ON THE LIMITS OF PERIODIC RIEMANNIAN METRICS'

By
EMILIO ACERBI AND GIUSEPPE BUTTAZZO

I. Introduction

In this paper we study the asymptotic behaviour as e— 0" of the infima of the
functionals

Fe(u)ZJ;1 f(u—it) , u’(t)) dt

on the space W(zo, z:)={u € W"(0,1;R"): u(0) =z, u(1)=z}, where p >1,
20,z €ER" and f(s, z) is a Borel function which is convex in z, periodic in s and
satisfying

AMzP=f(s,2)=SA0+]z)P)  (O0<A=A)

for every (s,z) ER" XR"
Our main result (Theorem III.1) may be stated as follows:

There exists a convex function ¢ :R" — R satisfying
MzPP=e(z)=AQ+|z]?)  for every z ER",
such that for every z,, z, € R" and for every bounded continuous function g : R* — R

lim inf {Fs(u)+j g(u)dt: u € W(z,, zl)}

+
e—0

= min {j [e(u")+ g(u)ldt : u € W(z, zl)} .

If f(s, z) is p-homogeneous with respect to z, then ¢ is p-homogeneous. Moreover if
(U )e=0 C W(zo, z1) is such that

Ehjl [Fe(ue)+j- g(u.)dt —inf {FE (u)+f1 g(u)dt:u e W(zo,zl)}] =0
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then from u. — u in L7(0,1;R") it follows that

1

j [o(u')+ g{u)jdt = min {f [e(u)+ g(u)ldt : u € W(z,, zl)} .

To prove this result we make use of the techniques of I'-convergence, a concept
first introduced by E. De Giorgi and T. Franzoni [4] in 1975 and later developed by
several authors (for further references see [3]).

In Section IV we produce an example showing that in the case f(s,z) = a(s)|z [’
the function ¢ need not be a quadratic form. Note that the energy integrals
Joa(u/e)|u'’dt are associated with Riemannian metrics, while [ ¢(u’)dt is not
(although we may say that it is associated with a Finsler metric). Therefore the
space of Riemannian metrics is not closed in the space of Finsler metrics, with
respect to the I'-convergence of the energy integrals.

II. Preliminary lemmas

We give hereafter the definitions and main results of the I'-convergence theory,
which will be used in the proofs of the theorems in Section III. The general
statements and the proofs of what follows may be found in [1], [4].

Let X denote a topological space, and for every h €N take a function
F.: X —[—o, +x].

Definition II.1. For all x € X we set

(2.1) I'(X) liminf F,(x)= sup liminf inf F,(y),
h UeT(x) h yeuU

(2.2) I(X) limsup Fi(x)= sup limsup inf F,(y),
h veg(x) h yeEU

where 7 (x) is the family of the neighbourhoods of x in X. If the two I'-limits (2.1),
(2.2) coincide at the point x, their common value will be indicated by
(X)) lim, F, (x).

Proposition I1.2. The I'-limits (2.1), (2.2), regarded as functions of x, are
lower semicontinuous with respect to the topology of X.

Proposition I1.3. If G: X — R is continuous, then for every x € X
I"(X) lim inf (G + F)(x)=Gx)+I(X) lim inf F} (x),
I'(X) limsup (G + F,)(x)= G(x)+ I"(X) lim sup F, (x).
h h

Proposition IL.4. Let the functions F, be equi-coercive on X, i.e. for every

IKIUpPpUDILIUIL Li.4%. LEL e Junciiurny 1y Ve cquil-Lueieive vt o, el JUr tuery
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¢ ER there exists a compact set K C X such that, for allh, {x € X : F,(x)=c}C K.
Assume also that for all x € X there exists

(x) lim F, (x)= F(x).
Then we have
i inf () = mip F(x).
If in addition (x.) is a sequence such that
lim F, (xn)= lim inf Fj, (x),
then by x, — xo in X it follows that F(xo) = mincex F(x).
Proposition II.5. Assume X is a metric space; then for every x € X

x) limhinf F, (x)=min {limhinf F.(xx):x,—x in X} ,

(X)) lim sup F,(x)=min {lim sup F, (xx): x, = x in X} .
h h

Proposition I1.6. Assume X is a separable metric space; then from every
sequence (F,) of functions from X into [ — o, + ] we may select a subsequence (F,)
such that for every x € X there exists I (X)limy Fy, (x).

Remark. If instead of a sequence (F )nen, With h — + o, we deal with a family
(F.)e=0, with £ —07, of functions from X into [—o, + ], we may define
I''(X)liminf, F, (x) and I'"(X)lim sup. F. (x) by modifying (2.1), (2.2) in the natural
way. Propositions I1.2, I1.3 and 11.4 still hold for (F. )., with the obvious changes
in the statements.

1 Mav vt fivanloTY = “ X7 . LA A —_—xr oy

Proposition I1.7. Assume X is a metric space, and let x € X. The following
conditions are equivalent:

I"(X)lim F.(x)=L;

from every sequence e, — 0" we may select a subsequence (&, ) such that
"(X)limc F., (x) = L.
ITI. Results

Let n =1 be an integer, p >1 a real number. We will denote by I the interval
(0,1), and by & the family of the open sets of I. If A € &, the symbols L7 (A),
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W'?(A) will always stand for L? (A ;R"), W"?(A;R") respectively. If A, B € o,
by A CCB we mean that A C B. Finally, we will denote by Y the cube [0,1)".
Let f:R" XR" —[0, + [ be a Borel function satisfying:

B.1) Az[P=f(s,2)=AA+]|z]?) forall (s,z)ER" XR" (0<A =A);
the function z & f(s, z) is convex on R", for every s €R";

the function s » f(s, z)is Y-periodic, for every z €R"

For all € >0, A € o and u € W'*(A) we define
u
FJu,A)fo(;,u’) dt;
A

moreover if v € W'?(A) we set

0 if u—ve Wy (A),
D, (u,A) =

+ o0 otherwise.

Our main result is the following.

Theorem III.1. Let f satisfy the hypotheses above. Then there exists a convex
function ¢ :R" — [0, + [ satisfying
AMzP=e()=AA+]|z]P)  forallz €R"

such that for every A € of and u, uo € W'?(A)

PP (A) lim (6 A) = [ oG,

A

(3.2) T (IP(ANTmM [F(u. A+ . (u. Al = f o(udt +D. (u. A\
(32)  I(L°(A)) lim [E(u,A)—F(DuO(u,A)]:fqo(u’)dt+d>.,0(u,A).

A

Moreover for every z ER" the following representation formula for the function ¢
holds :

(p(z):lign inf{F, (u,[):u € W"(I), u(0)=0, u(1)=z}

=lim inf{F, (u,1): u € W"(I), u(1)— u(0)=z}.

We remark that from Proposition II.3 and Theorem III.1 it follows that for every
bounded continuous function g :R" —R, for every A € &/ and u, uo€ W'*(A)
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@y tim | FGe A+ [ godr| = | o)+ g

A

"(L*(A))lim [F (u, A)+ j g(u)dt + . (u, A)]

= [ let)+ gldr + ®, 0 4)

A

We shall prove Theorem III.1 after some propositions.
Fix a sequence & —0"; for all A € o and u € W'?(A) we define

F(u, A)=T"(L*(A))limsup F,, (u, A).
h
Proposition II1.2. Let A,B,Ce o, with CCCA UB. For every u€
W' (A UB)
F(u,C)=F(u,A)+ F(u, B).
Proof. Let K be a compact subset of A such that C\B C K, and put
8 =dist(K, dA). Fix an integer v 21 and define for i=1,...,»

A, :{tEI:dist(t,K)< zg} .

Set A, =K, and let ¢; € C5(A;) be such that
0= Qi = 1,

Qi = 1 on A,'fl,
14
=2+
leil=2
We denote hereafter bv the same letter ¢ all the positive constants which do not
We denote hereafter by the same letter ¢ all the positive constants which do not
depend on K, i, v and é.

By Proposition IL.5 there exist two sequences (u,), (vs) such that u, — u in
L*(A), vp,—u in L?(B) and

(3.3) F(u, A)=limsup F,, (us, A),
h

3.4 F(u, B)=limsup F,, (v., B).
h

Set

Win = @il T (1 - (Pi)Uh ;
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we have

F.,(Win, C)=F,, (u, CN AiL))+ F,, (vs, C\A))

A j [1+] 4un — 0a) + @it (1— @)oil7 Jdt

CN(ANA; )

=F, (us, A)+F, (vn, B)

p
”[(EVH’”“”'”’* | sl +loinal.
C

CN(ANA; 1)

For every h, there exists an index i, = » such that

A+|uil +|oyP)dt =

CN(A;\A;, -1 CNANB

Lo audp il

gf [1+F,, (uy, A)+F,, (vs, B)],

so that

P
33)  Fulbin O (145) [Foy (tn A) + E, (00, BY +- 4 ¢ (%) [ 1w o
C

It is easy to see that the sequence (w,, ) converges to u in L?(C). Letting h — +
in (3.5), by (3.3) and (3.4) we obtain

F(u, C)=limsup F,, (Wi s, C)
h

= (1 +§) [F(u, A)+ F(u, B)]+-
NI ey
and the proof is completed since v was arbitrary. |

A slight modification of the proof above yields the following result.

Proposition IIL.3. Forevery A, B € o with B CCA, for every compact subset
K of B and every u € W'"(A) we have F(u, A)= F(u, B)+ F(u, A\K), so that
F(u, A)=sup{F(u,B): BCCA}.

Proposition II1.4. We can select from (e,) a subsequence (&x,) such that for
all A € oA and u € W' (A) there exists

(3.6) F(u, A)=T"(L"(A)) lim F., (4, A).
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In addition for all u € W'" (I) the set function A = F(u, A) is the restriction to s of a
regular Borel measure.

Proof. Choose a countable base % for the open sets of I, closed under finite
unions. By Proposition 11.6 we may construct (by a diagonal process) a subsequence
(en, ) such that for all B € U there exists

G(u,B)=T(L"(B)) likm FFhk(u, B)

for all u € W'”(B). Set for all A € o/ and u € W'”(A)
F(u,A)=sup{G(u,B): Bc 9, BCCA}.

Applying Proposition II1.2 and Proposition II1.3 to the sequence (g, ) we obtain
that the set function B » G (u, B) is subadditive on 4. Moreover it is clear, by the
definition of G, that for all A, B € U with A N B = andforallu € W'*(A U B)

Gu, AUB)ZG((u, A)+ G(u, B).

Then the set function A » F(u, A) is subadditive and superadditive on &, and it is
also regular from the inside. By proposition (5.5) and theorem (5.6) of [5], for all
u € W"P(I) the set function A » F(u, A) is the restriction to o of a regular Borel
measure.

We still have to prove (3.6). Put for all A €./ and u € W'?(A)

H(u, A)=T"(L"(A))liminf F,, (4, A),

H(u, A)=T"(L"(A)) limsup F., (u, A).

Since G = H = H on %, by Proposition II1.3

H(u, A)=sup{H(u, B): BCCA}=sup{G(u,B): BE U, BCCA}=H(u, A),

H(u, A)=sup{H(u,B): BCCA}=sup{G(u,B): B€ U, BCCA}=H(u, A),
sothat H(u, A)= H(u, A)=F(u, A). |

Proposition III.5. Let A €5, and u e W'*(A). If F is the functional
defined in (3.6), then

F(u, A)=inf {lim sup F., (v, A): v —u € WoP(A), v > uin L”(A)} .
k k

Proof. Let K be any compact subset of A and let §, A;, ¢, (ux) be as in the

proof of Proposition I11.2. Set
Wi = @it + (1 — @i )u;

we have
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Fo, W, A)=F,, (i, A)+A J A+ ]|u'P)dt

A\K

+A f [1+| @ — u)+ @ui+ (1= @)u'["dt.

ANA

As in Proposition II1.2, for a suitable (i) we obtain

limsupFEh(w,-kvk,A)§<1+§> [F(M,A)+A f (1+’u/|P)dl+§},
K k

A\K
and the result follows since v and K were arbitrary. A

Proposition IIL.6. Let F be as in (3.6). For all A € of and u,uo € W'?(A)
we have

(3.7) F(u, A)+ ®y(u, A) =T (L7 (A)) lim [F., (u, A)+ Dy (u, A)].

Proof. If u— u,& Wy"(A), then the left-hand side in (3.7)is +; let u, — u in
L?(A), and suppose that

lim inf [F, (e, A)+ @y, A)] < +20.

Then S ={k EN:dD,(u,, A)< +0o0} is infinite and by the coercivity (3.1) of f a

subsequence of {u, : k € S} converges weakly to u in W'”(A), but then necessarily

u—uo € Wy(A), which is a contradiction.
In the case u—u, € W' (A), we have ®,(-,A)=d,(-,A), and by Proposi-
tions II1.S and IL.S
F(u, A)=inf {lim sup [F., (vk, A)+ D, (vk, A)]: vx = u in L”(A)}
k k
( )

= inf {lim sup [F., (v, A)+Py(ve, A)]: v > u in L”(A)}
=I"(L?(A)) limsup [F., (4, A)+ Dy (u, A)]
=" (L7(A)) lim inf [F., (u, A)+ Dy(u, A)]

=T (L"(A)) liminf F., (u, A)
k k

=F(u,A)=Fu,A)+®,(u, A). N

Proposition XIL.7. Let F be as in (3.6). There exists a convex function
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¢ :R" =R, which is p-homogeneous if f(s, z) is p-homogeneous in z, such that for
every A € of and u € W'7(A)

Flu, A)= f o(u))dL.

A
Proof. Fix A€, u € W' (A), a €ER" Then
(3.8) Fu+a, A)=F(u, A).

To see this, take w— u in L?(A) such that
F(u,A)zlikm thk(uk,A);

it is easy to find a sequence ax — a in R” such that (e, )'ax €Z". The sequence
(w +ay) tends to u+a in L”(A), therefore

F(u+a, A)=lim inf f F((en) (i + an), up)de
A

= lim J f(en) un, up)dt = F(u, A).

The opposite inequality may be proved in the same way, thus obtaining (3.8).
Define for every A € and v €L"(A)

L(v,A)=F(w,A),

where w € W'?(A) is any function such that w’=1v a.e. on A. By (3.8) the
functional v » L (v, A) is well defined; moreover, by Proposition 11.2, it is lower
semicontinuous on L”(A), and the set function A » L (v, A) may be extended to a
measure (defined on the Borel sets & of I), which we denote by L(v, ). We prove
that the functional L is local on 9, i.e. that L (v, B) = L (v,, B) whenever v, = v,

that the functional L is local on 9, i.e. that L (v, B) = L(v,, B) whenever v, = v,
a.e.on BE€ A

Let vy, v, € LP(I) with v, = v, a.e. on B € A it is not restrictive to assume that
v; = v, everywhere on B, and that v, = v, on 1. By Lusin’s theorem, for any & >0
there exists A, € of, with meas(A.)< g, such that v, and v, are continuous on
I\ A.. Then the set

B.=A . U{tET:v,(t)<vi(t)+ g}

is open, and B C B.. Define

V2 on B,
v, =
v, +¢& otherwise
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so that v, — v, in LP(I) as e >0". Take A €4 and K compact such that
K CBC A. Then, since L(-,A) is lower semicontinuous on L”(A), we have

L(vi,B)=L(v,,A)

=liminf L(v.,A)

=liminf [L(v., A N B,)+ L(v., A\K)]

Ve

=L (05, A)+A lim f 1+

A\K

P)dt

=L(v,, A)+A f (1+]|v.|P)de

A\K

whence L (v:, B) = L(v,, B) since A and K are arbitrary. Taking w. = v; on B, and
w, = v,— ¢ otherwise, one proves the opposite inequality, thus obtaining the
locality of L.

By theorem 1.4 of [2] there exists a function ¢ (%, z) convex in z € R" and such
that for every BE€ 3B and v € L"(I)

L(v,B) :f o(, v(1))dt.

B

It is easy to see that since f is independent of ¢, the same is true for ¢. Then for
every A € o and u € W' (A)

F(u,A):L(u',,A):L'(u',A):J o(u')dt.

A
o
Using Proposition I1.5 one may prove, after some simple calculations, that if f(s, z)
is p-homogeneous in z, then also ¢ is p-homogeneous. ||

Define for every z €R" and T >0

M7i(z)=inf {% j fu,udt:u e W0, T), u(T)— u(0) = Tz} ,

™z)=inf {% f f(u,u)dt :u € W(0,T), u(0)=0, u(T) = Tz} .

Clearly, M1(z)= MH(z).
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Proposition III.8. For every z ER" there exists M"(z) = limr_.. M7(z).
We shall divide the proof in several steps.

Step 1. For every z € Q" there exists S >0 such that the limit limy_... M5+ (z)
exists.

To see this, let z =(pi/qi,...,p.1q.) with p;, q; integers, ¢; >0, and put
S=q- - +q.. Take k €N and & >0, and let u € W'?(0,2“S) be such that
u(0)="0, u(2“S)=2"Sz and

2kS
f f(u, u')dt =25S(Mxs (z) + €).
0
Define
u(t) if 0=t =2"S,
v(t) =
u(t—2S)+2sz if 2"'Ss = =2""'s.

Remarking that Sz €Z", we get
2k+1g

2K SMkng (2) = f f(v,v")dt
0

2ks

=2 j f(u, u')dt =24'S (Miks (2)+ ).

Since ¢ was arbitrary, Mj1s(z)= M« (z) and the sequence decreases to a limit
which we call M"(z).

Step 2. For all z €Q" we have limr_.. M7(z)= M"(z).

To prove this. fix z € 0" and take S as in Step 1. For all T > 0 we mav write

To prove this, fix z € Q" and take S as in Step 1. For all T > 0 we may write
T=>Y a?2S+a (0=a<§)
k=0

for suitable coefficients a, €{0,1}, all vanishing for k large enough. Set T, =0,
T =2 a;2'S; fix ¢ >0 and for all k EN let w. € W"?(0,2"S) be such that
w (0)=0, u (2S)=2“Sz and

2ks

J fue, ui)dt =258 (Mis (z)+ ¢).

Put
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Uy (t_ Tk)+ TkZ lf Tk =t = Tk+1,
v(t) =
1z fT—a=t=T.

By simple changes of variables we obtain

TM;(:);ff(u,u')dt: 2 e f Flu, up)dt + f f(tz, 2 )dt

T
= 2 x2S (Mjis (z)+ &) + f f(tz, z)dt.
k=0 T-S
By Step 1, for a suitable k. we have M (z) < M"(z)+ ¢ for every k > k., so that

T
k
TM(z) = D, 2"SMiks () + 25" Se + T(M"(z) +2¢) + j ftz, z)dt.
k=0

T-S

Dividing both sides by T and letting T — + o we obtain, since ¢ was arbitrary,
(3.9) lir;]jﬁp Hz)=M"(z).

We reason by contradiction: suppose that

(3.10) lim inf M'H(z) < M"(z).

Every T >0 may be written as T = m(T)S — b(T), with m(T)ENand 0= b(T)<
S. Fix £ >0 and choose u € W' (0,T) such that u(0)=0, u(T)= Tz and
Jo f(u,u)dt = T(M'3(z)+ €). Set

u(t) if0=t=1,
v(t) =

tz it T=t=T+b(T),
Lz if T=t=T+b(T);

reasoning as above we have

T+S

T

M. 1ys (Z)§m M7(z)+ (tz, z)dt.

1 J f
T+b(T)
7
If (3.10) holds, there exists Ty such that M, s (z) << M"(z); since m(T,) €N, the
same argument used in Step 1 yields that the sequence (M3« (1ys (z)) decreases to a
limit L < M"(z). On the other hand, we may prove an inequality analogous to (3.9)
with m(T,)S in place of S, so that

lim sup M7(z)=1lim Mjurys(z2) =L < M"(z).
k

T—> oo
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But
M'(z)= lirTIl_j'lip Mi(z),
therefore (3.10) is impossible.

Step 3. For every z €R" there exists limr ... M7(2).

Fix zw €R", T>0, 5<k <1 and ¢ >0, and let u € W"?(0, T) be such that
u©)=0, u(T)=Tw and [J f(u, u")dt = T(M'{(w)+¢). Set
u(t/k) if 0=1t=kT,

o]
t—kT
Tw + =k

(z—w) fkT=t=T.
Since f(s,+) is convex and controlled by (3.1), for every (s,z)&ER" XR" and
1<a <2 we have

[f(s,az)=f(s, 2)| = cla =1)(A+][z]")

with ¢ independent of «, s, z. Then, denoting by the same letter ¢ any positive
constant which does not depend on z, w, T, k, ¢, we have

TM’%(Z)EJTf(U,v’)dt
= }Tf<u(t/k),% u’(t/k)> dt +(1—Kk)TA <1+J(i—:%,,f)

0

= kj [f(u,u’/k)—f(u,u’)]dt+kff(u,u’)dt

+(1—Kk)TA (1+Jﬁpﬁ)

éc(l—k)j(1+|u’|")dt+kT(M’%(w)+s)
(- k)TA (1+%{Tw)§>
éc(1~k)T[l+M"+(w)+J(i:—]g!t_J+kT(M"+(w)+e).

Dividing both sides by T and letting £ — 0" we have
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(3.11) Mi(z) = c(1— k) [1+M4(w)+%]+km(w).

Now take x ER" and y €Q". Letting T — +» in (3.11), with z = x and w = y, we
obtain

lim sup M%(x)= c(1— k) [1 +M"(y)+J(i‘_;ky)‘;+ kM”(y)] ;

letting y — x and then k —1 yields

(3.12) lim sup M7(x) = lim inf M"(y).
T—toe y—x
yeQ”

We use again (3.11), with z =y and w = x. As above we obtain

lim sup M"(y)=lim inf M7(x),

y—x T—+w
yeQ”
which together with (3.12) completes the proof of Proposition I11.8. |

Let (ex) be any sequence such that &, — 0" and that (F,, ) is I'-converging to some
limit F. By Proposition II1.7 the limit may be written as

F(u A)= f o (u')dt

A

for a suitable convex function ¢. We want to identify ¢ in terms of M’ and M".

Proposition IIL.9. For every z €ER", o(z)= M"(2).

Proof. Fix z €R"; by Propositions II1.6 and II.5 there exists a sequence
(un) C W' (I) converging in L?(I) to the function u(t) = zt and satisfying w, (0) =
0, w,(1)= z, lim, F,, (u.) = ¢(z). Then we have

U, Up kl) — 4, lillip FEh \Up ) — @P\L Jjo LUl wo nave
M”(z)=lihm My, (z)élihm F,, (u)=¢(2). ||
Proposition IL.10. For every z €ER", ¢(z)=liminf, M, (2).

Proof. Take z €R"; we may assume that the sequence My, (z) converges to
some real number. By definition of M/(z) there exists a sequence (u,) C W""(I)
such that

(3.13) F, ()= M., (2)+1/h,  w()—u(0)=z

Since f is periodic with respect to s, it is not restrictive to assume that | us (0)| = &,.
By (3.13) the sequence (us ) is bounded in W'”(I); so we may select a subsequence,
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still denoted by (u), which converges weakly in W'7(I) to a function v such that
Jov'dt = z. Then Jensen’s inequality yields

1

@(z)éf e (v')dt =lim F,, (u) = lim M, (2). (=

4]

Proof of Theorem III.1. Propositions II1.9 and III.10 imply that for any
sequence (&5 ) such that (F,, ) is I'-convergent, the corresponding function ¢ satisfies
¢(z)=M"(z) =lim, M, (z) for every z €R". Thus, for every z €R" the limit
limy_.. M73(z)= M'(z) exists and

e(z)=M'(z)=M"(z).
Let &, — 0"; by Proposition I11.4 we may select a subsequence (s, ) such that the

functionals F., (u, A) are I'-converging to a limit F(u, A) which by Proposition
I11.7 we may write as [a ¢(u')dt. By the argument above

F(u A)= f M"(u')dt

A

for every A € o and u € W'?(A). Then by Proposition 11.7

I (L"(A)) lim F. (u, A )= j o (u')dt.

A

To prove (3.2) apply Proposition I11.6. [ |

IV. An example

Let n =2, and take two real constants @« and B, with 0 <« = . Define on
[0,1)x[0,1) the following function:

g if x €[(0,2) X G, DIU[G, 1) (0,3)]
a(x) =

R AU R ) Il AL VRN
a(x) =

@ otherwise

and extend it by periodicity to a function defined on R* which we still denote by a.
For every € >0 set

W.={x ER’:a(x/e)= a}, B, ={x ER’:a(x/e)= B}

(for every € >0 we may think of R” as of a chessboard composed by the ““white”
squares, W., and the “black” squares, B.).
Consider the functionals

Fe(u):J' a(u/e)|u'[dt,

o
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defined on W'*(I). By Theorem III.1 there exists a convex function ¢ : R>~> R such
that

1

I (L(I) lim Fg(u)=f o (u')dt

0
for every u € W"(I). In this section we shall prove:

Theorem IV.1. If a# B, the function z » ¢(z) is not a quadratic form.

Proof. Fix z €7°, 2#(0,0), and set uo(t) = tz. For every h € N the functional
Fin +®,, is coercive and lower semicontinuous in the weak topology of W'*(I);
denote by u, one of its minimum points. By the convexity of ¢ and by Proposition
1.4

1

4.1 ¢(z)=min {j o(udt:u—u e W(‘,‘Z(I)} =lim Fju (un).

0
We divide the remaining part of the proof into several steps.

Step 1. For every h the function u, is piecewise affine.

Indeed, let QO be one of the white squares of Wy, such that the set To =
{t :u(t)€ Q} is not empty, and set ¢, = min To, £, = max To. If £, <t, set

{u;,(t) ft=tort=t

v(t) = _

M(z‘ftl)#—u(t.) itn=r=1
27 4

and we have

B3 )

jawuzgj a ()| [ d,
J a|v’|‘dt§] a(hu, )| ui| dt,

i |

where the equality holds only if w, =v in [¢, &].

This argument shows that u, is affine on each of the white squares it crosses
(there are only finitely many such squares, because |u,| is bounded). The set
B (un) ={t €(0,1): u, (¢t) € Byx} is then composed by finitely many open inter-
vals: on each of them u, is affine, since it solves the Euler equation Buf = 0.

Step 2. For every h the velocity |u(t)| is consiant on the set W, (u,)=
{t:u,(t)E Wi} and on the set By, (w,); the iwo constants need not be equal.

Let [t,, s1] and [£, 52| be any two intervals contained in W, (u,), and in each of
which wu, is affine. We may assume t, <s, =, <s,. Set
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) 1) L1 (52) 1)
(Sl_[1)+(52_t2) ’

, Up(s1) — Un (1)
si=1t+ h(l h(l

, th=si+(t—s),

C
and define
u (1) ift=tort=s,,
) — (1) .
uh(tl)Jr”"(SS‘,_t“(1 (t—t) fu=t=si,
v(t):J 1=t

u, (t—si+sy) ifsi=t=1,,

Uy (S2) — un (¢t .
“h(tz)'*'"l_u_)h SZ t," Z(t—ty) ft=t=s,.
27 12

Then Fy (v) = Fyn (u:), and the equality holds if and only if w, = v, that is, if | u}]
takes the same constant value on both [¢,, s;] and [ £, s,]. A similar argument may be
employed for the intervals of By (un).

For every u € W'*(I) and every h €N set

LY(u) = J w(O)d,  LEu)= j W) dt

Win(u) Byn(u)
Step 3. For every h we have Fyy(un)=[VaL Y (u)+VBLEwu)[-

By Step 2, if L (ux) =0 or Li(u) =0 the result is trivial. In the general case call
¢ and ci the two speeds of u,, so that

¢ on Wy (),
lui| =
CE on B1/h (Hh).

Then Fii (un) = acw’ Ly (un)+ BenL (w,). If v is a different parametrization of the

~ . ch_that far, tante ¢ and o8
THen £, Gl y'="oc i L5 () F UL, f 11 D™S 4 aitterent parametrization of the

curve u,, such that for some constants ¢ and ¢®
w
¢’ on Wy, (v),
=1
c on By (v),

then we have F,, (v) = ac L (v)+ Bc®Li(v) and L) (v)/c™ + Li(v)/c® =1. But
L (v)= L (u)and Li(v)= Li(u), therefore by Fi, (1) = Fyn (v) it follows that

Fun () = min{axL X(w,) + ByL () : X,y >0, LY (w)/x + Li(un)]y = 1}
=[VaL¥(u)+VBLEw)]

Step 4. For every h there exists v, such that v, — uo € W¢*(I) and
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(42) Un (t) (S Wl/h for all 1,

4.3) [Fun (o)) = [Fun ()] + 2 Va—VB)L i (u).

If (t,, ) is one of the intervals composing B (ux), the points wu, (t1), ux(t2)
belong to the boundary of a “black square” Q. Let wo : (t1, )—> R® be a piecewise
affine function joining u,(¢;) with wu,(t;), and such that we (¢) belongs to the
boundary of Q for all ¢ It is possible to choose wo so that it satisfies

(4.4) [Iwalar=2 [Juio)ac

Call w, the piecewise affine function obtained from u, by substituting it with the
corresponding wq in each of the intervals of By, (u,). An argument similar to the
proof of Step 2 shows that it is possible to choose a new parametrization of w;, in
order to obtain a curve v, such that |v}| is constant. By (4.4) it follows that

L;‘;V(Uh): L;‘,V(w;.)éLx/(uh)+2LE(uh),

but Fii (vn) = a[L ¥ (v.)]’ and the result follows by Step 3.
We now conclude the proof of Theorem IV.1. Since ¢(0,1) = ¢ (V2/2,V2/2) =
¢(1,0)=a, if ¢ is a quadratic form then necessarily

4.5) e(z)=alz[? forall zER.

By Step 3 it follows that

[Fun ()" = Va L (un)+ Li(un)] + (VB — Va)L (u,)

:\/Efyualdz+(\/73—\/5)LE(uh)

=Va|z|+(VB—Va)Li(u).
Letting h — + o0, since a < B by (4.1) and (4.5) we have
(4.6) lip Li(un)=0.
Let (vx) be as in Step 4; then by (4.3), (4.6) and (4.1)

|z| =lim inf L, (v.) =limsup L, (vn) =L jim sup [Fun (va)]"”?
h h

h \/Zl

1
= = lim [[Fin )]+ @Va= VL] = |z |

R
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by (4.3), (4.6) and (4.1), therefore
(4.7) lim Li(v.)=]z].

If (z,,z,) are the coordinates of z, it is easy to see that (4.2) implies L) (v,)=
(V2-1Dmin(|z,],|z.|) + max(| z,],] z.|) for all h, and by (4.7)

Vzi+ 222 (V2= 1D)min(|z:], ] z2|) + max(| 2], | z2]).
But this is false unless z; =0 or z.=0or | z,| = z,]. E

Remark. Itiseasy tosee thatif 8/« islarge enough. then the sequence (u, ) of
the minimum points of (F,,,) satisfies w, (t) € W,,, for all ¢, so that

@(z)=[(V2-min(|z,

Jza])+max(|z:], | 22 )] -

(for B/a = 4 this follows by Step 4).
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