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A Variational Definition of the Strain Energy

for an Elastic String

E. Acerbi, G. Buttazzo, D. Percivale

1. Introduction

The aim of this paper is to deduce the constitutive equations of an elastic one-
dimensional string from the stress-strain relations of nonlinear three-dimensional elas-
ticity, by passing to the limit when the other dimensions go to zero. We will use the
variational point of view.

Denote by Σ the reference configuration of the string:

Σ =
{
(x1, x2, x3) : 0 ≤ x1 ≤ 1, x2 = x3 = 0

}
,

and by Σε the “thick” elastic body

Σε =
{
(x1, x2, x3) : 0 ≤ x1 ≤ 1, x2

2 + x2
3 ≤ ε2

}
.

We assume the stored strain energy, associated to a displacement field u, to be given
by a functional of the form ∫

Σε

f(Du) dx,

where f : R
9 → [0,+∞] is a suitable function, in general not convex (we refer to [2],[3]

for further physical motivations of this model). Assuming also that the exterior loads
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derive from a potential of the form u2+g(x)u, the equilibrium configuration of the body
Σε is given by the solution uε of the minimum problem

min

{∫

Σε

[f(Du) + u2 + g(x)u] dx

}
,

where the minimum is taken over all functions u belonging to some Sobolev space
W 1,p(Σε; R

3).
We shall prove that, if ε → 0+, then uε converges in an appropriate sense to

a function u0 defined on Σ, and this function u0 turns out to be a solution of the
variational (limit) problem

min

{∫

Σ

[f∗∗

0 (u′) + u2 + g(x1, 0, 0)u] dx1

}
,

where the function f∗∗

0 is defined below, and the functional
∫
Σ
f∗∗

0 (u′) dx1 may be taken
as a model for the strain energy of the string Σ.

We shall see in Section 4 that for a large class of physically plausible functions f
this functional has the property that the stored energy is positive under tension, but

is zero under compression. This natural phenomenon cannot be seen if we consider for
the elastic body Σε a quadratic (or more generally convex) energy density f , as is the
case for example in linear elasticity.

Our method is related to Γ-convergence, already used in similar situations (see
e.g. [1],[4],[7]); nevertheless, for the reader’s convenience, we state and prove all results
without using any specific knowledge about Γ-convergence.

We wish to thank Professor Ennio De Giorgi for the stimulating discussions we had
on this subject.
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2. Notations and statements

In this section we state an abstract theorem that will be proved in Section 3, and
from which we shall deduce in Section 4 the result announced in the Introduction. We
set

Σ =
{
(x1, x2, x3) : 0 ≤ x1 ≤ 1, x2 = x3 = 0

}
,

and for every ε > 0

Σε =
{
(x1, x2, x3) : 0 ≤ x1 ≤ 1, x2

2 + x2
3 ≤ ε2

}
,

Sε =
{
(x2, x3) : x2

2 + x2
3 ≤ ε2

}
.

If a, b, c ∈ R
3, we denote by (a|b|c) the matrix whose columns are a, b, c. As usual, the

symbol ϕ∗∗ denotes the convex envelope of a function ϕ, that is

ϕ∗∗ = max {ψ ≤ ϕ : ψ is convex and lower semicontinuous}.

Fix any p > 1. The assumptions we make on f are the following:

(2.1) f : R
9 → R ∪ {+∞} is continuous;

(2.2) if det ξ ≤ 0 then f(ξ) = +∞;

(2.3) for every δ > 0 there exists cδ such that, if det ξ ≥ δ, then f(ξ) ≤ cδ (1 + |ξ|p);

(2.4) f(ξ) ≥ c|ξ|p − c′.

Remark that (2.1) is a natural regularity assumption, (2.2) has the important physical
meaning that the energy becomes infinite when the volume locally vanishes; finally, (2.3)
and (2.4) are growth assumptions on the energy.

We define on C1(Σε; R
3) the functionals

Fε(u) =

∫

Σε

f(Du) dx;

also, we define on R
3 the function

f0(z) = inf
{
f(z|α|β) : α, β ∈ R

3
}
,

and from the assumptions on f we derive some properties of f0.

By (2.1),(2.4) we have

(2.5) f0 is continuous,

while (2.3) implies

(2.6) if |z| ≥ δ then f0(z) ≤ cδ (1 + |z|p),

so that for a suitable c

(2.7) f∗∗

0 ≤ c (1 + |z|p) for all z.

Therefore we may define on W 1,p(Σ; R3) the functional

F0(u) =

∫

Σ

f∗∗

0 (u′) dx1.
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Now let g ∈ C0(Σ1; R
3), and set for every u ∈ C1(Σε; R

3)

Gε(u) =
1

πε2

[
Fε(u) +

∫

Σε

(gu+ |u|p) dx

]
,

and for every u ∈ W 1,p(Σ; R3)

G0(u) = F0(u) +

∫

Σ

(gu+ |u|p) dx1.

Finally, for every v ∈ L1(Σε; R
3) we set

ṽ(x1) = −

∫

Sε

v(x1, x2, x3) dx2 dx3,

where the symbol −
∫

denotes the integral mean.
The main result is

Theorem 2.1 . Let (uε)ε>0 be such that uε ∈ C1(Σε; R
3) and

lim
ε→0

[
Gε(uε) − inf

{
Gε(u) : u ∈ C1(Σε; R

3)
}]

= 0.

The sequence (ũε)ε>0 is weakly compact in W 1,p(Σ; R3), and, if u0 is one of its limit

points, then

G0(u0) = min
{
G0(u) : u ∈W 1,p(Σ; R3)

}
.
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3. Proof of Theorem 2.1

In the sequel we adopt the notations and assumptions of Section 2, and we shall
deduce Theorem 2.1 from the following results:

Proposition 3.1 . The sequence (ũε)ε>0 is weakly compact in W 1,p(Σ; R3).

Proposition 3.2 . For every sequence (vε)ε>0 such that

vε ∈ C1(Σε; R
3) , ṽε ⇀ v weakly in W 1,p(Σ; R3)

we have

F0(v) ≤ lim inf
ε→0

1

πε2
Fε(vε).

Proposition 3.3 . For every v ∈W 1,p(Σ; R3) there exists vε ∈ C1(Σε; R
3) such that

ṽε ⇀ v weakly in W 1,p(Σ; R3) , F0(v) = lim
ε→0

1

πε2
Fε(vε).

Proof of Proposition 3.1 : Set mε = inf
{
Gε(u) : u ∈ C1(Σε; R

3)
}
, and remark

that, if u∗ is the identity function in R
3,

−c(g) ≤ mε ≤ Gε(u
∗) ≤ c(g) < +∞.

Then (2.4) implies

−

∫

Σε

(
|Duε|

p + |uε|
p
)
dx ≤ c+ −

∫

Σε

guε dx ≤ c(g) +
1

2
−

∫

Σε

|uε|
p dx,

hence

∫

Σ

(
|ũε|

p + |D(ũε)|
p
)
dx1 =

∫

Σ

(
|ũε|

p + |D̃x1
uε|

p
)
dx1 ≤ −

∫

Σε

(
|uε|

p + |Duε|
p
)
dx ≤ c,

and the first proposition is proved.

Proof of Proposition 3.2 : Assume ṽε ⇀ v weakly in W 1,p(Σ; R3); we remark
that (2.7) implies that f∗∗

0 is everywhere subdifferentiable, and if α(z) ∈ ∂f∗∗

0 (z) then
|α(z)| ≤ c (1 + |z|p−1): therefore, since v′ ∈ Lp(Σ) we may select for any x1 ∈ Σ an
α ∈ ∂f∗∗

0

(
v′(x1)

)
such that the mapping x1 7→ α

(
v′(x1)

)
is in Lp′

(Σ; R3). Then

1

πε2
Fε(vε) = −

∫

Σε

f(Dvε) dx ≥ −

∫

Σε

f0(Dx1
vε) dx ≥ −

∫

Σε

f∗∗

0 (Dx1
vε) dx

≥ −

∫

Σε

[f∗∗

0 (v′) + 〈α,Dx1
vε − v′〉] dx =

∫

Σ

[f∗∗

0 (v′) + 〈α, ( ṽε − v)′〉] dx1,

and the result follows by taking the limit as ε→ 0.
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Proof of Proposition 3.3 : We set, for every v ∈W 1,p(Σ; R3),

F+(v) = inf
{
lim sup

ε→0

1

πε2
Fε(vε) : vε ∈ C1(Σε; R

3), ṽε ⇀ v weakly in W 1,p(Σ; R3)
}
;

then a diagonal argument shows that the infimum is actually a minimum, so that by
Proposition 3.2 we need only prove

F+(v) ≤

∫

Σ

f∗∗

0 (v′) dx1.

The proof proceeds in several steps.

Step 1 : F+(v) ≤
∫
Σ
f0(v

′) dx1 for all v ∈ C3(Σ; R3), with |v′| 6= 0, |v′′| 6= 0.

Set for all δ > 0
f δ
0 (z) = min

{
f(z|α|β) : det (z|α|β) ≥ δ

}
,

we remark that f δ
0 is increasing with respect to δ, and by (2.2)

f0 = lim
δ→0

f δ
0 .

Take any two C1 functions ϕ, ψ such that det (v′|ϕ|ψ) > 0 on Σ. For instance, one may
take the normal and binormal to the curve v. We approximate v on Σ with the function

w(x) = v(x1) + x2ϕ(x1) + x3ψ(x1)

on Σε: then w̃ = v, and Dw = (v′ + x2ϕ
′ + x3ψ

′|ϕ|ψ), so that by the choice of ϕ, ψ we
may assume that for some δ

detDw ≥ δ > 0 on Σε for all ε.

Then by (2.3) we may apply the dominated convergence theorem to obtain

(3.1) F+(v) ≤ lim sup
ε→0

1

πε2
Fε(w) =

∫

Σ

f(v′|ϕ|ψ) dx1

for every ϕ, ψ ∈ C1(Σ; R3) such that det (v′|ϕ|ψ) ≥ δ. Now, by Lusin’s theorem, for
every (ϕ, ψ) ∈ Lp(Σ; R3) such that det (v′|ϕ|ψ) ≥ 2δ there exists a sequence (ϕj , ψj) ∈
C1(Σ; R3) such that

det (v′|ϕj |ψj) ≥ δ , (ϕj , ψj) → (ϕ, ψ) in Lp(Σ; R3),

hence, by (2.3) and (3.1),

F+(v) ≤ inf

{∫

Σ

f(v′|ϕ|ψ) dx1 : ϕ, ψ ∈ C1(Σ; R3), det (v′|ϕ|ψ) ≥ δ

}

≤ inf

{∫

Σ

f(v′|ϕ|ψ) dx1 : ϕ, ψ ∈ Lp(Σ; R3), det (v′|ϕ|ψ) ≥ 2δ

}
,



E. Acerbi, G. Buttazzo, D. Percivale Elastic Strings 7

where the last inequality is to be taken a.e.; by the measurable selection lemma ([6],
Theorem 1.2 of Chapter VIII) there exists a couple (ϕ2δ, ψ2δ) of measurable functions,
which belong to Lp(Σ; R3) by (2.4), such that

f(v′|ϕ2δ|ψ2δ) = min
{
f(v′|α|β) : det (v′|α|β) ≥ 2δ

}
,

therefore

F+(v) ≤

∫

Σ

f2δ
0 (v′) dx1.

Since f2δ
0 (v′) ≤ f(v′|ϕ1|ψ1) ∈ L1(Σ), we may pass to the limit as δ → 0, thus concluding

the first step.

Step 2 : F+(v) ≤
∫
Σ
f0(v

′) dx1 for all v ∈ C1(Σ; R3), with |v′| 6= 0.

By (2.4), a standard diagonal argument shows that F+ is lower semicontinuous in
the weak topology of W 1,p(Σ; R3), therefore also in the strong topology of C1(Σ; R3),
whereas (2.5),(2.6) imply that

∫
Σ
f0(v

′) dx1 is continuous on the space {v ∈ C1(Σ; R3) :
|v′| ≥ δ > 0}. Step 2 then follows by density.

Before stating and proving step 3, we introduce an auxiliary function. Since f0 is
continuous, infinite at 0 and finite otherwise, we have f0 > f∗∗

0 in BR(0) for some R > 0.
It is easy to find a function h which satisfies for some 0 < ̺ < r < R the following
conditions:

h is continuous,

h = +∞ in B̺,

h is radial in Br,

h = f0 outside BR,

h ≥ f0.

We cut h on Br and we set

h̃(z) =

{
h(z) if |z| ≥ r

h(r) if |z| ≤ r.

Step 3 : F+(v) ≤
∫
Σ
h̃(v′) dx1 for every v ∈ C1(Σ; R3).

For every v ∈ C1(Σ; R3) we may construct a sequence (vn) ⊂ C1(Σ; R3) such that:

vn → v uniformly,

vn(x1) = v(x1) if |v′(x1)| ≥ r,

|v′n(x1)| = r if |v′(x1)| < r.

This sequence converges to v weakly in W 1,p(Σ; R3), and, by the semicontinuity of F+,

F+(v) ≤ lim inf
n

F+(vn) ≤ lim inf
n

∫

Σ

f0(v
′

n) dx1 ≤ lim inf
n

∫

Σ

h(v′n) dx1 =

∫

Σ

h̃(v′) dx1,

thus concluding step 3.
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Now we take the weak lower semicontinuous envelope in W 1,p(Σ; R3) of both terms
in the inequality

F+(v) ≤

∫

Σ

h̃(v′) dx1,

which holds in C1(Σ; R3). Since h̃ is continuous, and −c ≤ h̃(z) ≤ c (1 + |z|p) by
(2.6), it is well known (see [5]) that the lower semicontinuous envelope of

∫
Σ
h̃(v′) dx1

is
∫
Σ
h̃∗∗(v′) dx1, therefore

F+(v) ≤

∫

Σ

h̃∗∗(v′) dx1

for every v ∈ W 1,p(Σ; R3). The proof of Krein-Milman’s theorem may be easily adapted
to show that, since p > 1 and h̃ = f0 on the set where f0 = f∗∗

0 , we have h̃∗∗ = f∗∗

0 ,
hence

F+(v) ≤

∫

Σ

f∗∗

0 (v′) dx1

on W 1,p(Σ; R3), thus concluding the proof of Proposition 3.3.

Proof of Theorem 2.1 : By Proposition 3.1 the sequence (ũε) is compact; denoting
by u0 one of its limit points, we have, by Proposition 3.2,

F0(u0) ≤ lim inf
ε→0

1

πε2
Fε(uε).

On the other hand, for any v ∈W 1,p(Σ; R3) let (vε) be the sequence given by Proposi-
tion 3.3. We have

G0(u0) −G0(v) = F0(u0) − F0(v) +

∫

Σ

(
|u0|

p + gu0 − |v|p − gv
)
dx1

≤ lim inf
ε→0

1

πε2
Fε(uε) − lim

ε→0

1

πε2
Fε(vε)

+ lim
ε→0

−

∫

Σε

(
|uε|

p + guε − |vε|
p − gvε

)
dx

= lim inf
ε→0

Gε(uε) − lim
ε→0

Gε(vε)

≤ lim inf
ε→0

[
Gε(uε) − inf Gε

]
= 0,

i.e., u0 is a minimum point for G0.
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4. Some examples

In this Section we consider some particular cases of Theorem 2.1 arising in nonlinear
elasticity. In this case the function f(ξ) must satisfy the following additional properties:

(4.1) f is objective (i.e., f(Qξ) = f(ξ) for every proper orthogonal matrix Q),

(4.2) f(I) = min f = 0,

and we can prove the

Theorem 4.1 . If (4.1),(4.2) are satisfied, then f0(z) depends only on |z|, and

f∗∗

0 (z) = 0 whenever |z| ≤ 1.

Proof : By (4.1), for every z ∈ R
3 and every proper orthogonal matrix Q we have

f0(Qz) = inf
{
f(Qz|α|β) : α, β ∈ R

3
}

= inf
{
f(Qz|Qa|Qb) : a, b ∈ R

3
}

= inf
{
f(z|a|b) : a, b ∈ R

3
}

= f0(z),

so that f0(z) depends only on |z|.
The second assertion follows since f∗∗

0 is convex and

0 = min f ≤ f∗∗

0 (z) ≤ f0(z) ≤ f(I) = 0

for every z ∈ R
3 with |z| = 1.

To justify the result that the energy is zero under compression (so that for instance
to a constant deformation sending the whole string into a single point corresponds
zero energy) we remark that, due to the division by the area of the section in Gε, our
functionals will approximate strings, which disregard torsion and bending: it is easy to
shape a very thin rope into a very small coil with very little effort, which means that a
one-dimensional string can conceivably be “coiled up” into a single point with no effort;
remark that the sequence (vn) in step 3 does exactly that.

We recall that the strain energy density has commonly the form

(4.3) f(ξ) = |ξ|p + β(det ξ)

for suitable choices of p and β (see for instance [2],[8]). As an example, we consider the
case

f(ξ) = |ξ|2 + 6(det ξ)−1/3 − 9,

defined only if det ξ > 0. Easy computations show that

f0(z) = |z|2 + 8|z|−1/4 − 9,

so that

f∗∗

0 (z) =

{
f0(z) if |z| ≥ 1
0 if |z| < 1.
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We remark that if in (4.3) we have p > 3 and β : R → R ∪ {+∞} is any convex and
continuous function, with β(0) = +∞, then the integrand (4.3) satisfies the assumptions
of Theorem 2.1; moreover, by Ball’s semicontinuity results [2], for every ε > 0 the three-
dimensional elasticity problem

min

{
−

∫

Σε

[f(Du) + |u|p + g(x)u] dx : u ∈ W 1,p(Σε; R
3)

}

has a solution uε, and we may apply Theorem 2.1 to conclude that ũε (or a subsequence)
converges weakly in W 1,p(Σ; R3) to a solution of the “string” problem

min

{∫

Σ

[f∗∗

0 (u′) + |u|p + g(x1, 0, 0)u] dx1 : u ∈W 1,p(Σ; R3)

}
.
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