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l. INTRODUCTION

THE HOMOGENIZATION problem for an elliptic equation in a periodic domain consists of the
study of the behaviour of the solutions when the period goes to zero. Given a bounded open set
Q < R” with Lipschitz boundary and a function g € I*(Q), in this paper we take an arbitrary
periodic open subset E of R” with Lipschitz boundary and, denoting the g-homothetic set by
E, = ¢E, we consider the solutions u, to the Neumann boundary value problems

A, +u, =g in QN E,,

9 1.1
i, S in Q N E,),
on,

where n, is the outward unit normal to 8(Q N E,). Under the only additional assumption that
E is connected, we prove that there exists an extension i, of u, to the whole of Q, such that
(é1,) converges to the solution # to the problem

= E OIUDI‘DJ-H +tu=g in g,
et (1.2)

du ;

— =0 in 042,

an

where (o) is the positive definite symmetric matrix defined by

" n
Y ay&ié; =inf [—1— S |Du(x) + &|* dx: u is Q-periodic, u € GI(R")} ;
hiet @ NEl Jone

for every ¢ € R", where Q is the periodicity cell for E. This result is contained in a more general
form in theorem 3.1. .

Many problems similar to (1.1) may be found in the existing literature. The typical hypothesis
in the first papers on this subject is that the complement of the periodic set E is disconnected.
More precisely, E is obtained by removing from the periodicity cell Q a set B with smooth
boundary such that dist(B, 8Q) > 0, and repeating this structure by periodicity (see [1, 4, 6, 7,
11, 13, 15]). While this hypothesis is satisfactory in dimension 2, it is not fulfilled in many
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interesting examples in dimension n = 3, where both E and R"\E may be connected. As an
example we may consider the three-dimensional grid

E=[xeR:d(x C) <1,

where C is the set of the edges of the unit cube Q extended by periodicity. Some particular
structures of this kind have been considered in [8, 9, 16].

The main difficulty in this setting is the extension of u,, which is defined only on Q N E,, to
the whole of Q. This extension property, which is easy when the complement of E is
disconnected, has been taken by Khruslov [14] as the definition of strong connectivity of
Q N E, and used as the main assumption in the proof of the convergence of the solutions u, to
(1.1). More generally, a uniform local extension property has been introduced in [10]. A similar
extension problem has been considered in [3] for a more general class of periodic sets £ whose
complement is not necessarily disconnected.

The main new feature of our paper is the proof of an extension result (see theorem 2.1) under
the only assumption that the periodic set E is connected. This result allows us to prove the
convergence of the extended functions #,. In order to show that the limit function u is a
solution to (1.2), we write (1.1) in an equivalent form, as a minimum problem, and we use
I'-convergence methods to determine the limit equation (1.2). These results are proven in
Section 3 for more general minimum problems defined by convex integral functionals.

2. CONSTRUCTION OF THE EXTENSION OPERATORS

The aim of this section is to prove the existence of suitable extension operators. They will be
the fundamental tool to prove the compactness of the solutions to the homogenization
problems considered in Section 3.

Let p e R", with 1 = p < +oo, and let Q be the open unit cube of R", centred at the origin,
i.e. @ = ]—4,3[". We say that a set E € R" is periodic if E + ¢; = E foreveryi=1,2,...,n,
where (¢;) is the canonical basis of R". Moreover, we say that an open set £ € R”" has Lipschitz
boundary at x € dE if aE is locally the graph of a Lipschitz function, in the sense that there exist
a coordinate system (y,,...,¥,), a Lipschitz function ® of n — 1 variables, and an open
rectangle U, in the y-coordinates, centred at x, such that EN U, = (y: ¥, < ®(yy, ..., ¥p_1))
and that 6E splits U, into two connected sets, £ N U, and U\ E. If this property holds for every
x € dE with the same Lipschitz constant, we say that £ has Lipschitz boundary. We say also
that E has the cone property if there exists a finite open cone C such that each point x € E is
the vertex of a finite cone C, contained in £ and congruent to C. It is clear that an open set with
Lipschitz boundary has the cone property.

In the sequel, if A C R" is any open set and A > 0, we shall use the following symbols:

A, or AA the A-homothetic set {Ax: x € A4},
A(A) the retracted subset {x € A4: dist(x, d4) > A].

The main result of this section is the following theorem.
THEOREM 2.1. Let E be a periodic, connected, open subset of R”, with Lipschitz boundary.

Given a bounded open set Q C R”", and a real number ¢ > 0, there exist a linear and continuous
extension operator T,: W' ?(Q N E,) = W.:P(Q), and three constants k,, k;, k, > 0, such



that

Tu=u ae inQNE, 2.1

|, imrersk| lpas 22
Q(zkg) QNE,

E |ID(Tu)|” dx < k, j | Dul? dx, 2.3)
Q(ekq) QnNE,

for every u € W'?(Q N E,). The constants k,, k; , k, depend on E, n, p, but are independent
of ¢ and Q.

In our general hypotheses, it is not possible to construct a family of extension operators
T,: WhP(Q N E,) » W"P(Q) satisfying (2.1), ..., (2.3) with Q(ek,) replaced by Q, since we do
not have any control on the behaviour of E, near Q. In particular, even with Q = Q, it may
happen that Q N E, is disconnected for every 0 < € < 1 (see Fig. 1), and this prevents (2.3) to
hold with Q in place of Q(ek,).

[ 1 %IELI%I[
%

Fig. 1. The smaller picture on the left represents the intersection £ N Q of a periodic open subset E of R? with the unit
square. Note that although E N Q is not connected and does not have Lipschitz boundary in a neighbourhood of the
point marked with an arrow, the periodic set E is connected and has a Lipschitz boundary, as one can see in the larger
picture on the right. The smallest square in that picture represents Q, while the other squares represent 2Q, 3Q, 40, 50.
The shaded region is the connected component A of E N 50 which contains E N 2Q. One can see easily that, although
E is connected, the sets £ N £Q are not connected for any & € N. This cannot be avoided by a suitable choice of affine
coordinates: in fact E (N P is not connected for any parallelogram P containing a periodicity cell. Note that &k = 5is the
smallest integer such that £ M 2Q is contained in one connected component of £ N kQ. Finally, note that A4 does not
have a Lipschitz boundary in a neighbourhood of the points marked with an arrow.



For what concerns its application to the homogenization problems considered in Section 3,
the crucial point of theorem 2.1 is the estimate (2.3) for the gradients. The general proof
of this result is quite technical and will be given after some preliminary lemmas. In order
to give an idea of the proof, let us consider the particular case where the set £ N 2Q is connected
and has Lipschitz boundary. These properties yield the existence of an extension operator
: WHP(E N 2Q) — WHP(2Q) (see [7, lemma 3]) that has separate estimates for the gradients.
To construct a global extension operator we first consider the family t*: W"2(E N (« + 2Q)) -
W' P(a + 20) of extension operators obtained by translating t by an integer vector a € Z". The
next step consists in glueing together the extension operators (7%), by means of a periodic
partition of unity, and in proving that an estimate between the gradients still holds. This will be
carried out in lemma 2.7. Since the assumption that £ N 2Q is connected and has Lipschitz
boundary is not always satisfied (see Fig. 1), we have proven lemma 2.7 under the general
hypotheses of theorem 2.1. In this case the role of the operator 7 is played by a different
extension operator, that still has separate estimates for the gradients, whose existence is proven
in lemma 2.6. The fact that the set E N 2Q may be disconnected is taken into account in lemmas
2.2 and 2.3, while the difficulties due to the lack of regularity of its boundary are overcome by
means of lemmas 2.4 and 2.5,

LemMa 2.2. Let A, w, @' be open subsets of R". Assume that w, w' are bounded, with w CC o’
and that 4 has Lipschitz boundary at each point of 4 N @. Then the number of connected
components of 4 N «' that intersect 4 N w is finite.

Proof. Since A has Lipschitz boundary at each point of 34 N @, for every x € A N @ there
exists an open neighbourhood U, of x, contained in @', such that U, N A4 is connected. For
every x € A N @, let U, be any open ball centred at x, contained in A N w’. Since A N @ is
compact, there exist x,,...,xy € A such that A N@ < U}, U,,. In particular, A Nw <

A (Uy, N A). Now, if C is a connected component of A N w' that intersects 4 N w, then C
intersects U, N A for some i, = 1,...,N. But, since U, NA is connected, then U, N
A <€ C, and this implies that the number of connected components of 4 N w’ which intersect

ANewisatmost N. B

LEMMA 2.3. Let E be a connected open subset of R”, with Lipschitz boundary. Then, there exists
keN, k=3 such that 20 N E is contained in a single connected component of k\Q N E
(see Fig. 1).

Proof. By applying lemma 2.2 with 4 = E, w = 20, o' = 3Q, we can assume that
20N E =UN, G, where C; = C/ N (2Q N E), and C} are connected components of 3Q N E.
Let us fix x; € C;, i = 1, ..., N. Since E is connected, for every i, j € [1, ..., N} there exists a
continuous map y; ;: [0, 11 = E, such that y; ;(0) = x;, y; ;(1) = x;. Moreover, for every i, j,
there exists k; ; € N such that y; ;([0, 1]) € k; ;Q. By taking k = max k; ;, we obtain that

LJ

2Q N E is contained in a single connected component of kQ N E. )

LeMMa 2.4, Let A, w be open subsets of R”. Assume that @ is bounded and that A4 is connected
and has Lipschitz boundary at each point of 4 N @. Then there exists a bounded and
connected open set B © A, with the cone property, having Lipschitz boundary at each point of
dBN@,suchthat w N B =w NA.



Proof. Since the set U = {x € dA: A has Lipschitz boundary at x} is open in the relative
topology of dA, and 84 N @ is a compact subset of U, there exist two bounded open subsets
w;, w, of R”, such that w CC w, CC w, and A has Lipschitz boundary at the points of
dA N w,. By lemma 2.2, let C,, ..., Cy, be the connected components of 4 N w, that intersect
ANa;,andletx; e C;, foreveryi = 1, ..., N, Since A is connected, for everyi,j e {1, ..., N}
there exists a continuous map y; ;: [0, 1] = A, such that y; ;(0) = x;, y; ;(1) = x;. We denote
by S the bounded connected set

S- ( U c,-) U ( U 7400, 1])),

i=1 ij=1

and by K = Sits closure, which is a compact connected subset of A. Since 4 N K € 94 N @5,
for every x € A there exists an open neighbourhood U, of x, such that U, N A satisfies the
cone property. Moreover, for every x € A N K, let U, be an open ball centred at x and
contained in 4. Since K is compact, there exist x,, ..., X, such that K < UM , U, .

Let us define B = UM, (U, N A). By our construction, B is a bounded open subset of A.
Moreover, the cone property holds for B, since it holds for each set U, N A. It is easy to check
that B is connected, since for every / the set U, N A is connected and has nonempty inter-
section with the connected set S. Let us prove now that w; N B = w, N A. The inclusion € is
trivial, since B € 4. On the other side, if x € w; N A, then x € C;, for some i, = 1, ..., N.
Hencexe KNA c UM, (U,,NA) = B, i.e. x € w; N B. Since w CC w,, the conclusions of
the lemma follow immediately. B

Lemma 2.5. Let B, w be open subsets of R". Assume that w is bounded and that B has Lipschitz
boundary at each point of 4B N @. Then, there exists a linear and continuous operator
S: WhP(B) = W!'P(w) such that for every u € W'?(B)

Su=u a.e. in BNw, (2.4)
l|Sull zpey = cllullzpmys (2.5)
HS-'J”le’(u) = C'”””WI-P(B); (2.6)

where ¢ = c(n, p, B, w).

Since the problem can be localized by means of a partition of unity, the proof of lemma 2.5
can be obtained by applying the standard reflection technique (see for instance [2, theorems
4.26, 4.28 and Section 4.29]) to the neighbourhoods of the points of B N @, and is therefore
omitted.

In the next lemma, we shall use the notation

i

i

(Na = £fdx =T

dx
a1 ).

to denote the average of a function f € L'(4), where A < R" is bounded and |A| is its Lebesgue
measure.

The following lemma, which is crucial for the proof of theorem 2.1, states the existence of
an extension operator that has separate estimates in terms of the gradients.



Lemma 2.6. Let A, w be open subsets of R". Assume that w is bounded and that A is connected
and has Lipschitz boundary at each point of 4 M @. Then, there exists a linear and continuous
operator 7: W?(4) —» W"?(w) such that, for every u € W"?(A)

™m=1u a.e.in 4 Nw, 2.7

j [tul? dx < ¢, j [ul? dx, 2.8)
w A

X [D(zw)|P dx < ¢, .[ | Dul? dx, 2.9)
w A

where ¢, , ¢, depend only on n, p, A, w.

Proof. By lemma 2.4, there exists a bounded and connected open set B € A, with the cone
property, such that @ N B = w N A. Moreover, B has Lipschitz boundary at each point of
dB N @. Then, by applying lemma 2.5 to the sets B, w, there exists a linear and continuous
operator §: WYP(B) — W1?(w) satisfying (2.4), ..., (2.6). For every u € W'?(A) we set

= S(up — (Wp) + W)z,
where uJB denotes the restriction of u to the set B. From the properties of S we have that

e WP(w) and tw = u a.e. in BNw = A N w, that is (2.7). Moreover, by (2.5) and
Hdlder’s inequality, we have

[ |m|ﬂdx=j 1St — () + (W)gl? dx

A

[

CS |S(u — (u)p)|” dx + cg |()]? dx

< c} lul? dx < ci |ufP dx,
B A
where, for simplicity, the letter ¢ denotes a positive constant that depends only on n, p, B, w, 4,
and can change from line to line. Condition (2.8) is then completely proven.

To show (2.9), let us remark that, since B is a bounded open set satisfying the cone property,
the imbedding of W "#(B) into L”(B) is compact (Rellich theorem, see, for instance, [2, theorem
6.2]). Therefore, the following Poincaré inequality holds (see, for instance, [17, theorem
4.2.1]): for every u € W'#(B)

| o s arsc| 1purax
L= B B
where ¢ = ¢(n, p, B). By taking (2.6) and Poincaré inequality into account, we have finally

f |D(zu)|P dx = j |D(S(u — (u)))IP dx

=c

lu — ()pl" dx + ci | Du|? dx
JB B

= cj [DulPdx < ¢ g |Dul? dx.
B A

o

The proof of lemma 2.6 is then complete. W
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From now on we shall make use of the following notation. For every set A € R", for every
a € Z", and for every real number 4 > 0 we denote by

Ay = a + hA (2.10)
the translated image of the set #4 = [hx: x € A} by the integer vector &. Moreover, we indicate
by 7;: R" — R" the invertible affine map defined by

H(x) = o + hx, (2.11)

for every x e R". When h = 1, we shall simply write AY = A* and #§{ = 7%, while for
a = 0 € Z" we shall put A = A, and 7} = n,.

LeMMa 2.7. Let E be a periodic, connected open subset of R", with Lipschitz boundary. Let
Q, Q' be open subsets of R”" such that Q' CC Q and dist(Q’, Q) > 2Vnk, where k = 3 is the
integer given by lemma 2.3. Then there exist two positive constants k,, k,, and a linear
continuous operator L: W"?(Q N E) - W"?(Q"), such that

Lu=u a.e. in Q' N E, (2.12)

} |Lul? dx < k, S |ul? dx, (2.13)
ar QNE

[ [D(Lw)|P dx < k, ! [Du|? dx, (2.14)
JI QnNE

for every u € W"?(Q N E). The constants k,, k, depend only on E, n, and p, but are
independent of Q and Q'.

Proof. Let C be the connected component of kQ N E containing 2Q N E, given by lemma
2.3. Since E has Lipschitz boundary, the set C has Lipschitz boundary at each point of 3C N 20
and we can apply lemma 2.6 to the sets A = Cand @w = 2Q. Therefore, there exists a linear and
continuous operator 7: W12(C) - W'?(2Q) such that, for every u € W'?(C)

wm=u a.e.in20NC=20NE, (2.15)
j |ru[”dxscli |u|pdxsc,§ |u]? dx, (2.16)
20 c kQNE
X ID(zw)|? dx < ¢, j \Dul? dx < ¢, E \Dul” dx, @.17)
20 c kQNE

where ¢, ¢, depend only on n, p, E.

Now, let us consider the open cover of R" given by the cubes (Q%), < z» (see notation (2.10)),
and for every set A < R" let us define /(4) = [ € Z": Q5 N A # J}. Under our assumptions,
for every « € I{Q') we have O, € Q.

For every « € I(Q') we define by *: W?(C*) - W"?(0Q%) the extension operator obtained
by translating the operator 1, i.e. for every u € W'?(C%)

U= (tuen”))en ™ (2.18)
(see notation (2.11)). For simplicity, for u € W"?(Q N E) we shall denote by u® the function
u* = ™(u)cs) € WHP(05). (2.19)
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In order to define a global extension operator L: W2(Q N E) - Wh?(Q'), we consider a
partition of unity (¢*), associated to the open cover (Q%),., such that ¢# = ¢~ o 7%, for every
«, f e Z". A partition of unity of this kind can be constructed, for instance, by choosing a
nonnegative function ¢ € C;(R"), with spt ¢ CC (2Q) and ¢ > 0 on 3Q, and by setting

Px — a)
Yaeznolx — B)

for every o € Z" and for every x € R". In this way ¥ yon @*(x) = 1 for every x € Q', and
there exists a positive constant M such that

(e + [Dp*)]) = M, (2.21)

() = (2.20)

for every o € Z" and for every x € R".
Now, for every u € WV'P(Q N E) we set
Lu = E u®p®, (2.22)

cel(lh)

with u®, g% given by (2.19), (2.20), respectively. It is clear that L is a linear operator from
WhP(Q N E) to WhP(Q') and that condition (2.12) is satisfied, since by (2.19), (2.18), and
(2.15), we have
Y 4o = Y u(@e*(x) = ul)
as (1) acl(Q")
for a.e. x € Q' N E. To prove (2.13), let us notice that, by (2.21), for every u € W"2(Q N E)
and for every § € {8,

j ILulP dx < N*'MP T ! PP dx, 2.23)
05 «el(@d) Jof
where, from now on, N denotes the cardinality of the set 7(Q5). Since by (2.19) and (2.16) we
have for every o € I(Q%)
P de = ¢ j ul? ax,
o3 QkNE
and since « € I(QY) implies Qf < Q% , then from (2.23) we obtain

5‘ |Lul? dx = N*MP¢, § |u]? dx.
03 o%nE

By taking the sum over f € I(€') in the preceding inequality, we have

"

j LuPdx< ¥ S |Lul? dx
o geray Jof

= N’MP*¢; ¥ ‘[ |u|? dx
Bel(@) JOSNE

< N°MPc, c(k) \ |u|? dx, (2.24)
JONE




where c(k) is a constant depending only on k and #, such that each point x € R" is contained

in at most c(k) cubes of the form (Q5,)s.z". Hence (2.13) is proven with k; = N”M?c; c(k).
In order to prove (2.14), for every u € W'P(Q N E) and for every f € I(Q') we write

P

Y Du%p®| dx

T

p—1 o o
G gQﬁ e)f:t:eg) v
(LR C5 2 R

By (2.17), the first term can be estimated as follows

SQ?

S ﬁlD(Lu)l”dx = 2‘”_15 ,
JO3 Q3

P

dx. (2.25)

Y Du®¢"

P
dx<N*1 ¥ [ | Du*g%|? dx
ae 0D

aen(@h Joinos

= NP7 'MP¢, Y E |Dul? dx
aen@y) JOEnE

< N?~'MPc, g [Dul? dx. (2.26)
Q%NE

Since ¥, e o Do“(x) = 0in 0%, the second integrand on the right-hand side of (2.25) can be

written as
Y uDp*= Y [(* - u’)Dp* + u’Dp"]
« e (05 ael(@h

= ¥ (@ - u®)Dgp*
o e (05

for a.e. x € QF. Hence, by (2.23) we have

r [ P
‘ Y u*Dg* dx:l Y  (@® - uP)Dp*| dx
Jof laer0h) 0f [« eri@d)
<N 'mM? ¥ j |u® — uPP dx.
wel(0}) Josnof

Since u® — u® = 0 a.e. in Qf N Q¥ N E, the Poincaré inequality on Qf N QF (see [17,
theorem 4.4.2]) vields

X |u® — PP dx < cj |Du® — Du®|? dx

fobiate}: feliale}s

for a suitable constant ¢ depending only on », p, E, which together with (2.17) implies that
B ]
S Y u*D¢*| dx = ¢(n,p, E, M, N)c, S |Dul? dx, 2.2
0f |« 10 3nE

for every u e W"2(Q N E) and for every 8 € I(Q'). From (2.25), (2.26), and (2.27) we get
finally

j DLWl dx < c(n, p, E)j _ |Dulax.
oz

O3 NE



Now, to conclude the proof of (2.14) it is enough to sum up over f € I(Q') in the preceding
inequality, and the conclusion follows as in (2.24). W

Proof of theorem 2.1. Let &€ > 0, ky = 4Vnk, where k is the integer given by lemma 2.3. By
means of lemma 2.7 we can construct a linear operator L,: W'P(Q N E,) = W"?(Q(ek,/2))
such that

L.u=u a.e. in Q(eky/2) N E,, (2.28)
{ |L,ulPdx < k, j |ul? dx, (2.29)
J0(ekq/2) anE,
{ |D(L,u)|” dx < k, ! | Dul? dx, (2.30)
Jaeky /2 QnE,

for every ue WhP(QNE,. In fact, since uem e W"P(1/e)QNE) for every ue
WhP(QNE,), and dist((1/6)Q(ek,/2), 8((1/8)Q)) > ko/2 = 2Vnk, lemma 2.7 ensures the
existence of a linear operator L: W"?((1/e)Q N E) = WP((1/&)Q(eky/2)), such that Lv = v
a.e. in (1/6)Q(ek,/2) N E, for every v € W?((1/£)Q N E). Moreover, the following estimates
hold

m

j Lol dx = &, \ o] dx,
[lfe)n(£k0/2) J(1/82NE

|D(Lv)|? dx < k, \ |Dv|? dx,

\!(1/8)9(5!(9/2) JA/ANE

for every v e WUP((1/e)QNE), where k;, k, are the constants given in lemma 2.7 and, in
particular, are independent of &.

Now, let us set L,u = (L(u * m,)) ° 71y,,. It is clear that L,u € W"?(Q(ek,/2)) and that it
satisfies (2.28), ..., (2.30).

To complete the proof of theorem 2.1, we have to construct an extension operator
T,: WhP(Q N E,) = WL.P(Q). To this aim we choose a locally finite open cover (4;); n Of Q
such that A, = Q(eky/2), A; CC Q, A; N Q(eky) = @ for every i # 0. Let (¢;);cn be a
partition of unity associated to the sequence (4;), i.e. a sequence of functions ¢; € C€5(R"), with
spt ¢; CC A;, and L7, 9;(x) = 1 for every x € Q. In particular we have py(x) = 1 in Q(eky).

Now, for every ¢ > 0, i € N\{0}, by lemma 2.5 applied to B = Q N E, and w =+ A;, there
exists a linear and continuous operator L,: W"P(Q N E,) = W'P(A;) such that L,u = u
a.e. in A;NE,, and for which estimates of the type (2.5), (2.6) hold. For i =0 we
choose L,y = L,, where L, is the operator satisfying (2.28), ..., (2.30). Finally, for every
u € W"P(Q N E,) we set

18

Tou =

i

(L t)p;
0

where the function (L,;u)@; € Wy'?(A;) is extended to the whole set Q by the constant 0. It is
easy to check that T,u € W.:P(Q), that T, is linear and continuous from W'?(Q N E,) into
WieiP(Q), and that (2.1) is satisfied. Moreover, since g, = 1 in Q(ek,) and Q(ek,) N spt ¢; = &
for every i = 1, we have T,u = L,u a.e. in Q(ek,); hence (2.2), (2.3) follow immediately from
(2.29), (2.30). W




3. HOMOGENIZATION OF NEUMANN PROBLEMS

In this section we consider a sequence of minimum problems on perforated domains and we
study the asymptotic behaviour of the corresponding minima and minimizers by means of
T'-convergence techniques (see definition 3.4 and theorem 3.5), and by using the extension
operators T, constructed in theorem 2.1.

Given a periodic set A € R", we say that a function ¢: 4 — R is periodic, if ¢(x + ;) = (x)
for every x € A and for every i = 1, 2, ..., n, where (g;) is the canonical basis of R",

Let us fix now a periodic, connected, open set £ € R", with Lipschitz boundary, a real
number p, with 1 < p < +o, and a function f: E x R" — [0, + o[ satisfying the following
conditions:

S(-, &) is measurable and periodic, for every £ € R"; (3.1)
S(x, +) is strictly convex, for a.e. x € E; (3.2)
MEP = fx, &) < A,(1 + [E]P) for a.e. x € E, for every & € R”; (3.3)

where 0 < 1, = 4, are fixed constants. Moreover let 3 € R" be a bounded open set and
(g.): o be a sequence of functions in L”(Q) such that

g~ £o> strongly in I°(Q), (3.4)

as ¢ — 0*. For every ¢ > 0 we consider the minimum problem

My = min [g f('f, Du) dx + j lg, — ul? dx] : (3.5)
vew P@ane,) L Jong, \E€ _ QNE,

that, under our assumptions, has always one and only one solution u, € W"?(Q N E,). The
main result of this section is the following theorem.

THEOREM 3.1. Assume that conditions (3.1), ..., (3.4) hold and let u, € W'?(Q N E,) be the
unique solution to problem (3.5). Moreover let T,: W'2(Q N E,) = W;,.”(Q) be the extension
operator introduced in theorem 2.1. Then the sequence (7u,), converges strongly in L{, .(Q)
(and weakly in W;1:7(Q)) to the unique solution ¥ € W 7(Q) to the problem

m = min H fo(Du)dx+|QﬂE|j Igo—ul"dx], (3.6)
2 Q

we WHP(Q)

where f,: R" — R is given by
Jol® = infﬂ S, Dw)dx:u—¢-xe WoPR™), u— & x periodic] , 3.7
ONE
for every £ e R". Moreover (m,) converges to m, as ¢ = 0%.

Remark 3.2. If f(x, +) is differentiable for a.e. x € R", the minimum point ¥, € W"?(Q N E,)
of problem (3.5) is characterized as the unique solution of the associated Euler equation

_div(DEf(E; Duﬁ)) + plue e gsip_z(uz o= g.e) =0 inQnN Een
(.8)
By f(J—; Du,,) ‘=0 on 4(Q N E,),
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where n, is the outward unit normal to 3(Q N E,). In particular, if p = 2, f(x, &) = |21 (%),
where 1z is 1 on £ and 0 outside, andif g, = g € LZ(Q), then (3.8) coincides with the Laplace
equation (1.1) with Neumann boundary conditjons.

Remark 3.3. If, in the hypotheses of theorem 3.1, the strict convexity assumption (3.2) is
weakened into simple convexity, we can still obtain the following results.

For every & > 0 let u, e W"P(Q N E,) be a minimum point of problem (3.5) (which, in
general, does not have a unique solution). Then, for every open set Q' CC Q the sequence
| 7, 4.\l w20y is bounded independently of &, for & < (1/k,) dist(<¥’, 3L2), and hence there
exists a subsequence (T, u,,), that converges strongly in L{,.(Q) (and weakly in Wi (Q)).
Moreover, every subseguence with these properties actually converges to a solution

€ WL.P(Q) of (3.6). Finally, the whole sequence (m,), of the minimum values still converges
to m, as ¢ = 07, These results can be obtained by slightly modifying the proof of theorem 3.1.

For the reader’s convenience, we include hereafter the definition and main properties of
F-convergence, on which relies the proof of theorem 3.1.

Definition 3.4 (see [12]). Let (X, 1) be a metric space and F,, F, functionals from X into R.
We say that (F,), ['(7)-converges to Fy, i.e.

Fox) =T - ljg)g Fi(x)

for every x € X, if for every x € X the following conditions are fulfilled

Ve, = 0F, v, ~x Fx)< lil;'n inf F (x), 3.9)
Ve, 0" 3x, > X such that F(x) = lilxi'n F, (). (3.10)

THEOREIL/I 3.5 (see (12, corollary 2.4]). Let (X, 1) be a metric space and F,, F, functionals from
X into R, and let x, € X be a minimizer for F, i.e.

F (1) = min{F,(x) : x € X).
If (F,) I'(r)-converges to F, and (x,) converges to x, € X, then

Fo(xg) = 11'13)1+ Fo(x,) = min{Fyx) : x € X).

In order to prove theorem 3.1 by means of theorem 3.5, for every ¢ > 0 we introduce the
functionals F,, G,: L{,.(Q) X @ — [0, +) defined as

X
f(—, Du) dx  ifu e WP (ANE,),
F(u,A) = Lm;‘[ UNE (

1oo otherwise,

(3.11)

Ge(u, A) = F(u, A) + j lg. — ulPdx  if u e L (Q), (3.12)
ANE,

L4
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for every 4 € @, where @ denotes the family of all open subsets of Q. With this notation we

have
m, = min G,(u, Q). (3.13)
ueL‘ﬁ,C(Q)
We remark that, in general, problem (3.13) has no uniqueness of solutions. Moreover, if
u, € WHP(Q N E,) is a minimum point of (3.5), then every L, -extension of u, to the whole set
Q (in particular T,u,, with T, given by theorem 2.1) is a solution of (3.13).
In the following, if (H,),-, is a family of functionals defined on L{,.(Q), by I'(LL.) —
lim H, we denote the I'-limit of H, in the strong topology of L{,.(Q), according to definition

£—+0

3.4. ByT(IP) — 11'1'1}'1+ H_ we denote the I'-limit with respect to the topology on Lf,.(Q) induced

p
dpp(u, v) = (E |u — v|? dx) .
o

The behaviour of F,, G, with respect to T'-convergence is given by the following two
propositions.

by the extended distance

ProrositioN 3.6. Assume that (3.1), ..., (3.3) hold and let f;: R" — [0, +o[ be the function
defined by (3.7). Then
T(ry - lj:(r)i+ F,(u, A) = Fy(u, A), (3.19
8—'

for every u € L{,.(Q) and for every A € @, where Fy: L{ (Q) x @ — [0, +0] is given by

X Jo(Du) dx if u e WhP(A),
A

Fo(u, A) = (3.15)

+e0 otherwise.
Moreover, f, is strictly convex and satisfies the following growth conditions

AolEl” = fol§) = 2,(1 + €))7, (3.16)
for every ¢ € R", with 1, = 4,/k,, and k, given by theorem 2.1.

Proof. Let us begin by proving that
[(L?) — lim F(u, A) = 4+ (3.17)
e—+0

whenever u € W"P(A4). Let us fix A € @. According to definition 3.4, to prove (3.17) it is
enough to show that if ¢, = 0* and u, is a sequence in Lf, (Q) converging to u € L, (Q) in the
strong topology of L”(€), such that

Iig} inf F, (u, A) < +<o, (3.18)
then u € W"?(4). By (3.3) and (3.18) it follows that

1
lim inf j |Du,|? dx < E—lir};nﬂinf F, (uy, A),
ANE,, 1 =

h—co




and hence that, up to a subsequence
j |Du,|P dx < ¢,
ANE,,

with ¢ independent of 4. For every A € N let us consider the function T;, ) € WiaiP(A), where
T.: WhP(A N E,) = W,5:P(A) is the operator given by theorem 2.1 (with Q replaced by A4).
By (2.1), ..., (2.3) we have that T; u, = 4, a.e. in AN E,,, and

I 7::,,“&" whPny = G,

for every open set A' € A, with dist(A4’, d4) > g, k,, where the constant c is independent of 4’
and A.

If A" has Lipschitz boundary, by Rellich theorem, (7;, #,) converges, up to a subsequence,
to a function v € W'#(A4") strongly in L?(A") and weakly in W7(A4").

If we now consider an invading sequence of smooth open subsets of Q, by a diagonal process
we can extract a subsequence of (7, u;) (still denoted by T;, u,) that converges to a function
v e WaiP(A), strongly in LE.(A) and weakly in W;1:”(A). It is easy to show that v = u
a.e. in A. In fact, for every open set A’ CC A we have

5‘ ]u—u[‘“dxsc! lu—u,,|pdx+c§ | T, up — v|? dx,
A'NE,, A'NE,, A'NE,,
from which, by taking the limit as /4 tends to =, it follows
|QﬂE|E lu — v|?dx < 0.
o
Since this holds for every A’ CC A, we have proven that ¥ = va.e.in 4.

Now, since

] whPany = [lvl whPny = liiﬂ_’igf I T;,,u.&" wheny =C

for every A’ CC A, it follows that u € W"?(A).

Now (3.14) and (3.15) can be obtained as a direct consequence of [5, theorem 4], while the
strict convexity of f;, follows easily from its definition (3.7).

To conclude the proof of the theorem it remains to prove (3.16). To this aim, let us fix 4 € @,
¢ eR"and u(x) = ¢ - x for a.e. x € Q. By (3.9) with 4, = u and (3.3), we have

E Jo(©) dx = j-zi (1 + [¢/7) dx,
A A

that is
So® = 4,1 + [&[). (3.19)

Moreover, by (3.10) for every g, — 0™ there exists a sequence (1) in L, .(Q) that converges to
u in LP(Q), such that

j So(@) dx = Lim F,, (uy, A).
A ﬁ—'m
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By arguing as in the proof of (3.14), we obtain in particular that, since (7;, u) converges to u
also weakly in WL.7(Q), by (2-3) and (3.3)

j [£]F dx = j |Dul? dx < lim infj |D(T;,, )7 dx
A A e 4
k
< k, lim inf j |Duy P dx < =2 j Jol® dx,
h—o Jang,, A2 Ja

for every open set A CC A. This implies immediately
A1 pip
P &P < f5(),
2
that together with (3.19) gives (3.16) and concludes the proof of the theorem. W

Let Gy: LY (Q) X & — [0, +o] be the functional defined by

Golu, A) = Fy(u, A) + |Q N E] j lgo — ul? dx, (3.20)

A
where g, is the limit of (g,) given by (3.4).

ProrosrTion 3.7, Assume that (3.1), ..., (3.4) hold. Then
(L) ~ lim G,(u, Q) = Gylu, Q) (3.21)
=0

for every u € L{, .(Q).

Proof. Since
S 60, — upl? dx — lQnElj leo - ul” dx
ANE,, 4

for every g, ~ 0% and for every (u,) in L{,(Q) converging to u € L (Q), strongly in L7(Q),
from proposition 3.6 we obtain that

r{?) - lirg' G.(u, A) = Gy(u, 4) (3.22)

for every A € @ and for every uw e Lf (). To prove (3.21), we observe that, by (3.22),
condition (3.10) of definition 3.4 holds trivially for G,, with respect to the topology of
LE.(Q). To prove (3.9), let us fix (e,) tending to 0%, u, u, € L, (Q) with () tending to « in
L, .(©). Since (uy) converges to u in IP(QY’) for every open set ' CC Q, by (3.22) we have

Go(u, Q) < lit)'ln inf G, (u), Q") < Lil;n inf G, (1, Q).
By taking the supremum over ' CC Q, the conclusion follows directly. W

Proof of theorem 3.1. Let u, € W'2(Q N E,) be the unique solution to problem (3.5) and
let T,: WHP(Q N E,) ~ WhP(Q) be the extension operator introduced in theorem 2.1. Our
fitst aim is to prove that (T,u,) converges strongly in L{,. to a function u € L{ (). By
(3.3), ..., (3.5) we have that (l|l&,)p'»onE,) is bounded independently of ¢, and hence, by

(2.2), 2.3)
||Tz“z||wl‘”(,1) =c



for every open set A CC Q such that dist(A4, dQ) > ek,, with a constant ¢ independent of & and
A. If A has Lipschitz boundary, by Rellich’s theorem there exists a subsequence (T;, u,,) that
converges to a function u € W!?(A) strongly in L”(A4). If we now consider an invading
sequence of open subsets of Q, using a diagonal process we extract a subsequence of (7, u,,)
(still denoted by 7;, u, ) that converges to a function u € WiLP(Q), strongly in L2, .(Q). Now, by
theorem 3.5 and proposition 3.7 all the assertions of theorem 3.1 follow for the subsequence g, .
More precisely, # turns out to be a solution to problem (3.6), and m,, — m as h — . Since
problem (3.6) has a unique solution by the strict convexity of f, (see proposition 3.6), the whole
sequence (T u,) tends to u strongly in Lf (Q), and also m, = m as ¢ — 0. The proof of
theorem 3.1 is then complete. W
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