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via D’Azeglio 85a, Parma

Andrea Braides

SISSA, via Beirut 4, 34014 Trieste, Italy

1 Introduction

A variational formulation of some problems in Computer Vision was given by
Mumford and Shah [14], and later elaborated by De Giorgi and Ambrosio [11]. In
this framework, problems involving the functional

∫

Ω

|∇u|2 dx+ Hn−1(Su), (1)

defined on the space SBV (Ω) of special functions of bounded variation are stud-
ied, where ∇u denotes the approximate gradient of u, and Su is the set of the
discontinuity points of u. In a two-dimensional setting, Su represents the contours
of the object in a picture and u is a smoothing of an imput image. Energies of the
same form arise in fracture mechanics for brittle solids, where Su is interpreted
as the crack surface and u as the displacement outside the fractured region ([4]).
Problems involving functionals of this form are usually called free-discontinuity
problems, after a terminology introduced by De Giorgi (see [11], [5], [7]).

The Ambrosio and Tortorelli approach [6] provides a variational approxima-
tion of the Mumford and Shah functional (1) via elliptic functionals to obtain
approximate smooth solutions and overcome the numerical problems due to sur-
face detection. The unknown surface Su is substituted by an additional function
variable v which approaches the characteristic of the complement of Su. The ap-
proximating functionals have the form

∫

Ω

v2|∇u|2 dx+

∫

Ω

(
ε|∇v|2 +

1

4ε
(1 − v)2

)
dx, (2)

defined on functions u, v such that u, v ∈ H1(Ω) and 0 ≤ v ≤ 1. The interaction
of the terms in the second integral provide an approximate interfacial energy.

The adaptation of the Ambrosio and Tortorelli approximation to obtain as
limits more complex surface energies does not seem to follow easily from their
approach. A double-limit procedure to obtain non-constant energy densities is
described in [1]. In this paper we study a variant of the Ambrosio and Tortorelli
construction by considering functionals of the form

Gε(u, v) =

∫

Ω

ψ(v)|∇u|2 dx+

∫

Ω

(
ε|∇v|2 +

1

ε
W (u− v)

)
dx, (3)
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where W and ψ are positive function vanishing only at 0. In this case the distance
between the functions v and u is increasingly penalized as ε → 0+, generating in
the limit a functional which depends on the traces u± of u on both sides of Su.
We prove (Theorem 3.1) that Gε approximate the functional

F (u) =

∫

Ω

ψ(u)|∇u|2 dx+

∫

Su

(Φ(u+) + Φ(u−)) dHn−1, (4)

where Φ(s) = 2|
∫ s

0

√
W (t)dt| is the usual transition energy between 0 and s. In

this case, the additional variable v in Gε approaches u times the characteristic of
the complement of Su. Functionals of the Mumford-Shah type with non-constant
surface energy density are obtained by choosing ψ(z) = 1 if z 6= 0.

2 Notation and preliminaries

We use standard notation for Sobolev and Lebesgue spaces. Ln will denote the
Lebesgue measure in Rn and Hk will denote the k-dimensional Hausdorff measure.
A(Ω) and B(Ω) will be the families of open and Borel sets, respectively. If µ
is a Borel measure and E is a Borel set, then the measure µ B is defined as
µ B(A) = µ(A ∩B). [t]± denote the positive/negative part of t ∈ R.

2.1 Γ-convergence

Let (X, d) be a metric space. We say that a sequence Fj : X → [−∞,+∞] Γ-

converges to F : X → [−∞,+∞] (as j → +∞) if for all u ∈ X we have

(i) (lower limit inequality) for every sequence (uj) converging to u

F (u) ≤ lim inf
j

Fj(uj); (5)

(ii) (existence of a recovery sequence) there exists a sequence (uj) converging to u
such that

F (u) ≥ lim sup
j

Fj(uj), (6)

or, equivalently by (5),
F (u) = lim

j
Fj(uj). (7)

The function F is called the Γ-limit of (Fj) (with respect to d), and we write
F = Γ-limj Fj . If (Fε) is a family of functionals indexed by ε > 0 then we say that
Fε Γ-converges to F as ε→ 0+ if F = Γ-limj→+∞ Fεj

for all (εj) converging to 0.
The reason for the introduction of this notion is explained by the following

fundamental theorem.
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Theorem 2.1 Let F = Γ-limj Fj, and let a compact set K ⊂ X exist such that

infX Fj = infK Fj for all j. Then

∃min
X

F = lim
j

inf
X
Fj . (8)

Moreover, if (uj) is a converging sequence such that limj Fj(uj) = limj infX Fj

then its limit is a minimum point for F .

The definition of Γ-convergence can be given pointwise on X . It is convenient
to introduce also the notion of Γ-lower and upper limit, as follows: let Fε : X →
[−∞,+∞] and u ∈ X . We define

Γ- lim inf
ε→0+

Fε(u) = inf{lim inf
ε→0+

Fε(uε) : uε → u}; (9)

Γ- lim sup
ε→0+

Fε(u) = inf{lim sup
ε→0+

Fε(uε) : uε → u}. (10)

If Γ- lim infε→0+ Fε(u) = Γ- lim supε→0+ Fε(u) then the common value is called the
Γ-limit of (Fε) at u, and is denoted by Γ- limε→0+ Fε(u). Note that this definition
is in accord with the previous one, and that Fε Γ-converges to F if and only if
F (u) = Γ- limε→0+ Fε(u) at all points u ∈ X .

We recall that:
(i) if F = Γ-limj Fj and G is a continuous function then F +G = Γ- limj(Fj +G);
(ii) the Γ-lower and upper limits define lower semicontinuous functions.

¿From (i) we get that in the computation of our Γ-limits we can drop all
d-continuous terms. Remark (ii) will be used in the proofs combined with approx-
imation arguments.

For an introduction to Γ-convergence we refer to [10]; see also [8] Part II. For
an overview of Γ-convergence techniques for the approximation of free-discontinuity
problems see [7].

2.2 Functions of bounded variation

Let u ∈ L1(Ω). We say that u is a function of bounded variation on Ω if its
distributional derivative is a measure; i.e., there exist signed measures µi such
that ∫

Ω

uDiφdx = −
∫

Ω

φdµi

for all φ ∈ C1
c (Ω). The vector measure µ = (µi) will be denoted by Du. The space

of all functions of bounded variation on Ω will be denoted by BV (Ω).
It can be proven that if u ∈ BV (Ω) then the complement of the set of

Lebesgue points Su, that will be called the jump set of u, is rectifiable, i.e. there
exists a countable family (Γi) of graphs of Lipschitz functions of (n− 1) variables
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such that Hn−1(Su \ ⋃∞
i=1 Γi) = 0. Hence, a normal νu can be defined Hn−1-a.e.

on Su, as well as the traces u± of u on both sides of Su as

u±(x) = lim
ρ→0+

−
∫

{y∈Bρ(x):±〈y−x,νu(x)〉>0}

u(y) dy ,

where −
∫

B
u dy = |B|−1

∫
B
u dy. Note that the notation is similar to that of the

positive and negative part of u. In the case n = 1, we can always choose ν = +1,
so that u+(x) and u−(x) coincide with the right-hand side and left-hand side
(approximate) limits of u at x, denoted by u(x+) and u(x−), respectively.

If u ∈ BV (Ω) we define the three measures Dau, Dju and Dcu as follows.
By the Radon Nikodym Theorem we set Du = Dau+Dsu where Dau << Ln and
Dsu is the singular part of Du with respect to Ln. Dau is the absolutely continuous

part of Du with respect to the Lebesgue measure, Dju = Du Su is the jump

part of Du, and Dcu = Dsu (Ω \ Su) is the Cantor part of Du. We can then
write

Du = Dau+Dju+Dcu .

It can be seen that Dju = (u+ − u−)νuHn−1 Su, and that the Radon Nikodym
derivative of Du with respect of Ln is the approximate gradient ∇u of u (which
will be also denoted by u′ if n = 1).

A function u ∈ L1(Ω) is a special function of bounded variation on Ω if
Dcu = 0, or, equivalently, if its distributional derivative can be written as

Du = ∇uLn + (u+ − u−)νuHn−1 Su .

The space of special functions of bounded variation on Ω is denoted SBV (Ω).
For a detailed study of the properties of BV -functions we refer to [5], [12]

and [13]. For an introduction to the study of free-discontinuity problems in the
BV setting we refer to [5].

2.3 A lower semicontinuity result

We recall a simple lower semicontinuity result for one-dimensional functionals de-
fined on SBV (a, b) (see [2], [3], [7] Chapter 2).

Proposition 2.2 Let (uj) be a sequence inSBV (a, b) with

(i) (u′j) is bounded in L2(a, b);

(ii) #(Su) is equibounded;

(iii) (uj) is bounded in L∞(a, b).
Then, up to passing to a subsequence, uj converges in L1(a, b) to a function

u ∈ SBV (a, b). Furthermore,

(a) u′j → u′ weakly in L2(a, b);

4



(b) for all lower semicontinuous ϑ : R × R → [0,+∞) which is also subadditive

(i.e.,
ϑ(r, s) ≤ ϑ(r, t) + ϑ(t, s)

for all r, s, t ∈ R) we have

∑

x∈Su

ϑ(u(x−), u(x+)) ≤ lim inf
j

∑

x∈Suj

ϑ(uj(x−), uj(x+)).

In particular #(Su) ≤ lim infj #(Suj
) by choosing ϑ = 1.

3 The main result

Let W,ψ : R → [0,+∞) be two functions vanishing only at z = 0, increasing on
[0,+∞) and decreasing on (−∞, 0], and assume that W is continuous and ψ is
lower semicontinuous.

Let Ω be a bounded open subset of Rn. We define the space

SBV∗(Ω) = {u ∈ L1(Ω) : u ∨ t, u ∧ (−t) ∈ SBV (Ω) for all t > 0}.
Note that the approximate gradient ∇u of u ∈ SBV∗(Ω) exists for a.e. x ∈ Ω.
Moreover, if n = 1 then Su is at most countable.

Theorem 3.1 Let Gε : L1(Ω) × L1(Ω) → [0,+∞) be defined by

Gε(u, v) =






∫

Ω

(
ψ(v)|∇u|2 +

1

ε
W (u− v) + ε|∇v|2

)
dx if u, v ∈ H1(Ω)

+∞ otherwise.

Then there exists the Γ- limε→0+Gε(u, v) = G(u, v) with respect to the L1(Ω) ×
L1(Ω)-convergence, and

G(u, v) =






∫

Ω

ψ(u)|∇u|2 dx +

∫

Su

(Φ(u+) + Φ(u−)) dHn−1 if u ∈ SBV∗(Ω)

and u = v a.e.

+∞ otherwise,

where

Φ(z) := 2
∣∣∣
∫ z

0

√
W (s)ds

∣∣∣ (11)

for all z ∈ R.

The proof of the theorem above will be given in detail only in the case n = 1,
as a consequence of the propositions in the rest of the section. In this case it suffices
to consider Ω = (a, b) an interval. The case n ≥ 2 can be easily obtained by slicing
and approximation techniques from the study of the 1-dimensional case (for all
the details we refer to Chapter 4 in [7]).
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Proposition 3.2 Let F be defined on L1(a, b) by F (u) = G(u, u). Then F is lower

semicontinuous with respect to the L1-convergence.

Proof. (a) lower semicontinuity on non-negative functions: let t > 0, let

φt(z) =

{
Φ(z) if z > t
0 if z ≤ t,

and let θt(y, z) = φt(y)+φt(z). The function θt is subadditive and lower semicon-
tinuous.

For all v ∈ SBV∗(a, b) with v ≥ 0 let vt = v ∨ t; note that

F (v) ≥ Ft(v
t) :=

∫

(a,b)

ψ(vt)|(vt)′|2 dx+
∑

Svt

θt((v
t)+, (vt)−)

≥ ψ(t)

∫

(a,b)

|(vt)′|2 dx+ Φ(t)#(Svt).

If uj → u in L1(a, b) with uj ≥ 0 and F (uj) ≤ c, we deduce from the
inequality above that ut

j → ut weakly in SBV (a, b). From the lower semicontinuity
of Ft we have ut ∈ SBV (a, b) and

lim inf
j

F (uj) ≥
∫

(a,b)

ψ(ut)|(ut)′|2 dx+
∑

S
ut

j

θ((ut)+, (ut)−).

Taking the supremum for t > 0 we get u ∈ SBV∗(a, b) and

lim inf
j

F (uj) ≥ F (u).

(b) lower semicontinuity on non-positive functions: the proof is the same as
in Step (a).

(c) conclusion: the lower semicontinuity of F follows by noting that F (u) =
F (u ∧ 0) + F (u ∨ 0).

We “localize” the functionals Gε by defining for all A open subset of (a, b)
and u, v ∈ L1(a, b)

Gε(u, v, A) =






∫

A

(
ψ(v)|u′|2 +

1

ε
W (u− v) + ε|∇v|2

)
dx if u, v ∈ H1(a, b)

+∞ otherwise.

Lemma 3.3 Let t > 0, x0 < x1 and let u0, v0 ∈ R and u, v ∈ H1(x0, x1) satisfy






u0, v0 > t
u(x0) = u0

v(x0) = v0
v(x) > t for all x ∈ (x0, x1)
v(x1) = t

or






u0, v0 < −t
u(x0) = u0

v(x0) = v0
v(x) < −t for all x ∈ (x0, x1)
v(x1) = −t.
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Then for every ε > 0

Gε(u, v, (x0, x1)) ≥ ψ(t)
(u0 − inf(u ∨ 0))2

x1 − x0
+ Φ

((
(inf(u ∨ 0)) ∧ v0 − t

)
∨ 0

)

in the case u0, v0 > t, while

Gε(u, v, (x0, x1)) ≥ ψ(−t) (u0 + sup(u ∧ 0)2

x1 − x0
+ Φ

((
sup(u ∧ 0) ∨ (−v0) + t

)
∧ 0

)

in the case u0, v0 < −t. The same estimates hold if the boundary conditions at x0

and at x1 are interchanged.

Proof. We deal with the case u0, v0 > t only, the other case being dealt
with in a symmetric way. First, note that

∫

(x0,x1)

ψ(v)|u′|2 dx ≥ ψ(t)
(u0 − inf(u ∨ 0))2

x1
. (12)

If inf(u∨0) ≤ t then the inequality for Gε(u, v, (x0, x1)) is trivial. If inf(u∨0) > t,
let

x = sup{x ∈ [x0, x1] : v(x) = inf(u ∨ 0)}
(x = 0 if v < inf u on [0, x1]). Suppose first that inf(u ∨ 0) ≤ v0; then

∫ x1

x

(1

ε
W (u− v) + ε|v′|2

)
dx ≥

∫ x1

x

(1

ε
W ((inf(u ∨ 0)) − v) + ε|v′|2

)
dx

≥ 2

∫ x1

x

√
W ((inf(u ∨ 0)) − v)|v′| dx

= Φ(inf(u ∨ 0) − t). (13)

In the case inf(u ∨ 0) > v0, the same computation carries on with v0 in place of
inf(u ∨ 0).

For all t > 0 and r, s ∈ R we set

Φt(r) =






Φ(r − t) if r > t
0 if |r| < t
Φ(r + t) if r < −t

(14)

ϑt(r, s) = Φt(r) + Φt(s). (15)

Proposition 3.4 Let u ∈ L1(a, b) and let x ∈ Su. If uε → u and vε → u in

L1(a, b) then

lim inf
ε→0+

Gε(uε, vε, (x0, x1)) ≥ ϑt(u(x−), u(x+))

for all t > 0 and for all x0 < x < x1.
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Proof. We deal with the case u(x+), u(x−) > t > 0, the changes in the
other cases being clear from the proof and from the statement of Lemma 3.3. It is
not restrictive to suppose that we have lim infε→0+ Gε(uε, vε, (x0, x1)) < +∞.

Let (εj) be a sequence of positive numbers converging to 0 such that

lim
j
Gεj

(uεj
, vεj

) = lim inf
ε→0+

Gε(uε, vε).

Up to restricting the interval (x0, x1), we can suppose that

uεj
(x0) → u(x0) > t, uεj

(x1) → u(x1) > t,

vεj
(x0) → u(x0) > t, vεj

(x1) → u(x1) > t. (16)

Note that limj inf(x0,x1) |vεj
| = 0; otherwise, by the properties of ψ, we deduce

that a subsequence of (uεj
) is equibounded in H1(x0, x1) and then u ∈ H1(x0, x1)

contradicting the fact that x ∈ Su.
Denote

xj
0 = inf{x ∈ (x0, x1) : vεj

(x) = t}, xj
1 = sup{x ∈ (x0, x1) : vεj

(x) = t},

which are attained for j large enough. By Lemma 3.3, we then have

Gεj
(uεj

, vεj
, (x0, x1)) ≥ Gεj

(uεj
, vεj

, (x0, x
j
0)) +Gεj

(uεj
, vεj

, (xj
1, x1))

≥ ψ(t)
1

(xj
0 − x0)

∣∣∣uεj
(x0) − inf

(x0,x
j

0
)
[uεj

]+
∣∣∣
2

+Φt

(
( inf
(x0,x

j

0
)
[uεj

]+) ∧ vεj
(x0)

)

+ψ(t)
1

(x1 − xj
1)

∣∣∣uεj
(x1) − inf

(xj

1
,x1)

[uεj
]+

∣∣∣
2

+Φt

(
( inf
(xj

1
,x1)

[uεj
]+) ∧ vεj

(x0)
)
. (17)

With fixed η > 0, up to restricting the interval (x0, x1) further, we can
suppose that

lim sup
j

(|uεj
(x0) − u(x−)| + |vεj

(x0) − u(x−)|) < η,

lim sup
j

(|uεj
(x1) − u(x+)| + |vεj

(x1) − u(x−)|) < η.

Then from (17) we deduce first that

lim sup
j

|( inf
(x0,x

j

0
)
[uεj

]+) − u(x−)| ≤ c
1√
ψ(t)

√
x1 − x0 + η,

lim sup
j

|( inf
(xj

1
,x1)

[uεj
]+) − u(x+)| ≤ c

1√
ψ(t)

√
x1 − x0 + η,
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and, consequently, that

lim inf
j

Gεj
(uεj

, vεj
, (x0, x1))

≥ ϑt

(
u(x−) − c

1√
ψ(t)

√
x1 − x0 − η, u(x+) − c

1√
ψ(t)

√
x1 − x0 − η

)
.

As η and x1 − x0 can be taken arbitrarily small, we have the thesis.

Remark 3.5 ¿From the previous proposition we immediately get:
(a) for every open subset Ω′ of (a, b) we have

lim inf
ε→0+

Gε(uε, vε,Ω
′) ≥

∑

Su∩Ω′

ϑt(u(x−), u(x+))

if uε → u and vε → u in L1(a, b);
(b) if Γ-lim infε→0+ Gε(u, u) < +∞ then for all t > 0

#({x ∈ Su : |u(x−)| ∨ |u(x+)| > t}) < +∞.

Proposition 3.6 We have G ≤ Γ-lim infε→0+ Gε.

Proof. Let uε → u and vε → v in L1(a, b) be such that

lim inf
ε→0+

Gε(uε, vε) < +∞.

Then we have

lim inf
ε→0+

1

ε

∫

(a,b)

W (uε − vε) dx < +∞,

which implies u = v.
Let (εj) be a sequence of positive numbers converging to 0 such that

lim
j
Gεj

(uεj
, vεj

) = lim inf
ε→0+

Gε(uε, vε),

and such that uεj
→ u, vεj

→ u a.e. We denote

M = {x ∈ (a, b) : lim
j
uεj

(x) = lim
j
vεj

(x) = u(x)}.

Let t > 0 be fixed. Thanks to Remark 3.5(b) we can suppose that t 6∈
{|u(x+)|, |u(x−)| : x ∈ Su}.

We may select a double-indexed family {xN
i : N ∈ N, i = 0, . . . , 2N} of

points in [a, b] such that

a = xN
0 < xN

1 < · · · < xN
2N ,
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xN
i 6∈ Su, xN

i ∈M (except for i = 0, 2N), and

2−N−1 ≤ xN
i+1 − xN

i ≤ 2−N+1, xN
2i = xN

i

for all N and i. We can also suppose that there exist the limits limj uεj
(a) =

limj vεj
(a) = u(a+) and limj uεj

(b) = limj vεj
(b) = u(b−). This is not restrictive,

upon first restricting our analysis to (a+ η, b− η) for some small η > 0, and then
letting η tend to 0.

Fix N ∈ N, and set

Ji = JN
i = (xN

i−1, x
N
i ), i = 1, . . . , 2N ,

and
aN = {i ∈ {1, . . . , 2N} : |u| ≤ t a.e. on Ji}.

For all i 6∈ aN we can choose a point xi ∈ Ji ∩M such that |u(xi)| > t. We can
therefore suppose that

uεj
(xi) > t, vεj

(xi) > t for all i and j, (18)

or
uεj

(xi) < −t, vεj
(xi) < −t for all i and j, (19)

in the cases u(xi) > t and u(xi) < −t, respectively. Upon extracting a subsequence
of (εj) we can also assume that for all i 6∈ aN only one of the two following
possibilities is realized:

(i) for all j we have |vεj
(x)| > t/2 for all x ∈ Ji;

(ii) for all j there exists yj
i ∈ Ji such that |vεj

(yj
i )| ≤ t/2.

We then set

bN = {i 6∈ aN : (i) holds}, cN = {i 6∈ aN : (ii) holds}.

Let i ∈ cN , and suppose for the sake of simplicity that (18) holds and xi < yj
i .

By continuity, we then find x̂i ∈ (xi, y
j
i ) such that vεj

> t/2 on (xi, x̂i). ¿From
Lemma 3.3, applied with t/2 in place of t, we deduce that, in the case that u(xi) >
t,

Gεj
(uεj

, vεj
, Ji) ≥ ψ

( t
2

)
2N−1

(
t− (inf

Ji

uεj
∨ t

2
)
)2

+ Φt

(
inf
Ji

uεj
∨ t

2

)

≥ ψ
( t

2

)(
t− (inf

Ji

uεj
∨ t

2
)
)2

+ Φt

(
inf
Ji

uεj
∨ t

2

)

≥ c(t) > 0,

where c(t) is a constant depending only on t. The same conclusion holds in the case
u(xi) < −t, with the obvious changes coming from Lemma 3.3. Hence, #(cN ) ≤ c,
independent of N .
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Let now

ut(s) = [u(s) − t]+ − [u(s) + t]− =






u(s) − t if u(s) > t
0 if |u(s)| ≤ t
u(s) + t if u(s) < t.

If i ∈ aN then we trivially have

lim inf
j

Gεj
(uεj

, vεj
, Ji) ≥ 0 =

∫

Ji

ψ(u)|u′t|2 dx. (20)

If i ∈ bN , we first note that

lim inf
j

Gεj
(uεj

, vεj
, Ji) ≥ lim inf

j

∫

Ji

ψ(vεj
)|u′εj

|2 dx

≥
(
ψ

( t
2

)
∧ ψ

(
− t

2

))
lim inf

j

∫

Ji

|u′εj
|2 dx,

from which we deduce, upon extracting a subsequence, that (uεj
) converges weakly

to u in H1(Ji), and that we may suppose that ‖uεj
‖L∞(Ji) ≤ C < +∞. Moreover,

letting ṽεj
= (vεj

∧ C) ∨ (−C), after noting that

Gεj
(uεj

, vεj
, Ji) ≥ Gεj

(uεj
, ṽεj

, Ji)

and that ṽεj
→ u in L1(Ji) we obtain

lim inf
j

Gεj
(uεj

, vεj
, Ji) ≥ lim inf

j
Gεj

(uεj
, ṽεj

, Ji)

≥ lim inf
j

∫

Ji

ψ(ṽεj
)|u′εj

|2 dx

≥
∫

Ji

ψ(u)|u′|2 dx (21)

by the lower semicontinuity of the functional u 7→
∫

Ji
ψ(u)|u′|2 dx (see e.g. [9]).

If i ∈ cN , by Remark 3.5(a) we estimate

lim inf
j

Gεj
(uεj

, vεj
, Ji) ≥

∑

Su∩Ji

ϑt(u(x−), u(x+)). (22)

We remark, moreover, that:
(a) if i ∈ aN then ut = 0 in Ji, which in particular implies that Sut

∩ Ji = ∅,
so that ϑt(u(x−), u(x+)) = 0 for all x ∈ Su ∩ Ji;

(b) if i ∈ bN then u ∈ H1(Ji) and in particular Su ∩ Ji = ∅;
hence, ∑

i∈cN

∑

x∈Su∩Ji

ϑt(u(x−), u(x+)) =
∑

x∈Su

ϑt(u(x−), u(x+)). (23)
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We set KN =
⋃

i∈cN
Ji. From (20)–(23) we deduce that

lim inf
j

Gεj
(uεj

, vεj
) ≥

∫

(a,b)\KN

ψ(u)|u′t|2 dx+
∑

x∈Su

ϑt(u(x−), u(x+)).

Upon noting that
(a) if i ∈ aN then {2i− 1, 2i} ⊂ aN+1;
(b) if i ∈ bN then {2i− 1, 2i} ⊂ aN+1 ∪ bN+1,

we get that KN+1 ⊂ KN , and from #cN ≤ c and |Ji| ≤ c2−N we deduce that
|KN | → 0. From the Dominated Convergence Theorem we then obtain, letting
N → +∞,

lim inf
j

Gεj
(uεj

, vεj
) ≥

∫

(a,b)

ψ(u)|u′t|2 dx+
∑

x∈Su

ϑt(u(x−), u(x+)). (24)

Note that by (24) we have that

(ψ(t) ∧ ψ(−t))
∫

(a,b)

|u′t|2 dx < +∞,

and, since

(Φ(t) ∧ Φ(−t))#(Su2t
) ≤

∑

Su

ϑt(u(x−), u(x+)),

also that #(Su2t
) < +∞. Hence we deduce that #(Sut

) < +∞ and ut ∈ H1((a, b)\
Sut

) for all t > 0; in particular, u ∈ SBV∗(a, b).
Eventually, the thesis of the proposition is obtained by letting t → 0+ and

using the Dominated Convergence Theorem again.

Proposition 3.7 We have G ≥ Γ-lim supε→0+ Gε.

Proof. First, let u ∈ SBV (a, b) with

∫

(a,b)

|u′t|2 dx+ #(Su) < +∞.

By the local nature of the construction below, we can suppose Su = {0}, with
0 ∈ (a, b). We have to construct a family (uε, vε) such that

F (u) ≥ lim sup
ε→0+

Gε(uε, vε).

We perform the construction only for x > 0, the construction for x < 0 being
symmetric.

With fixed η > 0 let T > 0 and vT ∈ H1(0, T ) be such that

vT (0) = 0, vT (T ) = u(0+),
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∫ T

0

(
W (u(0+) − vT ) + |v′T |2

)
dx ≤ Φ(u(0+)) + η,

1

T

∫ 1

0

W (τu(0+)) dτ ≤ η.

The existence of such a vT follows for example from [7] Section 3.2.1. We set, for
ε > 0 sufficiently small:

uε(x) =






xT
ε
u(0+) if 0 ≤ x < ε

T

u(0+) if ε
T
≤ x < ε(T + 1

T
)

u
(
x− ε(T + 1

T
)
)

if x ≥ ε(T + 1
T

),

vε(x) =






0 if 0 ≤ x < ε
T

vT

(
x
ε
− 1

T

)
if ε

T
≤ x ≤ ε(T + 1

T
)

u
(
x− ε(T + 1

T
)
)

if x > ε(T + 1
T

).

It can be immediately verified that uε → u and vε → u in L1(a, b). Moreover,

lim
ε→0+

Gε(uε, vε, (0, b)) ≤
∫

(0,b)

ψ(u)|u′|2 dx+ Φ(u(0+)) + 2η.

¿From the corresponding construction for x < 0 we eventually obtain

lim
ε→0+

Gε(uε, vε) ≤
∫

(a,b)

ψ(u)|u′|2 dx+ Φ(u(0+)) + Φ(u(0−)) + 4η

= G(u, u) + 4η,

which gives the desired inequality by the arbitrariness of η > 0, after noting that
the functions uε and vε belong to H1(a, b) thanks to the condition uε(0) = vε(0) =
0.

In the general case u ∈ SBV∗(a, b) with F (u) < +∞, consider the family
(ut)t>0 defined by

ut = [u− t]+ − [u+ t]−.

Note that F (ut) ≤ F (u), ut ∈ SBV (a, b) and
∫

(a,b)

|u′|2 dx+ #(Sut
) < +∞.

therefore, by the first part of the proof,

Γ- lim sup
ε→0+

Gε(ut, ut) ≤ F (ut) ≤ F (u),

and the proof is concluded by letting t → 0, so that ut → u in L1(a, b), and
recalling the lower semicontinuity of v 7→ Γ- lim supε→0+ Gε(v, v).
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