', \\ u_h(t_2) + \frac{u_h(s_2) - u_h(t_2)}{s_2 - t_2'} (t - t_2') & \text{if } t_2' \leq t \leq s_2. \end{cases}$$

$$v) \leq F_{1/h}(u_h), \text{ and the equality holds if and only if } u_h = v, \text{ that } t \leq t \leq t_2'$$

Then $F_{1/h}(v) \le F_{1/h}(u_h)$, and the equality holds if and only if $u_h = v$, that is, if $|u_h'|$ takes the same constant value on both $[t_1, s_1]$ and $[t_2, s_2]$. A similar argument may be employed for the intervals of $B_{1/h}(u_h)$.

For every $u \in W^{1,2}(I)$ and every $h \in \mathbb{N}$ set

$$L_h^W(u) = \int_{W_{1/h}(u)} |u'(t)| dt, \qquad L_h^B(u) = \int_{B_{1/h}(u)} |u'(t)| dt.$$

Step 3. For every h we have $F_{1/h}(u_h) = [\sqrt{\alpha} L_h^W(u_h) + \sqrt{\beta} L_h^B(u_h)]^2$.

By Step 2, if $L_h^W(u_h) = 0$ or $L_h^B(u_h) = 0$ the result is trivial. In the general case call c_h^W and c_h^B the two speeds of u_h , so that

$$|u_h'| = \begin{cases} c_h^W & \text{on } W_{1/h}(u_h), \\ c_h^B & \text{on } B_{1/h}(u_h). \end{cases}$$

Then $F_{1/h}(u_h) = \alpha c_h^W L_h^W(u_h) + \beta c_h^B L_h^B(u_h)$. If v is a different parametrization of the Then $F_{1/h}(u_h) = \frac{\hbar \alpha c_h^T L_h^T(u_h) + \beta c_h^T L_h^T(u_h)}{\hbar c_h^T L_h^T(u_h) + \beta c_h^T L_h^T(u_h)}$. It v is a different parametrization of the curve u_h , such that for some constants c^W and c^B

$$|v'| =$$

$$\begin{cases} c^{W} & \text{on } W_{1/h}(v), \\ c^{B} & \text{on } B_{1/h}(v), \end{cases}$$

then we have $F_{1/h}(v) = \alpha c^W L_h^W(v) + \beta c^B L_h^B(v)$ and $L_h^W(v)/c^W + L_h^B(v)/c^B = 1$. But $L_h^W(v) = L_h^W(u_h)$ and $L_h^B(v) = L_h^B(u_h)$, therefore by $F_{1/h}(u_h) \le F_{1/h}(v)$ it follows that

$$F_{1/h}(u_h) = \min\{\alpha x L_h^W(u_h) + \beta y L_h^B(u_h) : x, y > 0, L_h^W(u_h)/x + L_h^B(u_h)/y = 1\}$$
$$= \left[\sqrt{\alpha} L_h^W(u_h) + \sqrt{\beta} L_h^B(u_h)\right]^2.$$

Step 4. For every h there exists v_h such that $v_h - u_0 \in W_0^{1,2}(I)$ and

$$(4.2) v_h(t) \in W_{1/h} for all t,$$

$$[F_{1/h}(v_h)]^{1/2} \leq [F_{1/h}(u_h)]^{1/2} + (2\sqrt{\alpha} - \sqrt{\beta})L_h^B(u_h).$$

If (t_1, t_2) is one of the intervals composing $B_{1/h}(u_h)$, the points $u_h(t_1)$, $u_h(t_2)$ belong to the boundary of a "black square" Q. Let $w_Q: (t_1, t_2) \to \mathbb{R}^2$ be a piecewise affine function joining $u_h(t_1)$ with $u_h(t_2)$, and such that $w_Q(t)$ belongs to the boundary of Q for all t. It is possible to choose w_Q so that it satisfies

(4.4)
$$\int_{t_1}^{t_2} |w_Q'(t)| dt \leq 2 \int_{t_1}^{t_2} |u_h'(t)| dt.$$

Call w_h the piecewise affine function obtained from u_h by substituting it with the corresponding w_O in each of the intervals of $B_{1/h}(u_h)$. An argument similar to the proof of Step 2 shows that it is possible to choose a new parametrization of w_h in order to obtain a curve v_h such that $|v_h'|$ is constant. By (4.4) it follows that

$$L_h^W(v_h) = L_h^W(w_h) \le L_h^W(u_h) + 2L_h^B(u_h),$$

but $F_{1/h}(v_h) = \alpha [L_h^W(v_h)]^2$ and the result follows by Step 3.

We now conclude the proof of Theorem IV.1. Since $\varphi(0,1) = \varphi(\sqrt{2}/2, \sqrt{2}/2) = \varphi(1,0) = \alpha$, if φ is a quadratic form then necessarily

(4.5)
$$\varphi(z) = \alpha |z|^2 \quad \text{for all } z \in \mathbb{R}^2.$$

By Step 3 it follows that

$$[F_{1/h}(u_h)]^{1/2} = \sqrt{\alpha} [L_h^W(u_h) + L_h^B(u_h)] + (\sqrt{\beta} - \sqrt{\alpha}) L_h^B(u_h)$$

$$= \sqrt{\alpha} \int_0^1 |u_h'| dt + (\sqrt{\beta} - \sqrt{\alpha}) L_h^B(u_h)$$

$$\geq \sqrt{\alpha} |z| + (\sqrt{\beta} - \sqrt{\alpha}) L_h^B(u_h).$$

Letting $h \to +\infty$, since $\alpha < \beta$ by (4.1) and (4.5) we have

$$\lim_{h} L_{h}^{B}(u_{h}) = 0.$$

Let (v_h) be as in Step 4; then by (4.3), (4.6) and (4.1)

$$|z| \leq \liminf_{h} L_{h}^{w}(v_{h}) \leq \limsup_{h} L_{h}^{w}(v_{h}) = \frac{1}{\sqrt{\alpha}} \limsup_{h} [F_{1/h}(v_{h})]^{1/2}$$

$$\leq \frac{1}{\sqrt{\alpha}} \lim_{h} [[F_{1/h}(u_{h})]^{1/2} + (2\sqrt{\alpha} - \sqrt{\beta})L_{h}^{B}(u_{h})] = |z|$$

. 44

44

by (4.3), (4.6) and (4.1), therefore

(4.7)
$$\lim_{h} L_h^w(v_h) = |z|.$$

If (z_1, z_2) are the coordinates of z, it is easy to see that (4.2) implies $L_h^w(v_h) \ge (\sqrt{2} - 1)\min(|z_1|, |z_2|) + \max(|z_1|, |z_2|)$ for all h, and by (4.7)

$$\sqrt{z_1^2 + z_2^2} \ge (\sqrt{2} - 1) \min(|z_1|, |z_2|) + \max(|z_1|, |z_2|).$$

But this is false unless $z_1 = 0$ or $z_2 = 0$ or $|z_1| = |z_2|$.

Remark. It is easy to see that if β/α is large enough, then the sequence (u_h) of the minimum points of $(F_{1/h})$ satisfies $u_h(t) \in W_{1/h}$ for all t, so that

$$\varphi(z) = [(\sqrt{2} - 1)\min(|z_1|, |z_2|) + \max(|z_1|, |z_2|)]^2 \cdot \alpha$$

(for $\beta/\alpha \ge 4$ this follows by Step 4).

REFERENCES

- 1. G. Buttazzo, Su una definizione generale dei Γ-limiti, Boll. Unione Mat. Ital. (5), 14-B (1977), 722-744.
- 2. G. Buttazzo and G. Dal Maso, On Nemyckii operators and integral representation of local functionals, Rend. Mat. (3) 3 (1983), 491-509.
- 3. E. De Giorgi, *G-operators and Γ-convergence*, Proceedings of the IMU Congress, Warsaw, 1983, to appear.
- 4. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Acc. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850.
- 5. E. De Giorgi and G. Letta, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 61-99.

Scuola Normale Superiore Piazza dei Cavalieri, 7 I-56100 Pisa, Italy

(Received September 23, 1983)