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Abstract

We study integral functionals of the form F (u,Ω) =
∫

Ω
f(∇u) dx , defined for u ∈

C1(Ω;Rk) , Ω ⊆ Rn . The function f is assumed to be polyconvex and to satisfy the

inequality f(A) ≥ c0|M(A)| for a suitable constant c0 > 0, where M(A) is the n -vector

whose components are the determinants of all minors of the k×n matrix A . We prove

that F is lower semicontinuous on C1(Ω;Rk) with respect to the strong topology of

L1(Ω;Rk) . Then we consider the relaxed functional F , defined as the greatest lower

semicontinuous functional on L1(Ω;Rk) which is less than or equal to F on C1(Ω;Rk) .

For every u ∈ BV (Ω;Rk) we prove that F(u, Ω) ≥
∫

Ω
f(∇u) dx + c0|D

su|(Ω) , where

Du = ∇u dx + Dsu is the Lebesgue decomposition of the Radon measure Du . More-

over, under suitable growth conditions on f , we show that F(u, Ω) =
∫

Ω
f(∇u) dx for

every u ∈ W 1,p(Ω;Rk) , with p ≥ min{n, k} . We prove also that the functional F(u, Ω)

can not be represented by an integral for an arbitrary function u ∈ BV
loc

(Rn;Rk) . In

fact, two examples show that, in general, the set function Ω 7→ F(u, Ω) is not subad-

ditive when u ∈ BV
loc

(Rn;Rk) , even if u ∈ W
1,p

loc
(Rn;Rk) for every p < min{n, k} .

Finally, we examine in detail the properties of the functions u ∈ BV (Ω;Rk) such that

F(u, Ω) =
∫

Ω
f(∇u) dx , particularly in the model case f(A) = |M(A)| .
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New lower semicontinuity results for polyconvex integrals 1

Introduction

The aim of this paper is to study some lower semicontinuity properties of the func-

tional

(0.1) F (u) =

∫

Ω

f(∇u(x)) dx ,

where Ω is a bounded open subset of Rn , u: Ω → Rk is a vector valued function,

∇u denotes the Jacobian matrix of u , and f is a non-negative function defined in the

space Mk×n of all k×n matrices. We shall always assume that f is polyconvex in the

sense of Ball (see [1] and [5]), i.e., there exists a convex function g , defined in the space

Ξ of all n -vectors of Rn×Rk , such that f(A) = g(M(A)) for every A ∈ Mk×n , where

M(A) denotes the n -vector whose components are the determinants of all minors of the

matrix A (with the appropriate sign, see (1.1) and (1.2)), including the minor of order 0,

whose determinant, by convention, is set to be equal to 1.

Our model example, in this investigation, is the functional

(0.2) A(u) =

∫

Ω

∣

∣M(∇u(x))
∣

∣ dx ,

which represents, when u ∈ C1(Ω;Rk) , the n -dimensional area of the graph of u . More

generally, we shall consider polyconvex integrals of the form (0.1) such that

(0.3) f(A) ≥ c0|M(A)| ∀A ∈ Mk×n ,

for a suitable constant c0 > 0.

The classical lower semicontinuity theorems with respect to the weak topology of

W 1,p(Ω;Rk) , due to Morrey (see [21], [22], [5]), can not be applied to the study of

minimum problems involving the functional F . Indeed, the lower bound (0.3) guarantees

that
(

M(∇uh)
)

is bounded in L1(Ω; Ξ) along every minimizing sequence (uh) , and this

implies only that a subsequence of (uh) converges in L1(Ω;Rk). Therefore, in this paper

we study the lower semicontinuity properties of F with respect to the strong convergence

in L1(Ω;Rk).

A slight modification of Counterexample 7.4 of [2] shows that the area functional

A is not lower semicontinuous on W 1,1(Ω;Rk) with respect to the strong topology of

L1(Ω;Rk) . More precisely, it is possible to construct a sequence (uh) , converging to a

smooth function u in the weak topology of W 1,p(Ω;Rk) for every p < min{n, k} , such
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that A(u) > lim
h→∞

A(uh) . The main feature of this counterexample is the use of functions

uh ∈W 1,p(Ω;Rk) for which A(uh) loses its geometrical meaning.

To overcome this difficulty, we propose a different approach. We keep the definition

(0.2) of A(u) only when u ∈ C1(Ω;Rk) , so that A(u) is the n -dimensional area of

the graph of u , and we extend, formally, the definition of A to every u ∈ L1(Ω;Rk)

by setting A(u) = +∞ for u /∈ C1(Ω;Rk) . Then we consider the relaxed functional

A:L1(Ω;Rk) → [0,+∞] , defined as the greatest lower semicontinuous functional on

L1(Ω;Rk) which is less than or equal to A (for more detailed information on the relax-

ation method in the calculus of variations we refer to [8], [4], [5]). Similarly, we keep the

definition (0.1) of F (u) only when u ∈ C1(Ω;Rk) , and we extend the definition of F

to every u ∈ L1(Ω;Rk) by setting F (u) = +∞ for u /∈ C1(Ω;Rk) . The corresponding

relaxed functional will be denoted by F .

We prove (Theorems 2.4 and 2.5) that the functionals A and F are lower semicon-

tinuous on C1(Ω;Rk) ∩ L1(Ω;Rk) with respect to the strong topology of L1(Ω;Rk) .

This implies that A(u) = A(u) and F(u) = F (u) for every u ∈ C1(Ω;Rk)∩L1(Ω;Rk) .

The main difficulty of our problem lies in the fact that we are considering, in partic-

ular, functionals with linear growth with respect to the n -vector of the minors M(A) .

The situation is completely different, if we suppose

f(A) ≥ c0|M(A)|p ∀A ∈ Mk×n

for suitable constants c0 > 0 and p > 1. Indeed, if (uh) is a sequence in C1(Ω;Rk) ,

converging in L1(Ω;Rk) to a function u ∈ C1(Ω;Rk) , and
(

M(∇uh)
)

is bounded in

Lp(Ω; Ξ), then u ∈ W 1,p(Ω;Rk) , M(∇u) ∈ Lp(Ω; Ξ), and
(

M(∇uh)
)

converges to

M(∇u) weakly in Lp(Ω; Ξ) (see [10] and [18]), so that the lower semicontinuity of F

in L1(Ω;Rk) follows from the lower semicontinuity of the functional w 7→
∫

Ω
g(w) dx in

the weak topology of Lp(Ω; Ξ). This idea can not be applied when p = 1, because easy

counterexamples show that the boundedness of
(

M(∇uh)
)

in L1(Ω; Ξ) does not imply

the convergence of
(

M(∇uh)
)

to M(∇u) in the weak sense of distributions.

Our lower semicontinuity results on C1(Ω;Rk) show that A and F are not only

the greatest lower semicontinuous functionals less than or equal to A and F , but they

are also extensions of the functionals A and F outside C1(Ω;Rk) . Following a tradition

that goes back to Lebesgue [16] for the area functional, and that was adopted by Serrin

[24] in the study of general variational integrals, we consider A(u) and F(u) as the only

reasonable variational definition of the functionals A and F when u /∈ C1(Ω;Rk) .
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The problem is now to describe the behaviour of the functionals A(u) and F(u)

when u /∈ C1(Ω;Rk), and, possibly, to give an explicit integral representation of these

functionals, at least for a wide class of functions u . It is easy to see that, if A(u) < +∞ or

F(u) < +∞ , then u ∈ BV (Ω;Rk) (Remark 2.6), thus we can restrict our investigation

to the space BV (Ω;Rk). We prove (Theorems 2.7 and 2.8) the following estimates from

below for every u ∈ BV (Ω;Rk) :

A(u) ≥
∫

Ω

∣

∣M(∇u(x))
∣

∣dx + |Dsu|(Ω) ,

F(u) ≥
∫

Ω

f(∇u(x)) dx + c0|Dsu|(Ω) ,

where c0 is the constant in (0.3), and Du = ∇u dx+Dsu is the Lebesgue decomposition

of the Mk×n -valued Radon measure Du , with ∇u ∈ L1(Ω;Mk×n) and Dsu singular

with respect to the Lebesgue measure. This leads to the equality

(0.4) A(u) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx

when u ∈ W 1,p(Ω;Rk) for some p ≥ min{n, k} (Theorem 2.9), and shows that the

functional u 7→
∫

Ω
|M(∇u)| dx is lower semicontinuous on W 1,p(Ω;Rk) with respect

to the strong topology of L1(Ω;Rk) , when p ≥ min{n, k} (Corollary 2.10). Similar

properties hold for F , if f(A) ≤ c1
(

|A|p + 1
)

(Theorem 2.12 and Corollary 2.13).

A difficult open problem (see [7]) concerns the dependence on Ω of the functionals

A(u) and F(u) , which will be now denoted by A(u,Ω) and F(u,Ω). We prove, with

an explicit example in the case n = k = 2, that the set function Ω 7→ A(u,Ω) is not

subadditive when u is an arbitrary function of BVloc(R
n;Rk) (Theorem 3.1). Therefore,

while in the scalar case k = 1 the functional A(u,Ω) can be represented by an integral

over Ω, involving a function and a measure, both depending on u (see [15]), this is no

longer true in the vector case k ≥ 2.

When n > 2 and k > 2 it is possible to give a counterexample to the subadditivity

of Ω 7→ A(u,Ω) even when u ∈ W 1,p
loc (Rn;Rk) for all p < min{n, k} (Theorem 4.1).

The same example shows also that (0.4) does not hold, in general, when p < min{n, k}
(Lemma 4.2).

Finally, we prove (Proposition 5.8) that, if the polyconvex function f satisfies the

inequalities c0|M(A)| ≤ f(A) ≤ c1
(

|M(A)| + 1
)

, with 0 < c0 ≤ c1 , then for every

function u ∈ BV (Ω;Rk) the condition

(0.5) A(u,Ω) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx < +∞
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implies

F(u,Ω) =

∫

Ω

f(∇u(x)) dx .

Moreover, we prove that (0.5) is satisfied if and only if u ∈ W 1,1(Ω;Rk) , M(∇u) ∈
L1(Ω; Ξ), and there exists a sequence (uh) in C1(Ω;Rk) , converging to u in L1(Ω;Rk) ,

such that
(

M(∇uh)
)

converges to M(∇u) in L1(Ω; Ξ) (Theorem 5.4). This implies

that, if (0.5) holds for a set Ω, then the same equality holds for every open subset of Ω

(Remark 5.7).

We conclude the paper by proving that, in the case n = 2, if u ∈ BV (Ω1 ∪ Ω2;R
k)∩

L∞(Ω1 ∪ Ω2;R
k) satisfies (0.5) for Ω = Ω1 and Ω = Ω2 , then (0.5) holds for every open

set Ω with Ω ⊂⊂ Ω1 ∪ Ω2 .

Our results about the functional F , stated in the introduction for F (u) =
∫

Ω
f(∇u) dx , are all valid in the case F (u) =

∫

Ω
f(x, u,∇u) dx , under suitable assump-

tions on f that are provided in the following sections.

The lower semicontinuity results proved in this paper are obtained by using some

fundamentals ideas and techniques of geometric measure theory introduced in the study

of polyconvex integrals by Giaquinta, Modica, and Souček in [10], [11], [12]. In particular,

we use the compactness of the space cart(Ω;Rk) of Cartesian currents introduced in [10],

and the relationships between Cartesian currents and graphs discussed in the same paper.

The counterexamples to the subadditivity of Ω 7→ A(u,Ω) are based on some ideas

of De Giorgi and on some technical arguments from geometric measure theory. In the

counterexample concerning Sobolev functions we use also a construction which is remi-

niscent of the “dipole construction” considered by Brezis, Coron, and Lieb in [3]. Finally,

the properties of the pairs (u,Ω) which satisfy (0.5) are obtained by using some results

about convex functions of measures proved by Reshetnyak in [23].
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1. Definitions and preliminary results

Measures. Let U be a locally compact Hausdorff space with a countable base and let

X be a finite dimensional vector space, with dual X ′ . A Radon measure on U with

values in X is a continuous linear functional on the space C0
c (U ;X ′) of all continuous

X ′ -valued functions with compact support in U . The space of all Radon measures on

U with values in X is denoted by M(U ;X) . Every Radon measure µ ∈ M(U ;X)

will be identified with the corresponding countably additive X -valued set function, still

denoted by µ , defined on the family of all relatively compact Borel subsets of U , so that

µ(f) =
∫

U
f dµ for every f ∈ C0

c (U ;X ′) .

Given a norm | · | on X , the variation of a Radon measure µ ∈ M(U ;X) will be

denoted by |µ| . It is well known that |µ| is a positive measure defined in the family of

all Borel subsets of U . If |µ|(U) < +∞ , we say that the Radon measure µ is bounded.

In this case the integral µ(f) =
∫

U
f dµ is well defined for every bounded Borel function

f :U → X ′ .

As M(U ;X) is the dual of C0
c (U ;X ′) , we can consider the weak∗ topology on

M(U ;X) . By definition, a sequence (µh) in M(U ;X) converges to µ ∈ M(U ;X) in the

weak∗ topology on M(U ;X) if
∫

U
f dµh converges to

∫

U
f dµ for every f ∈ C0

c (U ;X ′) .

We shall frequently use the following lower semicontinuity theorem due to Reshet-

nyak.

Theorem 1.1. Let g:U×X → [0,+∞] be a function such that:

(i) g is lower semicontinuous on U×X ;

(ii) for every x ∈ U the function ξ 7→ g(x, ξ) is convex and positively homogeneous of

degree one on X .

Let G:M(U ;X) → [0,+∞] be the functional defined by

G(µ) =

∫

U

g
(

x, dµ
d|µ| (x)

)

d|µ|(x) ,

where dµ
d|µ|

denotes the Radon-Nikodym derivative of the vector measure µ with respect

to the scalar measure |µ| . Then G is sequentially lower semicontinuous on M(U ;X)

with respect to the weak∗ convergence.

Proof. In [23] the theorem is proved under the additional assumption that g is continuous

on U×X . The same arguments can be adapted to the general case. For a different proof

see also [4], Corollary 3.4.2.
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We shall also use the following version of a continuity theorem due to Reshetnyak.

Theorem 1.2. Let g:U×X → [0,+∞[ be a continuous function and let G be the

functional defined in Theorem 1.1. If the norm | · | on X comes from a scalar product,

then G(µ) = lim
h→∞

G(µh) for every sequence (µh) in M(U ;X) , converging to a bounded

Radon measure µ in the weak∗ topology of M(U ;X) , and such that
(

|µh|(U)
)

converges

to |µ|(U) .

Proof. See [23], Theorem 3, and [17], Appendix.

Let V be another locally compact Hausdorff space with a countable base, let f :U →
V be a continuous function, and let µ be a bounded Radon measure on U with values

in X . The image measure f∗ µ is the X -valued Radon measure on V defined by

(f∗ µ)(ϕ) = µ(f∗ϕ) ∀ϕ ∈ C0
0 (V ;X ′) ,

where f∗:C0
c (V ;X ′) → C0(U ;X ′) is defined by f∗ϕ = ϕ ◦ f .

The Lebesgue measure in Rn will be denoted by Ln , while the n -dimensional

Hausdorff measure (in an arbitrary metric space) will be denoted by Hn . If µ is any

measure and A is any µ-measurable set, the measure µ A is defined by (µ A)(B) =

µ(A∩B) for every µ-measurable set B . We say that two µ-measurable sets A1 and A2

are µ-equivalent, and use the notation A1 ≃ A2 (in the sense of µ), if |µ|(A1∆A2) = 0,

where ∆ denotes the symmetric difference of sets. It is clear that, if A1 ≃ A2 in the

sense of µ , then µ A1 = µ A2 .

Functions with bounded variation. Let U be a bounded open subset of Rn . The space

BV (U ;Rk) of Rk -valued functions with bounded variation is defined as the set of all

functions u ∈ L1(Ω;Rk) whose distributional gradient Du is a bounded Radon measure

on U with values in the space Mk×n of all k×n matrices. Given u ∈ BV (U ;Rk) , the

measure Du can be written in a unique way as

Du(B) =

∫

B

∇u dx + Dsu(B)

for every Borel set B ⊆ U , where ∇u ∈ L1(U ;Mk×n) and Dsu is an Mk×n -valued

Radon measure, which is singular with respect to the Lebesgue measure (Lebesgue-

Nikodym decomposition).
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On Mk×n we shall consider the Hilbert-Schmidt norm defined by |A|2 = tr(AA∗) .

With this choice of the norm we have

|Du|(B) =

∫

B

|∇u| dx + |Dsu|(B)

for every Borel set B ⊆ U .

Currents. Given an open subset U of Rm , the space of all n -forms with C∞ coefficients

and with compact support in U will be denoted by Dn(U) . The space Dn(U) of all n -

currents on U is defined as the dual of Dn(U) . The mass MU (T ) of a current T ∈ Dn(U)

is given by

MU (T ) = sup{T (ω) : ω ∈ Dn(U), |ω(z)| ≤ 1 ∀z ∈ U} ,

where | · | is the Hilbert norm in the space of all n -covectors of Rm .

It is well known that, if a current T ∈ Dn(U) has finite mass, then T is a bounded

Radon measure on U with values in the space of all n -covectors of Rm . Consequently,

for every n -form ω ∈ Dn(U) we have

T (ω) =

∫

〈 dT
d|T |

, ω〉 d|T | ,

where dT
d|T | denotes the Radon-Nikodym derivative of the vector measure T with respect

to the scalar measure |T | , and 〈·, ·〉 is the duality pairing between n -vectors and n -

covectors. If T has finite mass, the previous formula defines unambiguously T (ω) for

every n -form ω with bounded continuous coefficients on U .

Following the terminology of [25], Chapter 3, we say that a subset M of Rm is

countably n -rectifiable if M ⊆
⋃∞

j=0Nj , where Hn(N0) = 0 and where each Nj , j ≥ 1,

is an n -dimensional embedded C1 -manifold of Rm . If M is countably n -rectifiable, then

the approximate tangent space TM (x) exists for Hn -a.e. x ∈M (see [25], Theorem 11.6).

An orientation ξ of a countably n -rectifiable set M is an Hn -measurable n -vector field

on M such that for Hn -a.e. x ∈ M we have ξ(x) = τ1 ∧ · · · ∧ τn , where {τ1, . . . , τn}
forms an orthonormal basis for the approximate tangent space TM (x) . A countably n -

rectifiable set together with an orientation is called an oriented countably n -rectifiable

set.

We refer to [9] and [25] for a complete treatment of the theory of currents and of

rectifiable sets.
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If U is an open subset of Rm and M an oriented countably n -rectifiable subset

of U , with orientation ξ , the integration on M is the current [[M ]] defined by

[[M ]] (ω) =

∫

M

〈ξ, ω〉 dHn ∀ω ∈ Dn(U) .

In the particular case m = n , for any measurable subset A of Rn we consider the

canonical orientation given by the n -vector e1∧· · ·∧en , where e1, . . . , en is the canonical

basis of Rn . Consequently, the current [[A]] is given by

[[A]] (ϕdx1 ∧ · · · ∧ dxn) =

∫

A

ϕ(x) dx

for every ϕ ∈ D(U) .

More generally, given an oriented countably n -rectifiable set M ⊆ U , with orienta-

tion ξ , and a multiplicity function θ (i.e., an Hn -measurable locally integrable function

θ defined on M with positive integer values), we define the current T = τ(M, θ, ξ) by

T (ω) =

∫

M

〈ξ, ω〉 θ dHn ∀ω ∈ Dn(U) .

These currents will be called (integer multiplicity) rectifiable n -currents. Note that, if

T = τ(M, θ, ξ) , then |T | = θHn M and dT
d|T | = ξ Hn -a.e. on M .

If V is an open subset of some Euclidean space Rk and f :U → V is a proper

function of class C∞ , the “push-forward” f# of a current T ∈ Dn(U) is the current

f#T ∈ Dn(V ) defined by (f#T )(ω) = T (f#ω) for every ω ∈ Dn(V ) , where f#ω ∈ Dn(U)

denotes the “pull-back” of the form ω ∈ Dn(V ) . If T has a finite mass, then f#T is well

defined by the previous formula for every f of class C1 with bounded derivatives, even

if f is not proper. It is clear that, in this case, the current f#T has a finite mass too. As

T is a bounded Radon measure on U with values in the space of all n -vectors of Rm ,

we can consider as well the image measure f∗ T , which is a bounded Radon measure on

V with values in the space of all n -vectors of Rm . Note that, in general, f# T 6= f∗ T ,

since, clearly, f#ω 6= f∗ω for an arbitrary n -form.

Currents in product spaces. We intoduce now some notation particularly suited for deal-

ing with n -forms and n -currents defined on the product space Rn×Rk , when we want

to stress the different role of the variables x ∈ Rn and y ∈ Rk .

Let e1, . . . , en and ε1, . . . , εk be the canonical bases of Rn and Rk . If 1 ≤ p ≤ n ,

we define

Ip,n = {α = (α1, . . . , αp) ∈ Np : 1 ≤ α1 < · · · < αp ≤ n} ,
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and we set I0,n = {0} ; if α ∈ Ip,n , we set |α| = p . If |α| = 1, then α = (i) for some i

between 1 and n : in this case we shall simply write i instead of α .

For any α ∈ Ip,n , with 1 ≤ p ≤ n , we define

eα = eα1
∧ · · · ∧ eαp

, dxα = dxα1∧ · · · ∧ dxαp ,

and we set e0 = 1 and dx0 = 1. The definitions of εβ and dyβ for β ∈ Iq,k are

analogous.

A basis for the space of n -vectors of Rn×Rk is given by {eα ∧ εβ : |α| + |β| = n} ,

so that any n -vector ξ may be written in a unique way as

ξ =
∑

|α|+|β|=n

ξαβ eα ∧ εβ ;

the dual basis for n -covectors is {dxα∧ dyβ : |α| + |β| = n} .

With the previous notation, given an open subset U of Rn×Rk , every ω ∈ Dn(U)

may be written in a unique way as

ω =
∑

|α|+|β|=n

ωαβ dx
α∧ dyβ ,

where ωαβ ∈ C∞
c (U) . If T ∈ Dn(U) , for every α , β with |α| + |β| = n we denote by

Tαβ the scalar distribution defined for every ϕ ∈ C∞
c (U) by

Tαβ(ϕ) = T (ϕdxα∧ dyβ) ,

so that for every ω ∈ Dn(U)

T (ω) =
∑

|α|+|β|=n

Tαβ(ωαβ) ;

the distributions Tαβ are called the components of T .

Graphs. We denote henceforth by Ω a bounded open subset of Rn and by U the cylinder

Ω×Rk . For any subset A of Ω and for any function u:A → Rk we denote its graph

by Gu , i.e.,

Gu = {(x, y) ∈ Rn×Rk : x ∈ A , y = u(x)} .
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If u: Ω → Rk is continuously differentiable, for any (x, y) ∈ Gu a basis for the tangent

space TGu
(x, y) is given by the vectors

vi(x) = ei +

k
∑

j=1

∂uj

∂xi
(x)εj , i = 1, . . . , n ,

and, setting µ(x) = v1(x) ∧ · · · ∧ vn(x) , the natural orientation of TGu
(x, y) is given by

ξ(x, y) =
µ(x)

|µ(x)| .

With this choice of ξ , the set Gu becomes an oriented n -rectifiable set, with which

we associate the current [[Gu]] . Note that the orientation chosen for Gu implies that

p# [[Gu]] = [[Ω]] , where p is the canonical projection from Rn×Rk onto Rn , and that

[[Gu]] = U# [[Ω]] , where U(x) = (x, u(x)) .

If α ∈ In−p,n , we denote by α̂ ∈ Ip,n the increasing complement of α in {1, . . . , n} ;

we note in particular that 0̂ = (1, . . . , n) . Also, we denote by ǫ(α) the sign of the

permutation of (1, . . . , n) into (α, α̂) , with the convention ǫ(0) = 1.

The n -vector µ(x) introduced above can be written explicitly as

(1.1) µ(x) =
∑

|α|+|β|=n

µαβ(x) eα ∧ εβ ,

where

(1.2) µαβ(x) = ǫ(α) det
( ∂uβi

∂xα̂j
(x)

)

,

with the convention µ0̂0(x) = 1. Note in particular that Diu
j(x) = (−1)n−iµı̂j(x) .

Since the n -vector µ(x) depends on x only through the matrix ∇u(x) , we are led

to defining for every k×n matrix A the n -vector

M(A) =
∑

|α|+|β|=n

Mαβ(A) eα ∧ εβ ,

where

(1.3) Mαβ(A) = ǫ(α) det (Aβiα̂j
) ,

with the convention M0̂0(A) = 1. With this notation we have µ(x) = M(∇u(x)) for

every u ∈ C1(Ω;Rk) .
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Setting T = [[Gu]] , we remark that |T | = Hn Gu and p∗|T | = p∗(Hn Gu) =

|µ| Ln Ω, i.e.,

(1.4) Hn(Gu ∩ (A×Rk)) =

∫

A

|µ(x)| dx

for every Ln -measurable subset A of Ω. Moreover, the components Tαβ are Radon

measures satisfying

Tαβ(ϕ) =

∫

Ω

ϕ(x, u(x))µαβ(x) dx

for every ϕ ∈ C∞
0 (U) . This is equivalent to saying that µαβ = p∗ T

αβ and Tαβ = U∗ µ
αβ ,

where, as usual, we identify the locally integrable function µαβ with the Radon measure
∫

B
µαβdx . Therefore µ = p∗ T and T = U∗ µ .

By Stokes Theorem we have ∂ [[Gu]] = 0 in Ω×Rk . We also remark that the

canonical orientation ξ satisfies ξ0̂0(x, y) = |µ(x)|−1 > 0 for every (x, y) ∈ Gu . This is

related to the fact that p maps TGu
(x, y) onto Rn . Indeed, if V is an n -dimensional

linear subspace of Rn×Rk , with orthonormal basis {τ1, . . . , τn} , and η = τ1 ∧ . . . ∧ τn ,

then the conditions η0̂0 6= 0 and p(V ) = Rn are equivalent.

We consider now the case of a graph of a not necessarily smooth function: let A be

a measurable subset of Ω and u be any function from A to Rk . If Gu is a countably

n -rectifiable set such that p maps TGu
(x, y) onto Rn for Hn -a.e. (x, y) ∈ Gu , then

there exists a unique orientation ξ of Gu such that ξ0̂0 > 0 Hn -a.e. on Gu . This choice

of ξ will be considered as the natural orientation of Gu , and again the current [[Gu]]

satisfies p# [[Gu]] = [[A]] .

Cartesian currents. To generalize the notion of Cartesian graph, Giaquinta, Modica, and

Souček introduced in [10] and [12] the space cart(Ω;Rk) of all rectifiable n -currents T

on U = Ω×Rk such that p#T = [[Ω]] , T 0̂0 ≥ 0, ∂T = 0, MU (T ) < +∞ , and

sup{T (|y|ϕ(x, y) dx1 ∧ · · · ∧ dxn) : ϕ ∈ C∞
0 (U) , sup |ϕ| ≤ 1} < +∞ .

In the case T = [[Gu]] the last expression is just the L1 norm of u ; if, in addition,

u ∈ C1(Ω;Rk) , then MU ( [[Gu]] ) is the n -dimensional area of the graph Gu . This

implies that [[Gu]] ∈ cart(Ω;Rk) for every u ∈ C1(Ω;Rk) with
∫

Ω
|u| dx < +∞ and

Hn(Gu) < +∞ . Note that, if u /∈ C1(Ω;Rk) , even if these two conditions are satisfied

and Gu is n -rectifiable and can be oriented in the natural way, we cannot deduce that

[[Gu]] ∈ cart(Ω;Rk) , because the condition ∂ [[Gu]] = 0 may fail when u is not smooth
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(consider, for instance, the case of a piecewise constant function; an example of a function

u such that ∂ [[Gu]] 6= 0, although u belongs to a Sobolev space, may be found in

Section 3).

Given T = τ(M, θ, ξ) ∈ cart(Ω;Rk) , a point (x, y) ∈ M is said to be regular if

p maps TM (x, y) onto Rn . The set of regular points will be denoted by Mr , and its

complement in M by Ms . Moreover, we define Ωs = p(Ms) , Ωr = Ω \ Ωs , Tr =

τ(Mr, θ, ξ) , and Ts = τ(Ms, θ, ξ) . Note that MU (T ) = MU (Tr) + MU (Ts) .

We also introduce the Radon measure µT on Ω, with values in the space of n -vectors

of Rn×Rk , defined by µT = p∗ T ; its components are the scalar Radon measures µαβ
T

on Ω defined by µαβ
T = p∗ T

αβ . Note that, if T = [[Gu]] for some u ∈ C1(Ω;Rk), then

µT coincides with the function µ given by (1.1).

The following theorems are a summary of the results of [10], [11], [12] that are

relevant to our paper.

Theorem 1.3. Let T = τ(M, θ, ξ) be a current in cart(Ω;Rk) . Then Ln(Ωs) = 0 and

there exists a function ũT : Ωr → Rk such that Gũ
T
≃Mr in the sense of Hn . Moreover

θ = 1 Hn -a.e. on Mr , so that Tr = [[Gũ
T
]] .

Proof. See [10], Section 3, Theorem 2, and [12], Theorem 1.

Remark 1.4. If u: Ω → Rk is another function such that Gu ≃ Mr , then Gu ≃ Gũ
T

in the sense of Hn , hence u = ũT Ln -a.e. on Ω. The converse is not always true:

there are simple examples, even with n = k = 1, where u = ũT Ln -a.e. on Ω, but

Hn(Gu∆Gũ
T
) > 0 and [[Gu]] 6= Tr . However, if Gu is countably n -rectifiable and p

maps TGu
(x, y) onto Rn for Hn -a.e. (x, y) ∈ Gu , then the equality u = ũT Ln -a.e.

on Ω implies Hn(Gu∆Gũ
T
) = 0 by the area formula, hence Tr = [[Gu]] . In particular,

this condition is satisfied when u is locally Lipschitz on Ω, and u = ũT Ln -a.e. on Ω.

Theorem 1.5. Let T = τ(M, θ, ξ) be a current in cart(Ω;Rk) and let uT : Ω → Rk be

any Ln -measurable function such that uT = ũT Ln -a.e. on Ωr . Then

(a) uT ∈ BV (Ω;Rk) and Diu
j
T = (−1)n−iµı̂j

T on Ω for every 1 ≤ i ≤ n , 1 ≤ j ≤ k ;

(b) µT Ωr is absolutely continuous and µT Ωs is singular with respect to Ln ;

(c) |DuT | ≤ |µT | ≤ p∗|T | = p∗(Hn M) on Ω , and |DsuT | = |DuT | Ωs ;

(d) µT (B ∩Ωr) =
∫

B
M(∇uT (x)) dx and |µT |(B ∩Ωr) =

∫

B
|M(∇uT (x))| dx for every

Borel subset B of Ω ;
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(e) |µT | = p∗|T | = p∗(Hn Mr) on Ωr ;

(f) ξ(x, uT (x)) =
dµT

d|µ
T
|(x) =

M(∇uT (x))
|M(∇u

T
(x))| for Ln -a.e. x ∈ Ωr ;

(g) Tr(ω) =
∫

Ω

〈

M(∇uT (x)), ω(x, uT (x))
〉

dx for every ω ∈ Dn(U) .

Proof. (a) See [10], Section 3, Theorem 3.

(b) Since Ln(Ωs) = 0, the measure µT Ωs is singular with respect to Ln . Let JMp

be the Jacobian of the map p on M (see [25], Section 12). For every Borel subset B of

Ωr the area formula gives
∫

M∩p−1(B)

JMp(z) dHn(z) =

∫

B

H0(M ∩ p−1(x)) dLn(x) .

As JMp(z) > 0 for every z ∈Mr , the condition Ln(B) = 0 implies Hn(Mr ∩p−1(B)) =

0. Since B ∩ p(Ms) = Ø, and hence M ∩ p−1(B) = Mr ∩ p−1(B) , we obtain

µT (B) =

∫

M∩p−1(B)

ξ(z) dHn(z) =

∫

Mr∩p−1(B)

ξ(z) dHn(z) = 0

for every Borel subset B of Ωr with Ln(B) = 0. This proves that µT Ωr is absolutely

continuous with respect to Ln .

(c) The first inequality follows from (a). For the second one it is enough to observe that

|p∗µ| ≤ p∗|µ| for every vector measure µ on Ω×Rk with finite total variation. The

equality concerning DsuT follows from (b).

(d) The formula for µT is proved in [11], Theorem 5. The formula for |µT | follows easily

from the previous one.

(e) For every Borel subset B of Ωr we have M ∩p−1(B) = Mr∩p−1(B) ≃ Gũ
T
∩p−1(B)

in the sense of Hn , hence

µT (B) =

∫

Gũ
T
∩p−1(B)

ξ(z) dHn(z) .

Since p is one-to-one from Gũ
T

to Ωr and |ξ(z)| = 1 for Hn -a.e. z ∈ Gũ
T

, we conclude

that |µT |(B) = Hn(Gũ
T
(z) ∩ p−1(B)) = Hn(Mr ∩ p−1(B)) .

(f) Since
(

p(z), ũT (p(z))
)

= z for Hn -a.e. z ∈Mr , and |µT | = p∗(Hn Mr) , we have

µT (B) =

∫

Mr∩p−1(B)

ξ(z) dHn(z) =

∫

B

ξ(x, ũT (x)) d|µT |(x)

for every Borel subset B of Ωr . This implies that ξ(x, ũT (x)) =
dµT

d|µ
T
| (x) for |µT | -a.e.

x ∈ Ωr , hence ξ(x, uT (x)) =
dµT

d|µ
T
| (x) for Ln -a.e. x ∈ Ωr (recall that |µT | ≥ Ln on Ω

thanks to (d)). The other equality follows easily from (d).

(g) See [11], Theorem 5.
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Theorem 1.6. Let (uh) be a sequence in C1(Ω;Rk) converging strongly in L1(Ω;Rk)

to some function u , and such that the graphs Guh
have equibounded Hn measure. Then

there exist a subsequence, still denoted (uh) , and a current T ∈ cart(Ω;Rk) , such that:

(a) [[Guh
]] ⇀ T weakly in Dn(U) ;

(b) u = uT Ln -a.e. on Ω , hence u ∈ BV (Ω;Rk) ;

(c) Duh ⇀ Du in the weak∗ topology of M(Ω;Mk×n) .

If, in addition, u is locally Lipschitz on Ω , then Tr = [[Gu]] .

Proof. The compactness property is proved in [10], Section 3, Theorem 1. For (b) and

(c) see [10], Section 3, Theorem 3. The last assertion follows from Remark 1.4.

2. Lower semicontinuity and relaxation

Let Ω be a bounded open subset of Rn . For every u ∈ C1(Ω;Rk) the n -dimensional

area of the graph of u is given by

A(u) = MU ( [[Gu]] ) = Hn(Gu) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx .

We define the functional A on L1(Ω;Rk) by setting

A(u) =







∫

Ω

∣

∣M(∇u(x))
∣

∣ dx , if u ∈ C1(Ω;Rk),

+∞ , otherwise,

and we consider the corresponding relaxed functional A:L1(Ω;Rk) → [0,+∞] , defined

as the greatest lower semicontinuous functional on L1(Ω;Rk) which is less than or equal

to A .

Besides the area functionals A and A , with the same methods we can study a wide

class of polyconvex functionals. We recall that a function f :Mk×n → [0,+∞] is said

to be polyconvex if there exists a convex function g: Ξ → [0,+∞] , defined in the space

Ξ of all n -vectors of Rn×Rk , such that f(A) = g(M(A)) for every A ∈ Mk×n . As

M0̂0(A) = 1 for every A ∈ Mk×n , the definition of g is relevant only on the hyperplane

Ξ0̂0 = {ξ ∈ Ξ : ξ0̂0 = 1} . By changing, if needed, g out of this hyperplane, we may

always assume that g is positively homogeneous of degree one on Ξ.
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Let f : Ω×Rk×Mk×n → [0,+∞[ be a function such that:

(i) for every (x, y) ∈ Ω×Rk the function A 7→ f(x, y, A) is polyconvex on Mk×n ;

(ii) there exists a constant c0 > 0 such that f(x, y, A) ≥ c0|M(A)| for every x ∈ Ω,

y ∈ Rk , A ∈ Mk×n ;

(iii) for every x0 ∈ Ω, y0 ∈ Rk and for every ε > 0 there exists δ > 0 such that

f(x, y, A) ≥ (1 − ε)f(x0, y0, A) for every x ∈ Ω, y ∈ Rk , A ∈ Mk×n , with

|x− x0| < δ and |y − y0| < δ ;

(iv) the function (x, y) 7→ f(x, y, 0) is locally bounded on Ω×Rk .

We shall consider the functional F :L1(Ω;Rk) → [0,+∞] defined by

F (u) =







∫

Ω

f
(

x, u(x),∇u(x)
)

dx , if u ∈ C1(Ω;Rk),

+∞ , otherwise,

and the corresponding relaxed functional F :L1(Ω;Rk) → [0,+∞] , defined as the great-

est lower semicontinuous functional on L1(Ω;Rk) which is less than or equal to F . We

shall use the notation A(u,Ω), A(u,Ω), F (u,Ω), F(u,Ω) when we want to stress the

dependence of these functionals on the set Ω.

The results contained in the following proposition are needed in all estimates con-

cerning the relaxed functional F . As in Section 1, the cylinder Ω×Rk will be denoted

by U .

Proposition 2.1. Assume that conditions (i), (ii), (iii), (iv) are satisfied. Then there

exists a function g:U×Ξ → [0,+∞] such that:

(a) f(x, y, A) = g(z,M(A)) for every z = (x, y) ∈ U and for every A ∈ Mk×n ;

(b) g is lower semicontinuous on U×Ξ ;

(c) for every z ∈ U the function ξ 7→ g(z, ξ) is convex and positively homogeneous of

degree one on Ξ ;

(d) for every z ∈ U and for every ξ ∈ Ξ we have g(z, ξ) ≥ c0|ξ| , where c0 > 0 is the

constant in condition (iii).

Proof. Let m be the dimension of the vector space Ξ and let Ξ0̂0 = {ξ ∈ Ξ : ξ0̂0 = 1} .

For every z = (x, y) ∈ U and for every ξ ∈ Ξ0̂0 we define

g0(z, ξ) = inf
m

∑

i=1

λif(x, y, Ai) ,
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where the infimum is taken over all families (Ai)1≤i≤m in Mk×n and over all families

(λi)1≤i≤m of non-negative real numbers such that

m
∑

i=1

λi = 1 and
m

∑

i=1

λiM(Ai) = ξ .

By Theorem 1.3 of Chapter 4 of [5], for every z ∈ U the function ξ 7→ g0(z, ξ) is

convex and finite, hence continuous, on Ξ0̂0 and f(x, y, A) = g0(z,M(A)) for every

z = (x, y) ∈ U and for every A ∈ Mk×n . By (ii) we have also g0(z, ξ) ≥ c0|ξ| for every

z ∈ U and for every ξ ∈ Ξ0̂0 .

Let us prove that g0 is lower semicontinuous on U×Ξ0̂0 . Condition (iii) implies

that for every z0 ∈ U and for every ε > 0 there exists δ > 0 such that g0(z, ξ) ≥
(1 − ε)g0(z0, ξ) for every ξ ∈ Ξ0̂0 and for every z ∈ U with |z − z0| < δ . As the

function ξ 7→ g0(z0, ξ) is continuous, for every ξ0 ∈ Ξ0̂0 there exists η > 0 such that

g0(z0, ξ) ≥ g0(z0, ξ0) − ε for every ξ ∈ Ξ0̂0 with |ξ − ξ0| < η . Therefore g0(z, ξ) ≥
(1 − ε)g0(z0, ξ0) − ε whenever |z − z0| < δ and |ξ − ξ0| < η , which proves the lower

semicontinuity of g0 .

Let us define now g:U×Ξ → [0,+∞] by

g(z, ξ) =



































ξ0̂0g0
(

z,
ξ

ξ0̂0

)

, if ξ0̂0 > 0,

lim
̺→0+

̺g0
(

z,
ξ + ̺e0̂

̺

)

, if ξ0̂0 = 0,

+∞ , if ξ0̂0 < 0,

where e0̂ = e1 ∧ · · · ∧ en is the n -vector of Rn associated with the canonical basis

e1, . . . , en . It is easy to see that for every z ∈ U the function ξ 7→ g(z, ξ) is convex and

positively homogeneous of degree one. Moreover, as g(z, ξ) = g0(z, ξ) for every ξ ∈ Ξ0̂0 ,

and M(A) ∈ Ξ0̂0 for every A ∈ Mk×n , we have f(x, y, A) = g0(z,M(A)) = g(z,M(A))

for every z = (x, y) ∈ U and for every A ∈ Mk×n .

Let us prove that g is lower semicontinuous at each point of U×Ξ. Let zh → z and

ξh → ξ be two sequences in U and Ξ respectively. We want to prove that

(2.1) g(z, ξ) ≤ lim inf
h→∞

g(zh, ξh) .

This inequality is obvious if ξ0̂0 6= 0, so we consider only the case ξ0̂0 = 0. By the

definition of g , it is clearly enough to consider sequences (ξh) with ξ0̂0h ≥ 0 for every h .
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Let us fix ̺ > 0. As g is lower semicontinuous at the point ξ+̺e0̂ , whose 0̂0 coordinate

is different from 0, we have

(2.2) g
(

z, ξ + ̺e0̂
)

≤ lim inf
h→∞

g
(

zh, ξh + (̺− ξ0̂0h )e0̂
)

.

Since ξ0̂0h ≤ ̺ for h large enough, and g is convex and positively homogeneous of degree

one, taking the equality M(0) = e0̂ into account we obtain

(2.3)
g(zh, ξh + (̺− ξ0̂0h )e0̂) ≤ g(zh, ξh) + (̺− ξ0̂0h )g(zh, e

0̂) =

= g(zh, ξh) + (̺− ξ0̂0h )f(xh, yh, 0) ,

where (xh, yh) = zh . By (iv) we have also

lim sup
h→∞

(̺− ξ0̂0h )f(xh, yh, 0) ≤ c̺

for some constant c , so that from (2.2) and (2.3) we obtain

g(z, ξ + ̺e0̂) ≤ lim inf
h→∞

g(zh, ξh) + c̺ .

As ̺ tends to 0 we get (2.1), so that g is lower semicontinuous, and the proposition is

proved.

The following remark provides the well known sequential characterization of the

relaxed functionals A and F .

Remark 2.2. It is easy to prove that for every u ∈ L1(Ω;Rk) the value of A(u) is

uniquely determined by the following conditions (see, e.g., [4], Proposition 1.3.3):

(a) for every sequence (uh) in C1(Ω;Rk) converging to u in L1(Ω;Rk) we have

A(u) ≤ lim inf
h→∞

A(uh) ;

(b) there exists a sequence (uh) in C1(Ω;Rk) , converging to u in L1(Ω;Rk) , such that

A(u) = lim
h→∞

A(uh) .

A similar characterization holds for F .

The following lemma deals with the case of bounded functions.
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Lemma 2.3. Let u ∈ L∞(Ω;Rk) . Then there exists a sequence (uh) in C1(Ω;Rk) ,

bounded in L∞(Ω;Rk) and converging to u in L1(Ω;Rk) , such that A(u) = lim
h→∞

A(uh) .

Proof. By Remark 2.2(b) there exists a sequence (vh) in C1(Ω;Rk) , converging to u in

L1(Ω;Rk) , such that

(2.4) A(u) = lim
h→∞

A(vh) = lim
h→∞

Hn(Gvh
) .

Let ϕ:Rk → Rk be a globally Lipschitz bounded function of class C1 , with Lipschitz con-

stant 1, such that ϕ(y) = y when |y| ≤ ‖u‖L∞(Ω;Rk) . Let us define uh(x) = ϕ(vh(x)) .

Then the sequence (uh) is bounded in L∞(Ω;Rk) and converges to u in L1(Ω;Rk) .

Moreover, each function uh belongs to C1(Ω;Rk), and Hn(Guh
) ≤ Hn(Gvh

) , since the

map Φ(x, y) = (x, ϕ(y)) is a contraction in Rn×Rk and Guh
= Φ(Gvh

) . Therefore,

(2.4) implies A(u) ≥ lim sup
h→∞

Hn(Guh
) = lim sup

h→∞
A(uh) . The conclusion follows now

from Remark 2.2(a).

We prove now the lower semicontinuity of the functionals A and F on C1(Ω;Rk)

with respect to the strong topology of L1(Ω;Rk) . This implies that A(u) = A(u) and

F(u) = F (u) for every u ∈ C1(Ω;Rk) ∩ L1(Ω;Rk).

Theorem 2.4. The functional A is lower semicontinuous on C1(Ω;Rk) ∩ L1(Ω;Rk)

with respect to the strong topology of L1(Ω;Rk) .

Proof. Let uh → u in L1(Ω;Rk) with uh , u ∈ C1(Ω;Rk). We may assume that

lim
h→∞

A(uh) exists and is finite. Thus, by Theorem 1.6, we may also assume that [[Guh
]] ⇀

T weakly in Dn(U) , for some T ∈ cart(Ω;Rk) satisfying Tr = [[Gu]] . By the lower

semicontinuity of the mass we have

A(u) = MU (Tr) ≤ MU (T ) ≤ lim
h→∞

MU ( [[Guh
]] ) = lim

h→∞
A(uh) ,

which concludes the proof.

Theorem 2.5. The functional F is lower semicontinuous on C1(Ω;Rk) ∩ L1(Ω;Rk)

with respect to the strong topology of L1(Ω;Rk) .

Proof. Let uh → u in L1(Ω;Rk) with uh , u ∈ C1(Ω;Rk). We may assume that

lim
h→∞

F (uh) exists and is finite, and, therefore, A(uh) is bounded uniformly with respect
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to h . Thus, by Theorem 1.6, we may also assume that [[Guh
]] ⇀ T weakly in Dn(U) ,

for some T = τ(M, θ, ξ) ∈ cart(Ω;Rk) satisfying Tr = [[Gu]] . Writing, for simplicity,

Th instead of [[Guh
]] , we have

F (uh) =

∫

Rn×Rk

g(z, dTh

d|Th|
(z)) d|Th|(z) ,

where g is the function given by Proposition 2.1. Moreover

F (u) =

∫

Ω

g
(

(x, u(x)),M(∇u(x))
)

dx =

∫

Mr

g(z, ξ(z)) dHn(z) ≤

≤
∫

M

g(z, ξ(z)) dHn(z) =

∫

Rn×Rk

g(z, dT
d|T |

(z)) d|T |(z) .

By Reshetnyak’s semicontinuity theorem (Theorem 1.1) we have
∫

Rn×Rk

g(z, dT
d|T | (z)) d|T |(z) ≤ lim inf

h→∞

∫

Rn×Rk

g(z, dTh

d|Th|
(z)) d|Th|(z) ,

which proves the assertion.

Remark 2.6. As |M(∇u)| ≥ |∇u| we have A(u) ≥
∫

Ω
|∇u| dx for every u ∈ C1(Ω;Rk) .

By Remark 2.2(b) this implies that, if u ∈ L1(Ω;Rk) and A(u) < +∞ , then u ∈
BV (Ω;Rk) and A(u) ≥ |Du|(Ω) (see [14], Theorem 1.9). Similarly, as the constant c0

in (ii) is positive, we have that, if u ∈ L1(Ω;Rk) and F(u) < +∞ , then u ∈ BV (Ω;Rk)

and F(u) ≥ c0|Du|(Ω). The following theorems provide better estimates from below for

the relaxed functionals A and F .

Theorem 2.7. For every u ∈ BV (Ω;Rk) we have

A(u) ≥
∫

Ω

∣

∣M(∇u(x))
∣

∣dx + |Dsu|(Ω) .

Proof. We may assume that A(u) < +∞ ; then there exists a sequence (uh) in C1(Ω;Rk)

converging strongly in L1(Ω;Rk) to u , and such that A(u) = lim
h→∞

Hn(Guh
) . By Theo-

rem 1.6, we may assume that [[Guh
]] ⇀ T weakly in Dn(U) , for some T ∈ cart(Ω;Rk)

satisfying uT = u Ln -a.e. on Ωr . By the lower semicontinuity of the mass we have

MU (T ) ≤ lim
h→∞

MU ( [[Guh
]] ) = lim

h→∞
Hn(Guh

) = A(u) .

Since µT = p∗ T , we obtain MU (T ) = |T |(U) ≥ |µT |(Ω) = |µT |(Ωr) + |µT |(Ωs) . By

Theorem 1.5 we deduce that

|µT |(Ωr) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx , |µT |(Ωs) ≥ |Du|(Ωs) = |Dsu|(Ω) ,

and the result follows immediately.
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In the case of the functional F we obtain the following result.

Theorem 2.8. For every u ∈ BV (Ω;Rk) we have

F(u) ≥
∫

Ω

f
(

x, u(x),∇u(x)
)

dx + c0|Dsu|(Ω) ,

where c0 is the constant in condition (ii).

Proof. We may assume that F(u) < +∞ ; then there exists a sequence (uh) in C1(Ω;Rk)

converging to u strongly in L1(Ω;Rk) , and such that F(u) = lim
h→∞

F (uh) . By (ii) the

sequence (A(uh)) is bounded uniformly with respect to h . Thus, by Theorem 1.6, we may

also assume that [[Guh
]] ⇀ T weakly in Dn(U) , for some T = τ(M, θ, ξ) ∈ cart(Ω;Rk)

satisfying uT = u Ln -a.e. on Ωr . Writing, for simplicity, Th instead of [[Guh
]] , we have

F (uh) =

∫

Rn×Rk

g(z, dTh

d|Th|
(z)) d|Th|(z)

where g is the function given by Proposition 2.1. By Reshetnyak’s semicontinuity theo-

rem (Theorem 1.1) we have

∫

Rn×Rk

g(z, dT
d|T |

(z)) d|T |(z) ≤ lim
h→∞

∫

Rn×Rk

g(z, dTh

d|Th|
(z)) d|Th|(z) = F(u) .

Therefore

(2.5) F(u) ≥
∫

Mr

g(z, ξ(z)) dHn(z) +

∫

Ms

g(z, ξ(z)) dHn(z) .

Let p:Rn×Rk → Rn be the canonical projection. Since
(

p(z), ũT (p(z))
)

= z for Hn -a.e.

z ∈Mr , by Theorem 1.5 we have

∫

Mr

g(z, ξ(z)) dHn(z) =

∫

Ωr

g
(

(x, ũT (x)), ξ(x, ũT (x))
)

d|µT |(x) =

=

∫

Ω

g
(

(x, u(x)), M(∇u(x))
|M(∇u(x))|

)

|M(∇u(x))| dx .

Since g(z, ξ) is positively homogeneous of degree one in ξ , we obtain

(2.6)
∫

Mr

g(z, ξ(z)) dHn(z) =

∫

Ω

g
(

(x, u(x)),M(∇u(x))
)

dx =

∫

Ω

f
(

x, u(x),∇u(x)
)

dx .
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On the other hand, as |ξ(z)| = 1 Hn -a.e. on M , the lower bound in Proposition 2.1(d)

implies
∫

Ms

g(z, ξ(z)) dHn(z) ≥ c0Hn(Ms) .

Since, by Theorem 1.3, Ms ≃ M ∩ p−1(Ωs) in the sense of Hn , from Theorem 1.5 we

obtain Hn(Ms) = p∗(Hn M)(Ωs) ≥ |µT |(Ωs) ≥ |Du|(Ωs) = |Dsu|(Ω). Therefore

(2.7)

∫

Ms

g(z, ξ(z)) dHn(z) ≥ c0|Dsu|(Ω) .

The conclusion follows now from (2.5), (2.6), (2.7).

The following theorem, which is an easy consequence of Theorem 2.7, shows that

the relaxed area functional A(u) can be represented by an integral when u belongs to

the Sobolev space W 1,p(Ω;Rk) , with p large enough. We shall see in Lemma 4.2 that

this is no longer true if p is small.

Theorem 2.9. Let u ∈W 1,p(Ω;Rk) , with p ≥ min{n, k} . Then

A(u) =

∫

Ω

∣

∣M(∇u(x))
∣

∣ dx .

Proof. By Theorem 2.7 we have

A(u) ≥
∫

Ω

∣

∣M(∇u(x))
∣

∣ dx .

To prove the opposite inequality, let (uh) be a sequence in C1(Ω;Rk) converging to u

in the strong topology of W 1,p(Ω;Rk) (see [19]). Since p ≥ min{n, k} , we have also

M(∇uh) → M(∇u) in L1(Ω; Ξ), hence

A(u) ≤ lim inf
h→∞

A(uh) = lim
h→∞

∫

Ω

∣

∣M(∇uh(x))
∣

∣ dx =

∫

Ω

∣

∣M(∇u(x))
∣

∣ dx ,

which concludes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 2.9 and of the

definition of A .
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Corollary 2.10. Assume that p ≥ min{n, k} . Then the functional u 7→
∫

Ω
|M(∇u)| dx

is lower semicontinuous on W 1,p(Ω;Rk) with respect to the strong topology of L1(Ω;Rk) .

Remark 2.11. Using the idea of Counterexample 7.4 of [2], it is possible to con-

struct an example, which shows that, if 1 ≤ p < min{n, k} , then the functional

u 7→
∫

Ω
|M(∇u)| dx is not lower semicontinuous on W 1,p(Ω;Rk) with respect to the

strong topology of L1(Ω;Rk).

In the case of the functional F we obtain the following result.

Theorem 2.12. Assume that conditions (i), (ii), (iii) are satisfied. Assume, in addition,

that the function (y, A) 7→ f(x, y, A) is continuous on Rk×Mk×n for Ln -a.e. x ∈ Ω ,

and that there exist two constants c1 > 0 and p ≥ min{n, k} such that f(x, y, A) ≤
c1

(

|A|p + 1
)

for every x ∈ Ω , y ∈ Rk , A ∈ Mk×n . Then

F(u) =

∫

Ω

f(x, u(x),∇u(x)) dx

for every u ∈W 1,p(Ω;Rk) .

Proof. Let us fix u ∈W 1,p(Ω;Rk) . By Theorem 2.8 we have

F(u) ≥
∫

Ω

f(x, u(x),∇u(x)) dx .

To prove the opposite inequality, we argue as in the proof of Theorem 2.9. Let (uh) be a

sequence in C1(Ω;Rk) converging to u in the strong topology of W 1,p(Ω;Rk) . By the

Carathéodory continuity theorem (see, e.g., [26]) we have

F(u) ≤ lim
h→∞

∫

Ω

f(x, uh(x),∇uh(x)) dx =

∫

Ω

f(x, u(x),∇u(x)) dx ,

which concludes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 2.12 and of the

definition of F .
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Corollary 2.13. Assume that p ≥ min{n, k} . Under the hypotheses of Theorem 2.12 the

functional u 7→
∫

Ω
f(x, u,∇u) dx is lower semicontinuous on W 1,p(Ω;Rk) with respect

to the strong topology of L1(Ω;Rk) .

The following theorem concerns piecewise constant functions such that the essential

closures of the sets of the underlying partition have no triple intersections. In this case

the inequality of Theorem 2.7 becomes an equality. This is no longer true if there are

triple intersections, as we shall see in Theorem 3.1. We recall that a set with locally finite

perimeter in Rn , or a Caccioppoli set, is a set whose characteristic function belongs to

BVloc(R
n) . For the notion of the reduced boundary ∂∗E of a set E with locally finite

perimeter we refer to [14], Chapter 3.

Theorem 2.14. Let (Ei)i∈I be a finite partition of Rn composed of sets with locally

finite perimeter, let (ai)i∈I be a finite family of points of Rk , and let u ∈ BVloc(R
n;Rk)

be the function defined by u(x) = ai for x ∈ Ei . Suppose that for every x ∈ Ω there

exists r > 0 such that Ln(Br(x) ∩ Ei) > 0 for at most two indices i . Then

A(u) = Ln(Ω) + 1
2

∑

i,j∈I

|ai − aj | Hn−1(∂∗Ei ∩ ∂∗Ej ∩ Ω) =

= Ln(Ω) + |Dsu|(Ω) =

∫

Ω

∣

∣M(∇u(x))
∣

∣ dx + |Dsu|(Ω) ,

provided that Ln(∂Ω) = 0 and Hn−1(∂∗Ei ∩ ∂Ω) = 0 for every i ∈ I .

Proof. Let (ϕh) be a sequence of mollifiers, i.e., ϕh ∈ D(Rn) , ϕh ≥ 0, supp(ϕh) ⊆
B1/h(0),

∫

ϕh dx = 1, and let uh = u ∗ ϕh . Let us prove that rank(∇uh(x)) ≤ 1 for

every x ∈ Ω. For every x0 ∈ Ω there exists r > 0 such that Br(x0) meets (on a set of

positive measure) at most two sets of the partition, say Ei and Ej . By compactness we

may assume that r is independent of x0 . For every x ∈ Br/2(x0) and for every h ≥ 2/r

we have

uh(x) = ai + (aj − ai)

∫

Ej

ϕh(x− y) dy ,

hence

∇uh(x) = (aj − ai) ⊗
∫

Ej

∇ϕh(x− y) dy .

This proves that rank(∇uh(x)) ≤ 1 for every x ∈ Ω and for every h ≥ 2/r . Therefore

A(uh) =

∫

Ω

∣

∣M(∇uh(x))
∣

∣ dx =

∫

Ω

(

1 + |∇uh(x)|2
)1/2

dx .
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By using the results of [15], or by adapting the argument of [20], Theorem 1.8, to the

vector case, we obtain that

A(u) ≤ lim inf
h→∞

A(uh) = Ln(Ω) + |Dsu|(Ω) =

∫

Ω

∣

∣M(∇u(x))
∣

∣ dx + |Dsu|(Ω) .

The opposite inequality follows from Theorem 2.7.

3. A critical example in dimension two

In this section we prove that, if n > 1 and k > 1, then there exists a function

u ∈ BVloc(R
n,Rk) such that the set function A(u, ·) is not subadditive. Clearly it is

enough to consider the case n = k = 2.

Theorem 3.1. Assume that n = k = 2 . Let us consider a partition of R2 composed of

three non-overlapping non-degenerate angular regions A , B , C , with common vertex at

the origin. Let α , β , γ be three non-collinear points in R2 , and let u:R2 → R2 be the

function defined by u(x) = α , if x ∈ A , u(x) = β , if x ∈ B , u(x) = γ , if x ∈ C . Then

there exist three bounded open sets, Ω1 , Ω2 , Ω3 , in R2 , such that Ω3 ⊂⊂ Ω1 ∪ Ω2 and

A(u,Ω3) > A(u,Ω1) + A(u,Ω2) .

For every r > 0 we denote by Br the open ball in R2 with center 0 and radius r ,

and, for every R > r > 0, we denote by BR
r the annulus BR\Br .

Lemma 3.2. Let u be the function defined in Theorem 3.1. Then

A(u,Br) ≤ πr2 + 2r(|α− γ| + |β − γ|)

for every r > 0 .

Proof. For every ε > 0 let us consider the sets

Aε = {x ∈ R2 : dist(x,R2\A) > ε} , Bε = {x ∈ R2 : dist(x,R2\B) > ε} .

Let uε:R
2 → R2 be the function defined by uε(x) = α , if x ∈ Aε , uε(x) = β , if x ∈ Bε ,

uε(x) = γ , if x ∈ R2 \ (Aε ∪Bε) . By Theorem 2.14 we obtain

A(uε, Br) ≤ πr2 + (2r + πε)(|α− γ|+ |β − γ|) .

Since (uε) converges to u in L1(Br;R
2) , the conclusion follows from the lower semicon-

tinuity of A(·, Br) .
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Lemma 3.3. Let u be the function defined in Theorem 3.1. Then

A(u,BR
r ) = π(R2 − r2) + (R− r)(|α− β| + |β − γ| + |γ − α|)

for every R > r > 0 .

Proof. It is enough to apply Theorem 2.14.

Lemma 3.4. Let u be the function defined in Theorem 3.1. Then

A(u,BR) > πR2 + R(|α− β| + |β − γ| + |γ − α|)

for every R > 0 .

Proof. Assume, by contradiction, that

A(u,BR) ≤ πR2 + R(|α− β| + |β − γ| + |γ − α|)

for some R > 0. Then by Theorem 2.7 we have A(u,BR) = L2(BR) + |Dsu|(BR) . By

Lemma 2.3 there exists a sequence (uh) in C1(BR;R2) , bounded in L∞(BR;R2) and

converging to u in L1(BR;R2) , such that

(3.1) L2(BR) + |Dsu|(BR) = lim
h→∞

A(uh, BR) .

Since by Theorem 2.7 we have lim inf
h→∞

A(uh,Ω) ≥ A(u,Ω) ≥ L2(Ω) + |Dsu|(Ω) for every

open subset Ω of BR , from the additivity of A(uh, ·) and from (3.1) we obtain that

(3.2) lim
h→∞

A(uh,Ω) = L2(Ω) + |Dsu|(Ω)

for every open set Ω contained in BR such that L2(BR∩∂Ω) = 0 and |Dsu|(BR∩∂Ω) =

0.

Let WR = BR×R2 . By Theorem 1.6 we may assume that [[Guh
]] ⇀ T weakly

in D2(WR) , for some T ∈ cart(WR) satisfying uT = u L2 -a.e. on BR . By the lower

semicontinuity of the mass we have

MWR
(T ) ≤ lim

h→∞
MWR

( [[Guh
]] ) = lim

h→∞
A(uh, BR) ,

hence by (3.1)

(3.3) MWR
(T ) ≤ πR2 + R(|α− β| + |β − γ| + |γ − α|) .
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Let a , b , c be the points on ∂BR lying on the half lines separating B and C , C and A ,

A and B , respectively. Suppose that the triple (a, b, c) determines the counterclockwise

orientation on ∂BR , so that ∂ [[A]] = [[0, b]] − [[0, c]] in BR , and similar properties hold

for B and C . We want to prove that

(3.4)
T = [[A]]× [[α]] + [[B]]× [[β]] + [[C]]× [[γ]] + [[0, a]]× [[β, γ]] +

+ [[0, b]]× [[γ, α]] + [[0, c]]× [[α, β]] + [[0]]×S

on WR , where S is the integration over the triangle with vertices α , β , γ , oriented in

such a way that ∂S = − [[α, β]] − [[β, γ]] − [[γ, α]] . This implies that

MWR
(T ) = πR2 + R(|α− β| + |β − γ|+ |γ − α|) + MR2(S)

which contradicts (3.3).

In order to prove (3.4) we consider a covering of BR\{0} composed of three overlap-

ping open angular sectors Ωa , Ωb , Ωc , with vertex at the origin. We shall assume that

Ωa contains the open segment (0, a) and does not intersect the open segments (0, b) ,

(0, c) , and that similar properties hold for Ωb and Ωc .

Let us prove that

(3.5) T = [[B]]× [[β]] + [[C]]× [[γ]] + [[0, a]]× [[β, γ]] on Ua = Ωa×R2 .

As T ∈ cart(WR) , we can write T = τ(M, θ, ξ) , where M is a countably 2-rectifiable

subset of WR = BR×R2 . Moreover, since u = uT L2 -a.e. on BR , we can write

M = Mr ∪Ms and T = Tr + Ts , with Mr ≃ Gu in the sense of H2 , Tr = [[Gu]] ,

and L2(p(Ms)) = 0, where p is the canonical projection from BR×R2 onto BR (see

Theorem 1.3 and Remark 1.4). As [[Gu]] = [[B]]× [[β]] + [[C]]× [[γ]] on Ua , in order to

prove (3.5) it is enough to show that

(3.6) Ts = [[0, a]]× [[β, γ]] on Ua .

Since ∂T = 0 on Ua and ∂ [[Gu]] = − [[0, a]]× [[β]] + [[0, a]]× [[γ]] on Ua , we have that

(3.7) ∂Ts = [[0, a]]× [[β]] − [[0, a]]× [[γ]] on Ua .

By the lower semicontinuity of the mass and by (3.2) we have

L2(Ωa) + MUa
(Ts) = MUa

(Tr) + MUa
(Ts) = MUa

(T ) ≤
≤ lim

h→∞
MUa

( [[Guh
]] ) = lim

h→∞
A(uh,Ωa) = L2(Ωa) + |a|·|γ − β| ,
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hence

(3.8) MUa
(Ts) ≤ |a|·|γ − β| .

Moreover L2(p(Ms)) = 0 and, being (uh) bounded in L∞(BR;R2) , the support of Ts

is bounded. We shall prove in Lemma 3.8 that these properties, together with (3.7) and

(3.8), imply (3.6). From (3.5), and from the analogous statements for Ωb and Ωc , we

obtain that

T = [[A]]× [[α]] + [[B]]× [[β]] + [[C]]× [[γ]] + [[0, a]]× [[β, γ]]+

+ [[0, b]]× [[γ, α]] + [[0, c]]× [[α, β]]

on (BR\{0})×R2 . Therefore, (3.4) holds for a suitable current S ∈ R2(R
2) with finite

mass. As ∂T = 0, we have ∂S = − [[α, β]] − [[β, γ]] − [[γ, α]] . Then, by the constancy

theorem, the current S coincides with the integration over the triangle with vertices α ,

β , γ , with a suitable orientation. This shows that (3.4) holds with the prescribed S and

provides the desired contradiction.

In order to conclude the proof of Lemma 3.4, we have to prove Lemma 3.8. This

will require some auxiliary statements (Lemmas 3.5, 3.6, 3.7), which will be proved in

the general case U = Ω×Rk , Ω bounded open subset of Rn , considered in the previous

sections. According to the notation introduced in Section 1, for every i = 1, . . . , n we

set ı̂ = (1, . . . , i− 1, i+ 1, . . . , n) .

Lemma 3.5. Let T = τ(M, θ, ξ) be an n-dimensional rectifiable current in U with

finite mass and with ∂T = 0 . Assume that

(3.9) ξ(z) ∈ span{eı̂ ∧ ε1 : i = 1, . . . , n}

for Hn -a.e. z ∈M . Then T = 0 .

Proof. By (3.9) we have

(3.10) T (ω) =

n
∑

i=1

T ı̂,1(ωı̂,1)

for every ω ∈ D(U) . Therefore

T ı̂,1(
∂ϕ

∂y1
) = (−1)n−1T (dϕ ∧ dxı̂) = (−1)n−1∂T (ϕdxı̂) = 0

for every i = 1, . . . , n and for every ϕ ∈ D(U) . This implies that the distribution T ı̂,1 is

invariant under translations along the y1-axis. By (3.10) the same property holds for T .

Since T has finite mass, we conclude that T = 0.
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Lemma 3.6. Assume that k = 1 . Let T = τ(M, θ, ξ) be an n-dimensional rectifiable

current in U with finite mass and with ∂T = 0 . If Ln(p(M)) = 0 , then T = 0 .

Proof. If Ln(p(M)) = 0, from the area formula we obtain that for Hn -a.e. z ∈ M

the tangent space TMz is projected by p onto a proper subspace of Rn . This means

that ξ0̂0 = 0 Hn -a.e. on M , hence (3.9) is satisfied. The conclusion follows now from

Lemma 3.5.

Lemma 3.7. Assume that k = 1 . Let α , β ∈ R , let S be an (n − 1)-dimensional

rectifiable current in Ω , with finite mass, such that ∂S = 0 in Ω , and let T = τ(M, θ, ξ)

be an n-dimensional rectifiable current in U , with finite mass, such that (−1)n∂T =

S× [[α]] − S× [[β]] in U . If Ln(p(M)) = 0 , then T = S× [[α, β]] .

Proof. It is enough to apply Lemma 3.6 to the current T − (−1)nS× [[α, β]] .

Lemma 3.8. Assume that n = 2 and k = 2 . Let α and β be two points in R2 , and let

a and b be two points of ∂Ω ⊆ R2 such that Ω contains the (open) segment between a

and b . Finally, let T = τ(M, θ, ξ) be a 2-dimensional rectifiable current in U = Ω×R2

with bounded support. Assume that L2(p(M)) = 0 , ∂T = [[a, b]]× [[α]] − [[a, b]]× [[β]] ,

and MU (T ) ≤ |b− a|·|β − α| . Then T = [[a, b]]× [[α, β]] .

Proof. We may assume that α = 0 and β = ε1 . Let π:U → Ω×R be the projection

defined by π(x1, x2, y1, y2) = (x1, x2, y1) , and let q: Ω×R → Ω be the projection defined

by q(x1, x2, y1) = (x1, x2) . As T has bounded support, the map π is proper on supp(T ) ,

so that ∂(π#T ) = π#(∂T ) = [[a, b]]× [[0]] − [[a, b]]× [[1]] . Since T is a 2-dimensional

rectifiable current, π#T is rectifiable too, and we have π#T = τ(N, ζ, η) , with N ⊆
π(M) . As q(N) ⊆ q(π(M)) = p(M) , it follows that L2(q(N)) = 0. By Lemma 3.7

we conclude that π#T = [[a, b]]× [[0, 1]] , hence N ≃ [a, b]×[0, 1] in the sense of H2 ,

and ζ = 1, η = b−a
|b−a|

∧ ε1 H2 -a.e. on N . As |b − a| = H2(N) ≤ H2(π(M)) ≤
H2(M) ≤ |b − a| , we obtain π(M) ≃ [a, b]×[0, 1] in the sense of H2 and, by the area

formula, ξ(z) = ± b−a
|b−a|

∧ ε1 for H2 -a.e. z ∈ M . If we apply Lemma 3.5 to the current

T − [[a, b]]× [[0, ε1]] , we obtain immediately T = [[a, b]]× [[0, ε1]] .

Proof of Theorem 3.1. Let us fix ̺ > 0. Since, by Lemma 3.4,

A(u,B̺) > π̺2 + ̺(|α− β| + |β − γ| + |γ − α|) ,
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we can choose r close to 0 and R close to ̺ , with 0 < r < ̺ < R , so that

πr2 + 2r(|α− γ| + |β − γ|) + πR2 + R(|α− β| + |β − γ| + |γ − α|) < A(u,B̺) .

Then B̺ ⊂⊂ Br ∪BR
r/2 and A(u,B̺) > A(u,Br) + A(u,BR

r/2) by Lemmas 3.2 and 3.3.

4. An example with Sobolev functions

If n > 2 and k > 2, it is possible to find an example of non subadditivity for A(u, ·)
even among Sobolev functions. Throughout this section we always assume n = k .

The function u of our example, already considered in [10], Section 3, Example 1, is

u(x) = x/|x| , which belongs to W 1,p
loc (Rn;Rn) for all p < n . Therefore, the example

provided by the Theorem 4.1 and by Lemma 4.2 shows also that the condition p ≥ n in

Theorem 2.9 can not be dropped.

Theorem 4.1. Assume that n = k ≥ 3 and let u(x) = x/|x| for every x ∈ Rn . Then

there exist three bounded open sets, Ω1 , Ω2 , Ω3 , in Rn , such that Ω3 ⊂⊂ Ω1 ∪Ω2 and

A(u,Ω3) > A(u,Ω1) + A(u,Ω2) .

The proof of the theorem is based on Lemmas 4.2 and 4.3. Throughout this section

we shall use the following notation: for every r > 0 we denote by Br the open ball in

Rn with center 0 and radius r , and by Wr the cylinder Br ×Rn .

Lemma 4.2. Assume that n = k ≥ 2 and let u(x) = x/|x| for every x ∈ Rn . There

exists a constant rn > 0 , depending only on n , such that, if r > rn , then

A(u,Br) = MWr
( [[Gu]] ) + ωn =

∫

Br

∣

∣M(∇u(x))
∣

∣ dx + ωn ,

where ωn is the measure of the unit ball in Rn .

Proof. As u ∈ C∞(Br \{0};Rn) , the second equality follows from (1.4). Let us prove

that A(u,Br) ≤ MWr
( [[Gu]] ) + ωn . For every h > 2 let ϕh:R → [0, 1] be a function of
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class C1 , with ϕh(t) = 0 for t ≤ 1/h2 , ϕh(t) = 1 for t ≥ 1/h , and 0 ≤ ϕ′(t) ≤ 2h for

every t . Let us define uh(x) = ϕh(|x|)u(x) . Then uh ∈ C1(Br;R
n) and

(4.1) uh → u in W 1,p(Br;R
n) for p < n ,

(4.2)

∫

Br

|M00̂(∇uh)| dx =

∫

B1/h

|det∇uh| dx = ωn for h ≥ 1/r .

In particular, (uh) converges to u in L1(Br;R
n) ; moreover, by (4.1) we have

(4.3) Mαβ(∇uh) → Mαβ(∇u) in L1(Br)

unless α = 0 and β = 0̂ = (1, . . . , n) . For any n×n matrix A let M′(A) be the n -vector

defined by M′(A) = M(A) − M00̂(A) ε1 ∧ · · · ∧ εn , so that, with respect to the basis

(eα ∧ εβ) , M′(A) has the same components as M(A) , except the component 00̂ , which

is 0. Since

A(uh, Br) ≤
∫

Br

|M′(∇uh)| dx +

∫

Br

|M00̂(∇uh)| dx

and M00̂(∇u) = det (∇u) = 0, by (4.2) and (4.3) we get

(4.4) A(u,Br) ≤
∫

Br

|M(∇u)| dx + ωn = MWr
( [[Gu]] ) + ωn .

To get the opposite inequality, let (vh) be a sequence of regular functions converging

to u in L1(Br;R
n) such that A(u,Br) = lim

h→∞
A(vh, Br) . By Lemma 2.3 we may assume

that (vh) is bounded in L∞(Br;R
n) . By Theorem 1.6 (applied to the annulus Br \Bε

for every ε > 0), we may suppose also that [[Gvh
]] ⇀ T weakly in Dn(Wr) for some

T ∈ cart (Br;R
n) satisfying Tr = [[Gu]] . Since (vh) is bounded in L∞(Br;R

n) , the

support of T is contained in the product Br×BR for some R > 0. As in Theorem 2.4,

by the lower semicontinuity of the mass we obtain

(4.5) MWr
( [[Gu]] ) + MWr

(Ts) = MWr
(Tr) + MWr

(Ts) = MWr
(T ) ≤ A(u,Br) ,

so that (4.4) implies

(4.6) MWr
(Ts) ≤ ωn .

Let us compute the boundary of [[Gu]] . As

Gu = {(x, x/|x|) : x ∈ Rn \ {0}} = {(̺y, y) : ̺ > 0, y ∈ ∂B1} ,
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we can write Gu = Φ
(

]0,+∞[×∂B1

)

, where Φ:R×Rn → Rn×Rn is the function defined

by Φ(̺, y) = (̺y, y) . Therefore we have [[Gu]] = Φ#

(

[[0,+∞]]×∂[[B1]]
)

, and this implies

∂[[Gu]] = Φ#

(

∂([[0,+∞]]×∂[[B1]])
)

= Φ#

(

− [[0]]×∂[[B1]]
)

= − [[0]]×∂[[B1]] .

Since ∂T = 0, we necessarily have

(4.7) ∂Ts = −∂[[Gu]] = [[0]]×∂[[B1]] .

So far we have proved that Ts has mass not larger than the volume of a unit n -ball,

and its boundary (in Wr ) is the boundary of a “vertical” unit n -ball above x = 0. We

will prove that, if the set {0} × ∂B1 is sufficiently far from the boundary of Wr , then

(4.8) MWr
(Ts) ≥ MWr

( [[0]]× [[B1]] ) = ωn ,

so that (4.5) implies

(4.9) A(u,Br) ≥ MWr
( [[Gu]] ) + ωn ,

which, together with (4.4), concludes the proof of the lemma. Instead, if r is small, then

(4.6) might be strict, as we shall see in Lemma 4.3, at least if n ≥ 3.

If the the projection onto Br of the support of Ts is compact in Br , then Ts can

be regarded as a current in Rn×Rn with MRn×Rn(Ts) = MWr
(Ts) , and its boundary

in Rn×Rn is [[0]]×∂[[B1]] , so that Ts = [[0]]× [[B1]] by the minimality of the disk,

and, consequently, (4.8) and (4.9) are proved. Therefore, it is enough to prove that this

property of the support of Ts is always satisfied, if r is sufficiently large.

Assume, by contradiction, that the projection onto Br of the support of Ts is not

compact in Br . Then we slice Ts along cylinders. Set ψ(x, y) = |x| ; for L1 -a.e. t ∈ ]0, r[

(more precisely, for every t ∈ ]0, r[ such that MWr
(Ts {ψ = t}) = 0) the slice of Ts is

the rectifiable current of dimension n− 1 defined by

〈Ts, ψ, t〉 = −∂(Ts {ψ > t}) .

Note that, by (4.7), we have MWr
(∂Ts {ψ = t}) = 0 and (∂Ts) {ψ > t} = 0, so

that our definition of 〈Ts, ψ, t〉 coincides with the classical one (see [25], 28.7). Since

|∇ψ| ≤ 1, by the properties of the slices (see [25], Lemma 28.5) we get ∂〈Ts, ψ, t〉 = 0

and

(4.10) MWr
(Ts {ψ > t}) ≥

∫ r

t

MWr
(〈Ts, ψ, τ〉) dτ .
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As the support of Ts is contained in Br×BR , the slices 〈Ts, ψ, t〉 have compact support

in Wr (see [25], 28.8), therefore MWr
= MRn×Rn for the slice, and by the Isoperimetric

Theorem (see [25], Theorem 30.1) for L1 -a.e. t ∈ ]0, r[ there exists a current St with

support in Bt×BR , boundary ∂St = −〈Ts, ψ, t〉 , and satisfying

MRn×Rn(St) ≤ γn

[

MRn×Rn(〈Ts, ψ, t〉)
]n/(n−1)

,

where γn , the isoperimetric constant, depends only on n . If MWr
(Ts {ψ > t}) >

MRn×Rn(St) , then the current (Ts {ψ < t}) + St has the same boundary in Wr as

Ts , less mass, and compact support in Wr , thus its mass is at least ωn by (4.7) and by

the minimality of the disk. This implies MWr
(Ts) > ωn , a contradiction to (4.6). We

may therefore assume that

(4.11) MWr
(Ts {ψ > t}) ≤ MRn×Rn(St) ≤ γn

[

MWr
(〈Ts, ψ, t〉)

]n/(n−1)

for L1 almost all t ∈ ]0, r[ . If we set

ζ(t) =

∫ r

t

[ 1

γn
MWr

(Ts {ψ > τ})
]1−1/n

dτ ,

by (4.10) and (4.11) we have

(4.12)
(

−ζ ′(t)
)n/(n−1) ≥ 1

γn
ζ(t) ,

and the assumption on the support of Ts implies that ζ(t) > 0 for all t < r . Moreover,

(4.6), (4.10), and (4.11) give ζ(0) ≤ MWr
(Ts) ≤ ωn . An easy computation shows that

(4.12) implies

0 ≤ lim
t→r

(

ζ(t)
)1/n ≤

(

ζ(0)
)1/n − r

nγ
1−1/n
n

,

and a contradiction arises if we take r > rn = nω
1/n
n γ

1−1/n
n . This shows that, if r > rn ,

then the projection onto Br of the support of Ts is compact in Br , and this concludes

the proof of the lemma.

We stick to the notation u(x) = x/|x| , Wr = Br×Rn ; the second step in the proof

of Theorem 4.1 is provided by the following lemma.

Lemma 4.3. Let n = k ≥ 3 . Then there exists a constant cn > 0 , depending only on

n , such that

(4.13) A(u,Br) ≤ MWr
( [[Gu]] ) + cnr

for every r > 0 .
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Proof. Without loss of generality we prove the proposition only in the case n = k = 3.

Using spherical coordinates on R3
x and rectangular coordinates on R3

y , the function

u(x) = x/|x| is rewritten as

ũ(̺, ϑ, ϕ) = (sinϑ cosϕ , sinϑ sinϕ , cosϑ) ,

where ̺ > 0 is the distance from the origin, 0 ≤ ϑ ≤ π is the anomaly from the north

pole, and 0 ≤ ϕ < 2π is the longitude. Fix 0 < r0 < r and 0 < ϑ0 < π/2, set

g(̺) =

{

̺/r0 , if 0 ≤ ̺ ≤ r0,
1 , if r0 ≤ ̺ ≤ r,

f(ϑ) =

{

ϑ , if 0 ≤ ϑ ≤ π − ϑ0,
π−ϑ0

ϑ0
(π − ϑ) , if π − ϑ0 ≤ ϑ ≤ π,

and define

ṽ(̺, ϑ, ϕ) =
(

sin(g(̺)f(ϑ)) cosϕ , sin(g(̺)f(ϑ)) sinϕ , cos(g(̺)f(ϑ))
)

.

The function v , corresponding to ṽ in cartesian coordinates, coincides with u on a large

portion of Br , with two exceptions: in a cone of amplitude ϑ0 about the south pole,

which is reversed onto the complement of its outer surface in ∂B1 , and in the ball Br0
,

where some smoothing had to be done. We recall that for any function w , when passing

to spherical coordinates, we have

(4.14)

∫∫∫

|Dw|2dx1dx2dx3 =

∫∫∫

(

|D̺w̃|2 +
|Dϑw̃|2
̺2

+
|Dϕw̃|2
̺2 sin2ϑ

)

̺2 sinϑ d̺ dϑ dϕ .

Moreover, since v(Br) ⊆ ∂B1 , we have det∇v(x) = 0 everywhere in Br . To estimate

the integral of |∇v −∇u|2 , we remark that, defining Γϑ0
= {x ∈ Br : π − ϑ0 ≤ ϑ ≤ π} ,

the cone about the south pole, we have with an easy computation

|D̺(ṽ − ũ)|
{

= 0 in Br \Br0
,

≤ c/r0 in Br0
,

|Dϑ(ṽ − ũ)|







= 0 in Br \ (Br0
∪ Γϑ0

),
≤ c in Br0

\ Γϑ0
,

≤ c/ϑ0 in Γϑ0
,

|Dϕ(ṽ − ũ)|







= 0 in Br \ (Br0
∪ Γϑ0

),
≤ ϑ in Br0

\ Γϑ0
,

≤ cπ−ϑ
ϑ0

in Γϑ0
.
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Then we have easily by (4.14)

∫

Br\Γϑ0

|∇v −∇u|2dx ≤ c r0/ϑ0 ,

∫

Γϑ0

|∇v −∇u|2dx ≤ c r ,

for some absolute constant c . Now take two positive sequences (rh) and (ϑh) , converging

to 0 as h→ ∞ , and such that lim
h→∞

rh/ϑh = 0, and let vh be the corresponding functions

obtained by taking r0 = rh and ϑ0 = ϑh in the definition of the functions g(̺) and

f(ϑ) . Our previous remarks, together with the fact that L3(Γϑh
) → 0, imply that (vh)

converges to u in L1(Br;R
3) , det∇vh = 0 in Br , and

(4.15) lim
h→∞

∫

Br\Γϑh

|∇vh −∇u|2dx = 0 ,

(4.16)

∫

Γϑh

|M(∇vh)| dx ≤ c r .

As n = 3 and det∇vh = 0, (4.15) gives

lim
h→∞

∫

Br\Γϑh

|M(∇vh) −M(∇u)| dx = 0 ,

hence

(4.17) lim
h→∞

∫

Br\Γϑh

|M(∇vh)| dx = MWr
( [[Gu]] ) .

As the functions vh are Lipschitz continuous, by Theorem 2.9 we have

A(vh, Br) =

∫

Br

|M(∇vh)| dx ,

so that, by the lower semicontinuity of A(·, Br) , (4.13) follows from (4.16) and (4.17).

Proof of Theorem 4.1. Let rn and cn be the constants appearing in Lemmas 4.2

and 4.3, and let ̺ > rn . By Lemma 4.2 we have

(4.18) A(u,B̺) =

∫

B̺

|M(∇u)| dx + ωn .

We can choose r close to 0 and R close to ̺ , with 0 < r < ̺ < R , so that

(4.19)

∫

B̺

|M(∇u)| dx + ωn >

∫

BR

|M(∇u)| dx +

∫

Br

|M(∇u)| dx + cnr .
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Let us define Ω1 = Br , Ω2 = BR\Br/2 , Ω3 = B̺ . Then Ω3 ⊂⊂ Ω1 ∪ Ω2 . Since u is

regular on Ω2 , by Remark 2.2 we have

(4.20) A(u,Ω2) ≤
∫

BR

|M(∇u)| dx ,

while Lemma 4.3 gives

(4.21) A(u,Ω1) ≤
∫

Br

|M(∇u)| dx + cnr .

Therefore A(u,Ω3) > A(u,Ω1) + A(u,Ω2) by (4.18), (4.19), (4.20), (4.21).

5. Absolute continuity of the relaxed functional

In this section we examine some conditions on u ∈ BV (Ω;Rk), weaker than those

considered in Theorem 2.12, under which the relaxed functional F(u,Ω) can be written

in the form

(5.1) F(u,Ω) =

∫

Ω

f
(

x, u(x),∇u(x)
)

dx .

In particular, we shall prove that, if

(5.2) A(u,Ω) =

∫

Ω

∣

∣M(∇u(x))
∣

∣ dx < +∞ ,

then (5.1) holds under very weak assumptions on f .

In addition to conditions (i), (ii), (iii), (iv) of Section 2, we shall now assume that

(v) for every x0 ∈ Ω, y0 ∈ Rk , ε > 0 there exists δ > 0 such that

∣

∣f(x0, y, A)− f(x0, y0, A)
∣

∣ ≤ ε
(

|M(A)|+ 1
)

for every A ∈ Mk×n and for every y ∈ Rk with |y − y0| < δ ;

(vi) there exists a constant c1 > 0 such that f(x, y, A) ≤ c1
(

|M(A)| + 1
)

for every

x ∈ Ω, y ∈ Rk , A ∈ Mk×n .

We begin by improving the results of Proposition 2.1. We recall that Ξ is the space of

all n -vectors of Rn×Rk . We shall consider also the hyperplane Ξ0̂0 = {ξ ∈ Ξ : ξ0̂0 = 1}
and the half-space Ξ+ = {ξ ∈ Ξ : ξ0̂0 ≥ 0} . The following lemma will be used to obtain

upper bounds for the function g introduced in the proof of Proposition 2.1.
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Lemma 5.1. For every ξ ∈ Ξ0̂0 there exist a finite family (Ai)i∈I in Mk×n and a

finite family (λi)i∈I of positive real numbers such that

(5.3)
∑

i∈I

λi = 1 ,
∑

i∈I

λiM(Ai) = ξ ,
∑

i∈I

λi|M(Ai)| ≤ c|ξ| ,

where c = cn,k ≥ 1 is a constant depending only on n and k .

Proof. Given an integer h between 0 and m = min{n, k} , we shall consider the space

Ξh of all n -vectors of Rn×Rk of the form

ξ =
∑

|α|+|β|=n
|β|≤h

ξαβ eα ∧ εβ ,

and the affine subspace Ξ0̂0
h = Ξh∩Ξ0̂0 = {ξ ∈ Ξh : ξ0̂0 = 1} . It is clear that Ξm = Ξ, so

that Ξ0̂0
m = Ξ0̂0 , while Ξ0 = {te0̂ : t ∈ R} , where e0̂ = e1 ∧ · · · ∧ en , so that Ξ0̂0

0 = {e0̂} .

We want to prove, by induction on h , that (5.3) holds for every ξ ∈ Ξ0̂0
h , with a

constant c = cn,k,h . As Ξ0̂0
0 = {e0̂} and M(0) = e0̂ , the proposition is true for h = 0,

with cn,k,0 = 1. Suppose that it is true for a given h , with 0 ≤ h < m . We want

to prove that (5.3) holds, with a different constant c , for every ξ ∈ Ξ0̂0
h+1 . Let us fix

ξ ∈ Ξ0̂0
h+1 . Then we can write

ξ =
∑

|α|=n−h−1

|β|=h+1

ξαβ eα ∧ εβ + ζ ,

with ζ ∈ Ξ0̂0
h . Let r =

(

n
h+1

)(

k
h+1

)

+ 1. Given |α| = n − h − 1 and |β| = h + 1,

we can construct a matrix A ∈ Mk×n with ǫ(α)Aβ1α̂1
= rξαβ , with Aβiα̂i

= 1 for

i = 2, . . . , h+ 1, and with all other entries equal to zero. Let us denote this matrix by

Aαβ . Then

M(Aαβ) = rξαβ eα ∧ εβ + ηαβ ,

with ηαβ ∈ Ξ0̂0
h , and |M(Aαβ)| ≤ r 2h|ξαβ| + 2h ≤ r 2h+1|ξ| . This implies that

ξ =
∑

|α|=n−h−1

|β|=h+1

M(Aαβ)

r
+
η

r
,

where η ∈ Ξ0̂0
h and |η| ≤ r(r 2h+1 +1)|ξ| . By the inductive hypothesis there exist a finite

family (Ai)i∈I in Mk×n and a finite family (λi)i∈I of positive real numbers such that

∑

i∈I

λi = 1 ,
∑

i∈I

λiM(Ai) = η ,
∑

i∈I

λi|M(Ai)| ≤ cn,k,h|η| .
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Let J be the disjoint union of the sets I and H = {(α, β) : |α| = n−h−1, |β| = h+1} ,

and let (Bj)j∈J be the family in Mk×n defined by Bj = Aj , if j ∈ I , and by Bj = Aαβ ,

if j = (α, β) ∈ H . Finally, let (µj)j∈J be the family of positive real numbers defined by

µj = λj/r , if j ∈ I , and by µj = 1/r , if j ∈ H . As H has exactly r − 1 elements, we

obtain

∑

j∈J

µj = 1 ,
∑

j∈J

µjM(Aj) =
1

r

∑

i∈I

λiM(Ai) +
∑

|α|=n−h−1

|β|=h+1

M(Aαβ)

r
= ξ ,

∑

j∈J

µj |M(Aj)| ≤ 1

r

∑

i∈I

λi|M(Ai)| +
1

r

∑

|α|=n−h−1

|β|=h+1

|M(Aαβ)| ≤

≤ cn,k,h

r
|η| + r 2h+1|ξ| ≤

(

(r 2h+1 + 1)cn,k,h + r 2h+1
)

|ξ| ,

which concludes the proof of (5.3) in the case h+ 1.

The following proposition improves the results of Proposition 2.1. As in the previous

sections, the cylinder Ω×Rk will be denoted by U .

Proposition 5.2. Assume that f satisfies conditions (i)–(vi). Then there exists a

function g:U×Ξ → [0,+∞] such that:

(a) f(x, y, A) = g(z,M(A)) for every z = (x, y) ∈ U and for every A ∈ Mk×n ;

(b) the function g is lower semicontinuous on U×Ξ , and, for every x ∈ Ω , the function

(y, ξ) 7→ g((x, y), ξ) is continuous on Rk×Ξ+ ;

(c) for every z ∈ U the function ξ 7→ g(z, ξ) is convex and positively homogeneous of

degree one on Ξ ;

(d) there exists a constant C1 ≥ c0 such that c0|ξ| ≤ g(z, ξ) ≤ C1|ξ| for every z ∈ U

and for every ξ ∈ Ξ+ , where c0 is the constant in condition (ii).

Proof. Let g and g0 be the functions defined in the proof of Proposition 2.1. Then (a)

and (c) follow from Proposition 2.1, together with the lower semicontinuity of g and the

lower bound in (d). The upper bound in (d) follows from Lemma 5.1.

By (ii) and (v) for every x0 ∈ Ω, y0 ∈ Rk , ε > 0 there exists δ > 0 such that

f(x0, y, A) ≤ (1 + ε)f(x0, y0, A) + ε and f(x0, y0, A) ≤ (1 + ε)f(x0, y, A) + ε
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for every A ∈ Mk×n and for every y ∈ Rk with |y − y0| < δ . By Lemma 5.1 and by

Proposition 2.1(d) for every x0 ∈ Ω, y0 ∈ Rk , ε > 0 there exists δ > 0 such that

∣

∣g0((x0, y), ξ)− g0((x0, y0), ξ)
∣

∣ ≤ ε
(

|ξ|+ 1
)

for every ξ ∈ Ξ0̂0 and for every y ∈ Rk with |y − y0| < δ . By the definition of g

this implies that for every x0 ∈ Ω, the function (y, ξ) 7→ g((x0, y), ξ) is continuous on

Rk×Ξ+ .

The following lemma will be used in the proof of Theorem 5.4.

Lemma 5.3. Let (vh) be a sequence in L1(Ω,Rm) which converges in the weak∗ topol-

ogy of M(Ω;Rm) to a function v ∈ L1(Ω,Rm) . Assume that

∫

Ω

(

1 + |v(x)|2
)1/2

dx = lim
h→∞

∫

Ω

(

1 + |vh(x)|2
)1/2

dx .

Then (vh) converges to v in the strong topology of L1(Ω,Rm) .

Proof. Let uh , u: Ω → Rm+1 = Rm×R be defined by uh(x) = (vh(x), 1) and u(x) =

(v(x), 1). Then (uh) converges to u in the weak∗ topology of M(Ω;Rm+1) and

(5.4)

∫

Ω

|u(x)| dx = lim
h→∞

∫

Ω

|uh(x)| dx .

Given ϕ ∈ C0
c (Ω;Rm) , let us define the continuous function ψ: Ω×Rm+1 → R by

ψ(x, ζ) = |ζ̂ − ζm+1ϕ(x)| , where ζ̂ = (ζ1, . . . , ζm) . Since ψ is convex and positively ho-

mogeneous of degree one with respect to ζ , from (5.4) and from Reshetnyak’s continuity

theorem (Theorem 1.2) it follows that

∫

Ω

ψ(x, u(x)) dx = lim
h→∞

∫

Ω

ψ(x, uh(x)) dx ,

hence

(5.5)

∫

Ω

|v(x) − ϕ(x)| dx = lim
h→∞

∫

Ω

|vh(x) − ϕ(x)| dx

for every ϕ ∈ C0
c (Ω;Rm) . As C0

c (Ω;Rm) is dense in L1(Ω,Rm) , it is easy to prove that

(5.5) holds true for every ϕ ∈ L1(Ω,Rm) . The conclusion follows now by taking ϕ = v .
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Theorem 5.4. Let u ∈ BV (Ω;Rk) . The following conditions are equivalent:

(a) A(u,Ω) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx < +∞ ;

(b) u ∈ W 1,1(Ω;Rk) , M(∇u) ∈ L1(Ω; Ξ) , and there exists a sequence (uh) in

C1(Ω;Rk) , converging to u in L1(Ω;Rk) , such that
(

M(∇uh)
)

converges to

M(∇u) in L1(Ω; Ξ) .

Proof. It is clear that (b) implies (a) by Theorem 2.7. Let us prove the converse.

Assume (a). Then M(∇u) ∈ L1(Ω; Ξ). Moreover Dsu = 0 by Theorem 2.7, hence u ∈
W 1,1(Ω;Rk) . By Remark 2.2(b) there exists a sequence (uh) in C1(Ω;Rk) , converging

strongly to u in L1(Ω;Rk) , such that
∫

Ω

∣

∣M(∇u(x))
∣

∣dx = lim
h→∞

∫

Ω

∣

∣M(∇uh(x))
∣

∣ dx .

By Theorem 1.6 we may assume that [[Guh
]] ⇀ T weakly in Dn(U) , for some T ∈

cart(Ω;Rk) satisfying uT = u Ln -a.e. on Ωr . By the lower semicontinuity of the mass

and by Theorem 1.5 we have

MU (Tr) + MU (Ts) = MU (T ) ≤ lim
h→∞

MU ( [[Guh
]] ) = lim

h→∞
A(uh,Ω) =

=

∫

Ω

∣

∣M(∇u(x))
∣

∣dx = MU (Tr) ,

hence Ts = 0, T = Tr , and for every ω ∈ Dn(U) we have

T (ω) =

∫

Ω

〈

M(∇u(x)), ω(x, u(x))
〉

dx

by Theorem 1.3(g). This implies that

MU (T ) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx ,

thus (a) gives MU (T ) = lim
h→∞

MU (Th) . As (Th) converges to T weakly in Dn(U) , we

conclude that T (ω) = lim
h→∞

Th(ω) for every bounded continuous function ω:U → Ξ′ ,

where Ξ′ is the space of all n -covectors of Rn×Rk . In particular
∫

Ω

〈

M(∇u(x)), ϕ(x)
〉

dx = lim
h→∞

∫

Ω

〈

M(∇uh(x)), ϕ(x)
〉

dx

for every bounded continuous function ϕ: Ω → Ξ′ . Therefore
(

M(∇uh)
)

converges to

M(∇u) in the weak∗ topology of M(Ω; Ξ). Since M0̂0(∇uh) = M0̂0(∇u) = 1, Lemma

5.3 implies that
(

M(∇uh)
)

converges to M(∇u) in L1(Ω; Ξ).
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Remark 5.5. The proof of Theorem 5.4, together with Lemma 2.3, shows that, if

A(u,Ω) =
∫

Ω
|M(∇u(x))| dx and u ∈ BV (Ω;Rk) ∩ L∞(Ω;Rk) , then there exists a

sequence (uh) in C1(Ω;Rk) , bounded in L∞(Ω;Rk) and converging to u in L1(Ω;Rk) ,

such that
(

M(∇uh)
)

converges to M(∇u) in L1(Ω; Ξ).

Remark 5.6. The proof of Theorem 5.4 shows that, if A(u,Ω) =
∫

Ω
|M(∇u(x))| dx ,

then the current

T (ω) =

∫

Ω

〈

M(∇u(x)), ω(x, u(x))
〉

dx ,

which is well defined by Theorem 5.4(b), belongs to cart(Ω;Rk) . A conterexample in [13]

shows that the converse is not true, even if u ∈W 1,p(Ω;Rk) for every p < min{n, k} .

Remark 5.7. Theorem 5.4 implies that, if A(u,Ω) =
∫

Ω
|M(∇u(x))| dx < +∞ for

some open set Ω, then the same property holds for every open subset of Ω.

The following proposition shows that (5.2) implies (5.1) under very weak assumptions

on f .

Proposition 5.8. Assume that f satisfies conditions (i)–(vi). Then (5.2) implies (5.1).

Proof. Assume that f satisfies (i)–(vi) and let g be the function given by Lemma 5.2.

Then the functional

(5.6) (v, w) 7→
∫

Ω

g
(

(x, v(x)), w(x)
)

dx

is continuous on L1(Ω;Rk)×L1(Ω; Ξ+) by the Carathéodory continuity theorem (see,

e.g., [26]). If (5.2) holds, then by Theorem 5.4 there exists a sequence (uh) in C1(Ω;Rk) ,

converging to u strongly in L1(Ω;Rk) , such that
(

M(∇uh)
)

converges to M(∇u) in

L1(Ω; Ξ). By the continuity of (5.6) we have

lim
h→∞

∫

Ω

g
(

(x, uh(x)),M(∇uh(x))
)

dx =

∫

Ω

g
(

(x, u(x)),M(∇u(x))
)

dx ,

so that

F(u,Ω) ≤
∫

Ω

f
(

x, u(x),∇u(x)
)

dx .

As the opposite inequality is given by Theorem 2.8, we obtain (5.1).
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6. Further properties in dimension two

Throughout this section we shall assume n = 2. Given a bounded open set Ω0 ⊆ R2

and a function u ∈ BV (Ω0;R
k) ∩ L∞(Ω0;R

k) , we shall prove a stability result for the

class E(u,Ω0) of all open subsets Ω of Ω0 such that

(6.1) A(u,Ω) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx .

The main result of this section is the following theorem, which can be regarded as an

improvement, in the special case n = 2, of the stability result stated in Remark 5.7 .

Theorem 6.1. Let Ω1 and Ω2 be two bounded open subsets of R2 let u be a function

of BV (Ω1 ∪ Ω2;R
k) ∩ L∞(Ω1 ∪ Ω2;R

k) such that A(u,Ω1) =
∫

Ω1
|M(∇u(x))| dx and

A(u,Ω2) =
∫

Ω2
|M(∇u(x))| dx . Then

A(u,Ω) =

∫

Ω

∣

∣M(∇u(x))
∣

∣dx

for every open set Ω with Ω ⊂⊂ Ω1 ∪ Ω2 .

We begin by proving the theorem in the case of two polyrectangles with a nice

intersection, according to the following definition.

Definition 6.2. A polyrectangle of R2 is any finite union of open rectangles of R2

with sides parallel to the axes. Two polyrectangles A and B of R2 are said to have

a nice intersection if, after renumbering the coordinate axes and changing, if necessary,

their orientation, there exist a strip S = {x ∈ R2 : a < x1 < b} , corresponding to an

open interval I = ]a, b[ , and an open subset C of R , such that A ⊆ {x ∈ R2 : x1 > a} ,

B ⊆ {x ∈ R2 : x1 < b} , and A ∩ S = B ∩ S = I×C .

The following proposition deals with the special case of two polyrectangles with a

nice intersection.

Proposition 6.3. Let Ω1 and Ω2 be two polyrectangles of R2 with a nice intersection

and let u ∈ BV (Ω1 ∪ Ω2;R
k) ∩ L∞(Ω1 ∪ Ω2;R

k) be a function such that A(u,Ω1) =
∫

Ω1
|M(∇u(x))| dx and A(u,Ω2) =

∫

Ω2
|M(∇u(x))| dx . Then

(6.2) A(u,Ω1 ∪ Ω2) =

∫

Ω1∪Ω2

∣

∣M(∇u(x))
∣

∣dx .

To prove the proposition we need the following lemma.
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Lemma 6.4. Assume that Ω = A×B , where A and B are open subsets of R . Then

for every u ∈ L1(Ω;Rk) and for every ε > 0 there exists closed set Aε ⊆ A , with

L1(A \Aε) < ε , such that

(6.3) lim
h→∞

∫

B

|u(x1
h, x

2) − u(x1
0, x

2)| dx2 = 0

for every sequence (x1
h) in Aε converging to a point x1

0 ∈ Aε .

Proof. Let u ∈ L1(Ω;Rk) and let v:A→ L1(B;Rk) be the function defined by v(x1) =

u(x1, ·) . Then v is Bochner integrable on A . By Lusin’s theorem, there exists a closed

set Aε , with L1(A\Aε) < ε , such that the restriction of v to Aε is continuous, and this

implies (6.3).

Proof of Proposition 6.3. By Theorem 5.4 we have u ∈ W 1,1(Ω1 ∪ Ω2;R
k) and

M(∇u) ∈ L1(Ω1 ∪Ω2; Ξ), where Ξ is now the set of all 2-vectors of R2×Rk . Moreover,

by Theorem 5.4 and by Remark 5.5, there exists a sequence (vh) in C1(Ω1;R
k) , bounded

in L∞(Ω1;R
k) and converging to u strongly in L1(Ω1;R

k) , such that
(

M(∇vh)
)

con-

verges to M(∇u) strongly in L1(Ω1; Ξ). Similarly, there exists a sequence (wh) in

C1(Ω2;R
k) , bounded in L∞(Ω2;R

k) and converging to u strongly in L1(Ω2;R
k) , such

that
(

M(∇wh)
)

converges to M(∇u) strongly in L1(Ω2; Ξ). We want to construct a

sequence (zh) , converging to u (or to a function sufficiently close to u), with zh = vh

on Ω1 \ Ω2 and zh = wh on Ω2 \Ω1 , such that the integrals of the functions |M(∇zh)|
on the sets {zh 6= vh}∩ {zh 6= wh}∩Ω are sufficiently small. We shall see later that this

implies (6.2).

We may assume that there exist a strip S = {x ∈ R2 : a < x1 < b} , corresponding

to an an open interval I = ]a, b[ , and an open subset B of R , such that Ω1 ⊆ {x ∈ R2 :

x1 < b} , Ω2 ⊆ {x ∈ R2 : x1 > a} , and Ω1 ∩ Ω2 = Ω1 ∩ S = Ω2 ∩ S = I×B . As

D1u ∈ L1(I×B;Rk) , there exists a Borel set A0 ⊆ I , with L1(I \A0) = 0 such that

(6.4) lim
m→∞

∫

B

∣

∣u(tm, x
2) − u(t, x2)

∣

∣ dx2 = lim
m→∞

∫

B

∫ tm

t

∣

∣D1u(x
1, x2)

∣

∣ dx1 dx2 = 0

for every decreasing sequence (tm) in A0 converging to a point t ∈ A0 . By Lemma 6.4

there exists a Borel set A ⊆ A0 , with L1(A) > 0, such that

(6.5)

∫

B

∣

∣M(∇u(t, x2))
∣

∣ dx2 < +∞ ,

(6.6) lim
m→∞

∫

B

∣

∣M(∇u(tm, x2)) −M(∇u(t, x2))
∣

∣ dx2 = 0
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for every sequence (tm) in A converging to a point t ∈ A . By Fubini’s theorem, passing,

if necessary, to a subsequence, we may also assume that for every x1 ∈ A

(6.7)

∫

B

|u(x1, x2)| dx2 < +∞ ,

(6.8) lim
h→∞

∫

B

|vh(x1, x2) − u(x1, x2)| dx2 = 0 ,

(6.9) lim
h→∞

∫

B

|wh(x1, x2) − u(x1, x2)| dx2 = 0 ,

(6.10) lim
h→∞

∫

B

∣

∣M(∇vh(x1, x2)) −M(∇u(x1, x2))
∣

∣ dx2 = 0 ,

(6.11) lim
h→∞

∫

B

∣

∣M(∇wh(x1, x2)) −M(∇u(x1, x2))
∣

∣ dx2 = 0 .

Let us fix a decreasing sequence (tm) in A , converging to a point t ∈ A , and let us fix

m ∈ N . We define the sequence (zh) in W 1,∞(Ω1 ∪ Ω2;R
k) by setting

zh(x1, x2) =



















vh(x1, x2) , if (x1, x2) ∈ Ω1 and x1 < t,

x1−tm

t−tm
vh(t, x2) + x1−t

tm−twh(tm, x
2) , if t ≤ x1 ≤ tm and x2 ∈ B,

wh(x1, x2) , if (x1, x2) ∈ Ω2 and x1 > tm.

By (6.8) and (6.9) the sequence (zh) converges in L1(Ω1 ∪ Ω2;R
k) to the function um

defined by

um(x1, x2) =



















u(x1, x2) , if (x1, x2) ∈ Ω1 and x1 < t,

x1−tm

t−tm
u(t, x2) + x1−t

tm−tu(tm, x
2) , if t ≤ x1 ≤ tm and x2 ∈ B,

u(x1, x2) , if (x1, x2) ∈ Ω2 and x1 > tm.

Moreover, setting Ωt
1 = {x ∈ Ω1 : x1 < t} and Ωtm

2 = {x ∈ Ω2 : x1 > tm} , we have

(6.12)

lim inf
h→∞

∫

Ω1∪Ω2

∣

∣M(∇zh(x))
∣

∣ dx ≤ lim
h→∞

∫

Ωt
1

∣

∣M(∇vh(x))
∣

∣ dx+

+ lim
h→∞

∫

Ωtm
2

∣

∣M(∇wh(x))
∣

∣ dx + εm ≤
∫

Ω1∪Ω2

∣

∣M(∇u(x))
∣

∣dx + εm ,

where

εm = lim sup
h→∞

∫ tm

t

∫

B

∣

∣M(∇zh(x1, x2))
∣

∣ dx2dx1 .
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We shall prove that

(6.13) lim
m→∞

εm = 0 .

Let us show that (6.13) implies (6.2). From (6.12) we obtain

A(um,Ω1 ∪ Ω2) ≤
∫

Ω1∪Ω2

∣

∣M(∇u(x))
∣

∣dx + εm .

Since A(·,Ω1 ∪Ω2) is lower semicontinuous in L1(Ω1 ∪Ω2;R
k) and (um) tends to u in

L1(Ω1 ∪ Ω2;R
k) , the previous inequality together with (6.13) yields

A(u,Ω1 ∪ Ω2) ≤
∫

Ω1∪Ω2

∣

∣M(∇u(x))
∣

∣ dx .

As the opposite inequality follows from Theorem 2.7, we obtain (6.2), and the proposition

is proved.

Let us prove now (6.13). For every h ∈ N , for every x1 ∈ ]t, tm[ , and for every

x2 ∈ B we have

(6.14)
D1zh(x1, x2) = δ−1

m

(

wh(tm, x
2) − vh(t, x2)

)

= δ−1
m

(

wh(tm, x
2) − u(tm, x

2)
)

+

+ δ−1
m

(

u(tm, x
2) − u(t, x2)

)

+ δ−1
m

(

u(t, x2) − vh(t, x2)
)

,

where δm = tm − t , while

(6.15) D2zh(x1, x2) = x1−tm

t−tm
D2vh(t, x2) + x1−t

tm−tD2wh(tm, x
2) .

By (6.14) we have

∫ tm

t

∫

B

|D1zh(x1, x2)| dx2dx1 ≤
∫

B

∣

∣wh(tm, x
2) − u(tm, x

2)
∣

∣ dx2 +

+

∫

B

∣

∣u(tm, x
2) − u(t, x2)

∣

∣ dx2 +

∫

B

∣

∣u(t, x2) − vh(t, x2)
∣

∣ dx2 .

By (6.8) and (6.9) the first and the last integral in the right hand side of the previous

formula tend to 0 as h tends to +∞ . Therefore,

(6.16) lim sup
h→∞

∫ tm

t

∫

B

|D1zh(x1, x2)| dx2dx1 ≤
∫

B

∣

∣u(tm, x
2) − u(t, x2)

∣

∣ dx2 = ε1m ,

and (ε1m) tends to 0 as m tends to +∞ by (6.4).
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From (6.15) we obtain
∫ tm

t

∫

B

|D2zh(x1, x2)| dx2 dx1 ≤ δm

∫

B

|D2vh(t, x2)| dx2 + δm

∫

B

|D2wh(tm, x
2)| dx2 ,

so that (6.10) and (6.11) give

(6.17)

lim sup
h→∞

∫ tm

t

∫

B

|D2zh(x1, x2)| dx2dx1 ≤

≤ δm

∫

B

|D2u(t, x
2)| dx2 + δm

∫

B

|D2u(tm, x
2)| dx2 = ε2m ,

and (ε2m) tends to 0 as m tends to +∞ by (6.5) and (6.6).

Let us estimate now the components of M(∇zh) of the form M0β(∇zh) with

|β| = 2. By (1.3) we have

∣

∣M0β(∇zh(x))
∣

∣ =

∣

∣

∣

∣

∣

∣

det





D1z
β1

h (x) D2z
β1

h (x)

D1z
β2

h (x) D2z
β2

h (x)





∣

∣

∣

∣

∣

∣

.

By (6.8), (6.9), (6.14) the first column of this matrix is bounded in L∞(]t, tm[×B;R2)

and converges in L1(]t, tm[×B;R2) , as h tends to +∞ , to the vector

δ−1
m





uβ1(tm, x
2) − uβ1(t, x2)

uβ2(tm, x
2) − uβ2(t, x2)



 .

By (6.10), (6.11), (6.15) the second column converges in L1(]t, tm[×B;R2) to




x1−tm

t−tm
D2u

β1(t, x2) + x1−t
tm−tD2u

β1(tm, x
2)

x1−tm

t−tm
D2u

β2(t, x2) + x1−t
tm−tD2u

β2(tm, x
2)



 .

Therefore

(6.18) lim
h→∞

∫ tm

t

∫

B

∣

∣M0β(∇zh(x1, x2))
∣

∣ dx2dx1 ≤ ε3m ,

where

ε3m =

∫

B

∣

∣u(tm, x
2) − u(t, x2)

∣

∣

(

∣

∣D2u(t, x
2)

∣

∣ +
∣

∣D2u(tm, x
2)

∣

∣

)

dx2 .

Since u is bounded, (ε3m) converges to 0 as m tends to +∞ by (6.4), (6.5), (6.6). As

|M(∇zh)| ≤ 1 + |D1zh| + |D2zh| +
∑

|β|=2

|M0β(∇zh)| ,

from (6.16), (6.17), (6.18) we obtain that εm ≤ ε0m + ε1m + ε2m +
(

k
2

)

ε3m , where ε0m =

δmL1(B) . This shows that (εm) tends to 0 and concludes the proof of the proposition.
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To prove Theorem 6.1 we need the following decomposition lemma for polyrectangles.

Lemma 6.5. Let A be a polyrectangle in R2 . Then for every ε > 0 there exist two

families of polyrectangles (Ai)1≤i≤i0 and (Ai,j)1≤i≤i0, 1≤j≤j0 with the following proper-

ties:

(6.19) diam(Ai,j) ≤ ε ;

(6.20) A =
⋃

1≤i≤i0

Ai and Ai =
⋃

1≤j≤j0

Ai,j ;

(6.21) for i < i0 the sets Bi =
⋃

1≤κ≤i

Aκ and Ai+1 have a nice intersection;

(6.22) for j < j0 the sets Bi,j =
⋃

1≤κ≤j

Ai,κ and Ai,j+1 have a nice intersection.

Proof. Let us fix ε > 0. Let E1 (resp. E2 ) be the projection on the x1-axis (resp.

on the x2-axis) of the union of all one-dimensional faces of A perpendicular to the x1-

axis (resp. to the x2-axis). As E1 and E2 are finite sets, we can find a finite number

of open intervals I1 = ]a1, b1[ , I2 = ]a2, b2[ , . . . , Ii0 = ]ai0 , bi0 [ , and J1 = ]c1, d1[ ,

J2 = ]c2, d2[ , . . . , Jj0 = ]ci0 , di0 [ , with ai < ai+1 < bi < bi+1 for every i < i0 , with

cj < cj+1 < dj < dj+1 for every j < j0 , and with diameter less than ε/
√

2, such that

the intervals Ii∩Ii+1 = ]ai+1, bi[ do not intersect E1 , the intervals Jj ∩Jj+1 = ]cj+1, dj[

do not intersect E2 , while the union I1 ∪ · · · ∪ Ii0 = ]a1, bi0 [ contains the projection of

A on the x1-axis, and the union J = J1 ∪ · · · ∪ Jj0 = ]c1, dj0 [ contains the projection of

A on the x2-axis.

For every 1 ≤ i ≤ i0 and for every 1 ≤ j ≤ j0 we define Ai = A ∩
(

Ii×J
)

and

Ai,j = A ∩
(

Ii×Jj

)

. Conditions (6.19) and (6.20) are clearly satisfied. In order to

prove (6.21) for i < i0 , we note that Bi = A ∩
(

]a1, bi[×J
)

. Let us consider the strip

S = {x ∈ R2 : ai+1 < x1 < bi} . Then Ai+1 ⊆ {x ∈ R2 : ai+1 < x1} , Bi ⊆ {x ∈ R2 :

x1 < bi} , and

S ∩Bi = S ∩ Ai+1 = A ∩
(

]ai+1, bi[×J
)

= A ∩ S .

Since the strip S does not meet any one-dimensional face of A perpendicular to the

x1-axis, the intersection A ∩ S can be written as a product ]ai+1, bi[×C , where C is a

suitable open subset of R . This concludes the proof of (6.21). The proof of (6.22) is

analogous.
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Proof of Theorem 6.1. Given an open set Ω with Ω ⊂⊂ Ω1 ∪ Ω2 , there exists a

polyrectangle A such that Ω ⊆ A ⊂⊂ Ω1 ∪ Ω2 . By the Lebesgue Covering Lemma

there exists ε > 0 such that any open ball with radius ε about each point of A is

contained either in Ω1 or in Ω2 . By Lemma 6.5 there exist two families of polyrectangles

(Ai)1≤i≤i0 and (Ai,j)1≤i≤i0, 1≤j≤j0 which satisfy conditions (6.19)–(6.22). By (6.19) and

by the choice of ε each polyrectangle Ai,j is contained either in Ω1 or in Ω2 . Therefore,

Remark 5.7 implies that all polyrectangles Ai,j belong to the family E(u,Ω1∪Ω2) defined

by (6.1). From Proposition 6.3 and from (6.22) we obtain by induction that the sets Bi,j

belong to E(u,Ω1 ∪ Ω2) for every 1 ≤ i ≤ i0 and for every 1 ≤ j ≤ j0 . In particular,

taking (6.20) into account, for j = j0 we get Ai ∈ E(u,Ω1 ∪ Ω2) for every 1 ≤ i ≤ i0 .

From Proposition 6.3 and from (6.21) we obtain by induction that the sets Bi belong to

E(u,Ω1 ∪ Ω2) for every 1 ≤ i ≤ i0 . In particular, taking (6.20) into account, for i = i0

we get A ∈ E(u,Ω1 ∪ Ω2) . As Ω ⊆ A , the conclusion follows from Remark 5.7.
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