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Thin inclusions in linear elasticity:
a variational approach

By E. Acerbi, G. Buttazzo and D. Percivale at Pisa

I. Introduction

The inclusion of a very thin layer of very rigid material into a given elastic body
has been widely considered, and in the classic literature (see for instance [9]) we find
that when the Lamé coefficients of the material in the layer grow as 1/¢3, where ¢ is the
thickness of the layer, the problem becomes the inclusion of a plate (governed by an
elliptic fourth-order equation) into the original elastic body.

More recently, the method of formal asymptotic expansion (see for instance [2],

[3], [4], [10]) has been used for a more rigorous study of many problems of this type
(see also [8]).

In this paper we study the thin inclusion problem from a different point of view:
in fact, we are interested in the “variational behaviour” of the approximating energies,
and the limit problem is identified by its energy functional. More precisely, we consider
energies of the form

(1. 1) F*(u)=G(u, Q)+;17 | f(x, ew)dx,
Ze

where G(u, Q) is the stored energy of the surrounding body €, X, is the layer,
e(u)=(Du+'Du)/2 is the usual linearized strain tensor, and f(x, -) is a convex function
such that

lzIP = f(x, 2) = c(1 +]z]7),

with p>1. In this way, the approximating problem (for example with Neumann
boundary conditions) may be written in the form

1.2 min {Fs‘(u)+oc [lulPdx —<L,uy: ue W""(Q;IR’")},

where o>0, and where L is a given load. In order to study the asymptotic behav-
iour of the solutions u, of (1.2) we apply the I'-convergence theory to the energies
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F} defined in (1. 1). Indeed, it is well known (see Theorem II. 1) that the I'-convergence
of the energies implies the convergence of minimum points and minimum values. In our
case, the expression of the limit energy obviously depends on A; the first critical
exponent is A =1, and we obtain (see Theorem II. 4) the limit

F'uy=G(u, Q)+ 3(; folo,e.(w) do

where X is the inclusion (with normal vector v), e (u) is the tangential strain, defined in
Section II, and the function f, is given by

fo(o,z)=min f(0, z+ ¢ ® v(0)).

Se g

In this first case, the energy density in X~ depends only on the first derlvatlves of the
displacement u, so that no plate or shell phenomena occur.

The second critical exponent is A=p+ 1; in this case the limit energy takes the
form (see Theorem II. 5)

27F )
FPi() = G(u,Q)+m£f0(o,v66u)do, if e (w)=0o0n2Xx,

+ o , otherwise,
where 0 is the tangential derivative operator

ou=Du—Duv)® v.

In this second case the energy density in ¥ depends on the second derivatives of u, so
that the inclusion behaves like a shell.

In Section II we give the notation and we state our main results; Sections III and
IV are devoted to the proof of Theorems II. 4 and II. 5, while in Section V we consider
some explicit examples in two dimensions.

II. Notation and statement of results

In the sequel we denote by 2 a smooth, compact (n— 1)-dimensional manifold of
R". For the sake of simplicity, we make the following assumption, which may be
dropped by a localization argument:

there exists a single parametrization ®: wc<R" ' — R" of X,
g

where ® is a regular open set. Then we denote by v the unit normal vector to Z.
Another assumption we make on X is the following: set T*=0®/d¢&,; then

{T*,..., T""'} is an orthogonal set of tangent vectors to X.
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We remark that this assumption is always satisfied when n=2 or n=3 (the physical
case): see [6]; we also set t*=T%/| T%|.

Let h: ¥ — (0, o0) be a smooth function (the regularity assumptions on ¥ and h
might be considerably weakened), and for all ¢>0 set

X,={o+tv(0): c€Z, |t|<eh(o)}.

The mapping (o, t) — o + tv(o) is invertible on Z, if ¢ is sufficiently small, which we shall

suppose henceforth, therefore the mappings o(x) and N(x)=v(o(x)) are well defined
on X,.

We want to study the inclusion of the thin plate ¥ in a domain Q which is a
regular open subset of [®" whose closure contains X and is not tangent to X. Again for
the sake of simplicity we will assume that Q is the interior of 2, , for some small &, > 0.

We now introduce the energy we will use. For every square matrix 4, the symbol
A* denotes the symmetric part of 4. Take p>1 and let f: R" x R™ — [R satisfy:

(2. 1) the function z+ f(x, z) is convex;
2.2) f(x2)=f(x2%);

(2. 3) there exists a continuous function w: [0, + c0) — [0, + 00) which is increasing
and vanishing at the origin, such that

1S 2)—f (3 2l S w(lx—yl) (1 +]z17);
(2.4) |z¥P = f(x,2) S c(l+]z¥).

For every ¢>0, A>0 and ue W''?(Q; B") we set

FA) = | [ o) dx s | 15 ) dx,

AN\Z,

and we denote again by F} the functional defined on L*(Q; R") as

F*w), if ueW®?(Q;R"),
+00 , otherwise.

We want to characterize the I'-limit of F} in the topology L”(Q), depending on the
values of the parameter A. Indeed, it is well known that the I'-convergence of a sequence
of functionals is strictly related to the convergence of their minimum points and
minimum values: more precisely, let X be a metric space, let (F,),>, be mappings from
X into [®, and let xe X. We set

I'" (X) liminf F,(x) =inf {liminf F,(x,): x,—x in X},
e~0

e~0

' (X) limsup F,(x)=inf {lim sup F,(x,): x,—x in X}.

e—0 e—0

53 Journal fiir Mathematik. Band 386




102 Acerbi, Buttazzo and Percivale, Thin inclusions in linear elasticity

If these two I'-limits are the same at x, their common value will be denoted by

I~ (X) lim F,(x).

=0
Theorem II. 1 (see [5], Theorems 2.3 and 2. 6). Assume that
(i) the family (F,) is equicoercive, i.e., for every ¢>0 there is a compact subset K,
of X such that {xe X: F,(x)<c} < K, for every ¢>0;
(ii) for every xe€ X, there exists F(x)=TI"(X) lim F,(x).

=0

Then we have:

(a) F has a minimum on X and min F =lim (inf F,);
X e—~+0 X

b if x, is a minimum point or FE and x,—x in X, then x is a minimum point
e 3 p
for I 5

() if C: X— R is continuous, then I'” (X)lim(C + F,)=C + F, and therefore (a),
(b) apply also to C+F,. e=0

For every ue Wh?(Z,) we set

D,u={Du,v) v,
ou=Du—D,u.

We say that ue W™P(2) if uo®e W™P(w). If ue Wh?(X) then u is the trace of a

1
function ii e WHF'p(Q), so that diie Wi'p(Q) and we may define du as the trace of di
on X, which belongs to L?(X). This definition is independent of #, because if =0 on X
then 6ii=0 on X. An easy computation shows that the following properties hold for the
operator 0.

Proposition IL. 2. Let f, g be smooth functions defined on X, and assume f has
compact support in X. If we set

6,.“‘f=—~5,-f+fv,-5jvj
then

[ féigdo=|gd ' fda.
z z

Proposition I1. 3. Let u be a smooth function defined in a neighbourhood of X.
Then

6,-<hf[a) u(o +tv(o)) dt) =u(o + h(o) v(0)) 5ih(a)+h}6) (O;u+tdud;v)dt.

0 0

For ue WhP(Q; BR"), or ue W'?(X; R"), we define

eW)=[I—v®v)ou]*.
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It is readily verified that

ew)=I-v@Vv)(6u*I—-v®v)
=((du, * ® ) 1* ® 1¥)*
=(0(u—<u, v)v)+ (u, v) v, T* ® ) * ® 1F)*,
which shows that e, (u) e L?(Y) if

{u, vy e LP(Z), u—<u,vd)ve WHP(X).

Finally we set
Wi(2) ={ueW'?(Q):u—{uvdve W-r(2)},
W,+1(2) ={ue W (2): e,(u)=0, {u,v) e W>?(2)},

folo,2) =minf(s,z+¢ @ v(0)),

EelRn
G(u) ={ f(x,e(w)dx forall ueW"?(Q;R",
b}
Gu)+2 [ h(o) folo, e.(w)do, if ueW,
F'(u) = x
+ o0 , otherwise,
2
p+1 3
2.5 FoHi) ={G(u)+——p+1 ih (0) folo,védu)do, if ueW,,,,
+ o , otherwise.

We may now state our main I'-convergence results.

Theorem II. 4. Let f satisfy (2. 1),..., (2. 4); then

= (L?(Q)) lim F! =F*.

=0
Theorem II. 5. Let f satisfy (2. 1),...,(2.4) and assume also that
f(x,*) is p-homogeneous.

Then
I~ (LP(Q)) lim Fprt=Fr*t,

=0

Remark II. 6. A similar problem arises when we consider functionals of the form

Flw= | f(x,Du)dx-f—iljf(x,Du)dx,
Q\z, & 3,

where u: Q — [R is a scalar function and f satisfies (2. 1),..., (2. 4) with z instead of z*.




104 Acerbi, Buttazzo and Percivale, Thin inclusions in linear elasticity

In this case the same argument employed in the proof of Theorem II. 4 shows that the
only critical exponent is A=1, and we get the I'-limit

F'(u)={[ f(x,Du)dx+ [ 2h(0) fo(o,6u)da,
where ? *

folo, z)=min f (g, z + tv(0)).

III. Proof of Theorem II. 4

To prove Theorem II.4 we must verify the following inequalities for every
ue Wh-r(Q; R"):

G.1 F'(w < FX(u),
(.2 Fi(u)<F'(u).

Set for all he NV
fulx, 2)=1nf {f (x, w) + h|w — z*|P: w € R"};

then for a suitable sequence (w,), vanishing as h— oo, we have:
(i) the function zf,(x, z) is convex and of class C!;
(ii) f, depends only on x and z*;
(iii) f, satisfies (2. 3) uniformly with respect to h;
() ' |2*P= fulx, 2) Sc(l +]2*]7);

V) 1S 2) = fu(x, 2| = 04 (1 +[2*]P).

Define F!, and F! as F! and F!, but with f, instead of f: the properties above
immediately imply

FLSF's(14+wyF}y,
F/SF's(1+w)F .

It is then enough to prove (3. 1), (3. 2) for F!; therefore we shall suppose henceforth that
f(x,z) is of class C! in z.

Proof of (3.1). We begin with the following lemma:
Lemma IIL 1. If F1(u)< + oo then ue W,.
Proof. For ue LP(Q), let u,—u in L?(Q) satisfy

(3.3) liminf F!(u,) < + .
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It is not restrictive to assume that the sequence (F}(u,)) actually converges, so that by
(2.4

1

(3.4 | le(u)|? dx +; [ le()l?dx<C.
Q ZE

Korn’s inequality then implies

(3.9 u,—~u weaklyin W'?(Q),

so that ue W"?(Q), and in particular ueL”(X). Since |e (u,)|”<|e(u,)|’, Holder
inequality and (3. 4) yield

1 eh(o) P
(3. 6) fl= [ elu)dt| de<C.
by e —¢h(o)
We set
1 eh(o)
UE(O') = j e, (ue) dt.
€ —¢h(o)

For every ge CA(2), integrating by parts on X we have

eh(a) eh(o)
fge— | U—v®voudtdo=[gI—v®v)— | Odudtds
T & —¢no z —¢h(o)

eh(o)
=we+fg(1—v®V)%{ [ du(I+tdév)dt+eu +u[)5h}du

z —¢&h(a)

—fgI—v®v) (4} +u)dhdo,
z

where uf (6) =u,(0 + eh(o) v). Recalling Propositions II. 2, II. 3, and taking the limit as
£¢— 0, we obtain

eh(o)
limfg— | (I-v®v)du,dtdo=[(gI—v®v):-2hdudo,
203 € —gh(o) b
therefore
lim [ v,gdo=[2he/ (u)gdo,

e—0 3 z

which together with (3. 6) implies that e (u) € L?(X), and

3.7 v,—~2he,(u) weaklyin L?(Z).
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Now,
e.w)={0w* ") @,
so that for every a, f
(3.8 @u' + ) T TP = | T*|| | T?|| {(u)*, =* ® *) e L7 (2).
Define u,=(u, T*) and U,=u, - ®: then (3. 8) becomes

ov, , 2y,
aéﬁ aia

=(0;u' + 6,0) TP TP + (T, T + TP 6, T e LP(2);

2e(U)=

Korn’s inequality implies that U € W' P(w), and therefore {u, 1*) € W:?(X) for all «, i.e.,
ueW,. m

Now (3. 1) is easy: since for every v
e(v)=e.(v) +{[2 e(v)v— {e@®)v, V) V] @ v}*,
we have

(-9 /(@ ()2 min f(o,e(w) +E @) =min f(6, () +{ ® ) = fo(o: e.0)-

Ee g

Let u,—u in L? satisfy (3. 3): by (3. 5) we have

3. 10) G() <liminf G(u,),

and by (3. 9) and the convexity of f, we deduce that

S S e dx2 ] folo e w) dx
Ze

Ze

2§ folove w@)) dx -+ [ <o, e (u(o)). () —es(u(e) dx.

Ze

Therefore by (3. 7) and (2. 3)
(3. 11) lim inf% [ f(x,e()dx=[2hfo(o, e (w)do,
€ Ze z

which together with (3. 10) proves (3.1). =
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Proof of (3.2). By Lemma III. 3 we may assume that ue W,, and therefore by
the semicontinuity of F} and by the density of C!(Q) in W, we may confine ourselves to
prove (3.2) when ue C'(Q).

Let 0 be a smooth function satisfying

0(t)=1 for |t|<1, 0(t)=0 for [t|=2, |0(t) <2,

t
0,(x) =0 (W‘J

clearly, 6,=0 far from X. We define

and set

(3.12) v(x) = [u(0) + t@(0)] 0.(x) + u(x) [1—0,(x)],
where ¢ is any smooth function from X into R" with compact support in X. Then

(3.13) Flv)= | f(x,em)dx+ [ f(x,e()dx

N2y 22e\Ze

+% Ef f(x, D(u(0)) + ¢ (6) ® v(c) + t D (¢ (0))) d x
=8+85,+38S;.

Denoting by w, any quantity which vanishes with ¢ we have

(3. 14) S, =G () + w,;

(3.15) |S;|<ce+c | |DylPdx

226\Ze

fo,+c | [ﬁ lu(x) —u(o)—t@(0)|” + |D(u(o) + t (o))" + |Du|”] dx

225\25

c
So.+— | lux)-u@)|’dx2w,+ | |Dulf dx Lo,
€ 510\Ze I2e

As for S;, we remark that the quantity

“‘2% [ [f(x D(u(0) + ¢ ® v+t D(p(0)) —f (x, 6u+ ¢ ® V)] dx

Ze

vanishes as ¢—0: indeed,

D(u(o))=d0u—tSéuDN,
and the convexity of f(x,-) and (2. 3) imply

1f 06 2) = f(x, W) <clz—wl (1+]zP”  +|w|”™h),
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so that
la|Sc [ 16+ duldx S w,.
z.
Therefore
1
(3. 16) S3=we+;jf(x,5u+<p®v)dx.
2,

By (3. 14), (3. 15) and (3. 16) we obtain
1
Fal(us)=ws+G(u)+; [ fx,0u+o@®v)dx
Ze

and, taking the limit as ¢— 0, we have

Flw<limsup F!(u)=Gu)+ {2 h(o) f(0,0u+ ¢ ®@v)dx.

Since ¢ is arbitrary,

(3.17) FLW) < Gu)+inf [ 2h(0) f(0,0u+¢ ®@v)dx,
o X

where the infimum is to be taken on all smooth functions ¢, or equivalently over all
@ € L'(2). By the measurable selection lemma (see [7], Theorem 1.2 of Chapter VIII)
there exists a function ¢ € L'(Z) such that

f (o, 6u(6) + ¢(0) ® v(6))=min f (o, du(c)+ @ v(s)) for all .
¢eRn

Then (3. 17) reduces to

FLw<Gu)+[2h(o) min f(o,0u+(Q@v)do=F'(u). m
X

Eegn

IV. Proof of Theorem II. 5

To prove Theorem II.5 we must verify the following inequalities for every
ue Whr(Q; R"):

@1 FP* i< F2* (u),

(4.2) FE ' < FP*'(u).

As in Section III, we may assume that f(x,z) is of class C! in z.
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Proof of (4.2). We prove first the analogue of Lemma III. 1.

Lemma IV. 1. If ue L?(Q) and FP*'(u)< + oo, then ue W, ,.
Proof. Let ue LP(Q) and let u,e W' P(Q) satisfy

u,—u in LF(Q), liminf FP*'(u)< + .
Then

1
[ le@)l” dx + =51 [ le@)|? dx<C,
Q € .

and Korn’s inequality implies u,—u weakly in W!?(Q), hence {u,v)eL”(X).
Moreover, by Theorem II.4 we have f,(e.())=0 on X, ie., {u,t*)e W"?(X) and
e.(u)=0. As in Lemma III. 1 the functions

eh(a)

4. 3) V£(6)=8p—+1 [ 1P 2 te,(u,) dt

—~¢eh(o)

are bounded in L?(Z), and we identify their weak limit in L? through their limit in the
sense of distributions. Recalling the definition of e,, for every 6 € C§°(X) we compute

eh(o)
liijSP—H— j' [t|P2t[(I—v® V) du]*dt do =lim A¥,
) —¢h(o) e
where
1 eh(o)
A =[00—v®Vv)—~ [ o(t|" *tu)dtdo
T &’ —¢h(o)
1 eh(o)
=[0U—v®v)—x46 [ |t|P"2tu,dt
3 &? —¢eh(o)
eh(a) eh(o)
-[h”“e"&h | Duyvdt+ | Itl"éusévdt:l}da
—¢h(o) —¢h(o)
1 eh(o)
=[07HOU~v®V) 5y [ ItIP % tudtde
3 & —eh(o)
hP“l oh eh(o) eh(o)
—[0d—v®V) [m [ Duyvdt+—r [ [tIPdu,dv dt:I do
3 € —¢h(o) & —¢h(o)

= +IE+15.

An integration by parts with respect to the variable ¢ yields

p ¢eh(o) eh(o)
4.4 If=_f5‘1(0(l—v®v))<—— | Duyvdt—— | III"DuEvdt>do.
3 EDP —ch(o) pe —eh(o)
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Now we recall that

1 eh(o) 1 eh(o) 1 eh(o)
— | ew)dt, —5 [ ItIPew)dt, — [ vDuv®vdt
& —¢h(a) & —¢h(o) & —¢h(o)

go to zero in LP(X), and so (4. 4) becomes

p ¢h(o) 1 eh(o)
I§=w£+j‘5_’(0(l—v®v))<—#— [} véuedt+;e}+—1 [} |t|”v5u5dt>da

z € —¢eh(o) —¢h(a)

h? eh(a) 1 eh(o)
=(D£+j5_1(0(1—v®\’))\)[:—ﬁ(s< _‘- usdt>+p8p—+15( j |t|”“edt>]d6

z —¢&h(o) —¢h(o)

hp 1 eh(o)
=w£+j'6“(6‘1(9(1~v®v))v7)-(—~ | ugdt>do

€ —¢h(o)
1 1 th(a)
+_I5_1(5_1(0(1—"’@‘)))")'(*? j‘ Itl”uadt>do—

P 8p —¢h(o)

=we_§5-1(5_1(9(I—V®v))vh—p>2huda+ 2 [ 1O OU—v@V)v) hP* uds
z p p(p+1) 3

= —““2—55_1(9(1—V®V))vh"“ dudo

* op+1ly .

Similar computations show that

L=w,+2[00I-v®v)(vou®dh)do,
z

2
I§=wa—m£0(I—V®V) ouov dO',
so that

z

2
A,=w,+[0I—v®) I:_.I;'*—l P+ (5(v du)+ du 6v):| do.
This implies that the matrices V, defined in (4. 3) converge in the sense of distributions,
and therefore weakly in L?(X), to

_pZT WP —v @ v) (5(v du)+ du Sv)]*.

Now, 6(vou)+oudv=vd ou+2(du)* év, and dv=(I—v® v) v, so that

[=v@V)(6(vou)+oudv)]*=[(I-v®v) (6w* (I —v®v)év]*=[e(u) 6v]*=0.
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Then we have

2
p+1

—_—
€

WH[(I—v®v)(vodu)]*
weakly in LP(X), and in particular
4.5) védu, @+ Rt elP(Z)  foralla, f.

Define u,=<u,v) and U,=u,o ®; recalling the definition of u, and that u,e L?(X),
u, € Wh?(Z), and substituting u with u,t*+u,v in (4. 5), we obtain

(6du,, *@PP+P®1*)eLP(X) forall a, .
But 6f={df, 1) 17, hence the formula above may be reduced to

(T% O(KT?, du,))y +<T* 6((T° du,p))
+<T?, du,> <5 (ﬁ) T*Q T+ T*® T“> e [*(2).

We may then write

(4. 6) D%U,+<{DU,, g,;> € LP(w) for all o, B,

where the vector g,; is defined by
TY T?
Vo=(T% Dy| —=—|)+(T* D, )>
8t < ”<||Tvn2>> < (lmuz

AU, +<DU,, g, € L#(v),

In particular,
and by Theorem (6. 1) of [1], U, € L?(w), we obtain U, e W;%:?(w). But on every ball
Beow
IDUI, < e1D2 Uy, + = 1Tyl
with ¢ independent of the particular B, therefore (4. 6) implies
ID2U, || Loggy < |1 D*U, + <D U,, gup> | Lo + € 1 DU, |l oey < ¢ + & |1 D2U, |l o).

and finally, since B is arbitrary, U, € W?'?(w), which concludes the proof. m
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We may now prove (4. 1); set A=v(66u)*: then for every ue W,,, and u,—u in
L?(Q) such that liminf F?*1(u,) < + o0, we have

11m1an”+1(u)>G(u)+11m1nf i j'fx e(u,)) d
=G(u)+limeianT i‘- f(o, e(u,) dx

1
=G(u) +lim infs—p;T i( fol(o, e, (u,)) dx

where we used the continuity of f with respect to x. Then, by the convexity of f,,

eh(o)
llmlan"“(ue)>G(u)+11m1nf 1) | folo,—tA)dtdo
3 —¢th(o)
eh(o)
+11m1nf =171 | flo, —tA), e,(u)+tA>dtdo
X —eh(o)
1 eh(o)
—_—F”+1(u)+liminf_[<f(;( —A), — s I (|t|"_2tet(u£)+|t|”A)dt>dO'
e 3 ~¢h(o)

. . {2 2
=F”“(u)+hm£1nf£<fo(0, —A), <Ve(0)+ p+1
2

p+1

h"“A>> do=FP*1(u),

since V,— — h?*1 A weakly in L*(Z). m

Proof of (4.2). Fix ue W,,, and set ¢ = —v du: then
4.7 Ou+o@v)*=0.

In addition

¢o=—vo(u,*+u,v)=—u,vé61*—du,,

so that g e W''?(2).

Choose 0, as in the proof of (3. 2), and let # be an arbitrary smooth function with
compact support in 2. Set

2
v,(x) = (u(a) +to(o) +t7 rl(G)) 0,(x) + u(x) (1 - 0,(x));

then

FPtl= [ f(x,e)dx+ [ f(x e(v))dx

N\Z2e 22e\Ze
+8—p1;1— j f(x, D(u(o))+ tD((p(a))+t7 D(n@)+eo@v+tn® v> dx
%, ,

=S1 +S2+S3.
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Following again the proof of (3.2) we get

Sl = G(u) +(D£,
ISZI éws

and

1
S3=a’e+§m§ S, 0u+o@v+t(—0udv+do+n®v)dx

=w€+8pL+1 g [t|P f(o, —0udv+dp+n®v)dx
by (4. 7). Finally,
S3=we+—pi—1 £ 2hP*Y f(o, —0udv+do+n®v)do.
Since 7 is arbitrary, again we have

1
4. 8) Fﬁ“(u)_S_G(u)+p+—1j2h”“ min f(o, —6udv+5¢+¢®@v)do.
X

teR™

Our choice of ¢ implies
—oudv+op=—vodu—2(5u)*dv,

therefore, recalling that e (u)=0 and that vév=050vv=0, the argument of f may be
reduced to

—v@(Voudv—E)—vadodu,

so that (4. 8) gives

Ff,’“(u)éG(u)+L [ 2hP*1 fo(o,v dou)da,
p+1 3

which concludes the proof. m

V. Examples

In this Section we want to write explicitly the limit energy given by (2. 5) in some
particular cases, with n=2 or n=3, when the energy density has the usual form

A
f(A)=5(trA)2+u|AI2

(linear elasticity, isotropic material).
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Example V. 1. The one-dimensional case. We represent the limit energy for a
beam embedded in R? (the case of beams in R* does not fall within our setting). Let
‘p(s) be a parametrization of the beam, with |y'|=1; if we denote by c¢={z,v') the

curvature and by U,, U, the tangential and normal components of the displacement,
then the limit energy of the beam turns out to be

1A+ p) 3y 2 712
6(/1+2u)£(2h) U +c2U,—cU,|?*ds

(where the prime denotes derivation in s), with the constraint
U/+cU,=0

deriving from the condition e, =0.

We apply this formula to find the deformation of a semicircular beam
{xX*+y*=1, y=0},
with constant thickness h. Then the deformation energy is
K } |Uy + U,|*ds,
0

with the constraint
U/+U,=0;

we consider the simply supported case
U.0=U,(n)=0, U,0=U,(n)= —k
and the clamped case, in which we add the conditions
U;(0)=U;(n)=0.

Solving the Euler-Lagrange equation one easily obtains the expression of the
deformation: for k=0.6 we then have the pictures

which represent the simply supported and the clamped case respectively.

Now we pass to the case of shells in R?; for any given 2-dimensional manifold Z,
let M (o) be the 2 x 3 matrix whose rows are the orthonormal tangent vectors t; and 7,.
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Then, if we set Ao=M A'M, an easy computation shows that

2p(A+w

5. 1) folo, ) == 5

(tr Ag)*> —2 pu det A,

and we must substitute this expression in (2. 5).

Example V. 2. The flat case. Assume X is a portion of the plane {z=0}; then,
denoting by w the vertical displacement, and substituting the Lamé coefficients 1, u with
their expression in terms of the Young modulus E and the Poisson coefficient o, we
have for the limit energy of the plate the well known formula

[f@hn? [Aw—2(1 —0)det D’°w]dxdy,

24(1—o?)

with the constraint that the horizontal displacement is a rigid motion in the plane.

Example V.3. The cylindrical case. Assume X is a portion of the cylinder with
radius R and axis {x=y=0}; denote by g, 0, z the cylindrical coordinates, and by U,,
U, and U, the components of the displacement. Then, to obtain the limit energy of the
shell it is enough to substitute in (5. 1)

A _< Dzng [DZOUQ—DZUG:]/R)
0 [DZOUQ_DZUO:]/R [UQ+D09U9]/R2

with the constraints

D,U,=0, U,+DyUy=0, RD,Uy+D,U,=0.
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