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Summary 

We prove C 1'~ partial regularity for minimizers of functionals with quasi- 
convex integrand f(x, u, Du) depending on vector-valued functions u. The inte- 
grand is required to be twice continuously differentiable in Du, and no assump- 
tion on the growth of the derivatives of f is made: a polynomial growth is required 
only on f itself. 

Introduction 

Consider the functional I(u) = ff(Du(x)) dx, where s is an open subset 
t2 

of R' ,  

and f :  R "N---> ~ .  
The regularity of minimizers of I has been widely investigated (see [8] and 

its extensive bibliography), but until recently the function f was required to be 
convex, which rules out many interesting physical examples (see [2]) and is far 
from quasiconvexity (this condition is necessary and sufficient for the semiconti- 
nuity of I on appropriate Sobolev spaces, see [1], and so it is a fundamental 
assumption for the existence of such minimizers). 

EVANS [5] proved in 1984 the C 1,~ partial regularity of minimizers of I under 
the assumptions that f is of class C z, 

ID~f(OI _< c(1 + ]~[,,-2) (1.1) 

for some p ~ 2, and f is uniformly strictly quasiconvex, i.e. 

f f(8 + Dqo(x)) dx >= f [f(8) + 7(I Dq~(x)]z + [D~0(x)[~)] dx (1.2) 
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for some y > 0 and all ~oE C01(~2;RN). This conclusion may be generalized 
([7], [9], [10]) to the case when f depends also on (x, u). 

It is clear that assumption (1.2) considerably enlarges the class of functions 
to which the theory applies: see [5], section 8. However, while condition (1.1) 
is natural whenf i s  a convex function with polynomial growth, it seems too strong 
when f is quasiconvex: for instance, the function (n ---- N = p) 

f (~)  = I~12 + [~i" +1/1 + Idet #l 2 

is of class C 2 and satisfies (1.2), but not (1.1). More generally, let 1 < 0~ < 2, 
p = nor and let fl: R -+ R be a strictly convex function of class C z with [fl(t) [ <= 
c(1 -+- It Is): then again 

f(~) = I~l 2 § I~l p §  (det ~) 

satisfies (1.2) and not (1.1). 
In this paper we prove C ~'~ partial regularity (theorem [II.1]) for minimizers 

of I under the assumptions that fsatisfies (1.2) and is of class C2; while there are 
no restrictions on its second derivatives, instead it satisfies the inequality 

If(#)l <-c(1 + I~F). 

The examples above satisfy these assumptions. 
A similar conclusion (theorem [11.2]) is proved when f depends also on (x, u). 
The proofs use essentially two main tools: the blow-up method (as used in 

[6], where it is shown that it is not necessary to pass through a Caccioppoli 
inequality, which would require restrictions on the second derivatives o f f ) ,  and 
the approximation lemma [II.6] combined with a higher integrability result for 
minima of certain non-coercive functionals. 

Acknowledgements. We thank M. G1AQUINTA and E. GIUSTI, who interested us in 
this problem. 

Statements and Preliminary Lemmas 

We now lay down the definitions we shall use to state our main results. Let 
-Q be a bounded open subset of R n, and let p ~ 2. We begin with the particular 
ease in which f is independent of (x, u): let f :  R"N--~ R satisfy 

f is of class C 2 (2.1) 

If(0[ ~ L(1 + [~e[v) (2.2) 

f f ( ~  + Dq~(x)) dx => f [f(#) § ~,([ Dq~(x)[2 + iDa(x)19] dx 
~ (2.3) 

for every ~ E R ~N and ~o E Co1(s R N) 

for suitable positive constants L, y. 
By (2.3), the func t ionf i s  quasiconvex, therefore step 2 of [1 1], page 6, applies 
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and we may assume 

IDf(#)] =< Z(1 + [#IP-~). 

For every u E W 1'p(D; R N) we set 

I(u) = f f (Du(x) )  dx. 
g2 

We say that u is a minimizer of I if 

I(u) ~ I(u + qJ) for every ~0 E Wo I'p(-Q; RN). 

Then we have: 

Theorem llI.1l. Let f be as above, and let u E WI'P(O; R N) 
Then there is an open subset Oo o f  ,62 such that 

meas (-(2 \ -Qo) = 0 

and 

uE CI'u(-Qo;Rn) for every i z < 1. 

263 

(2.4) 

be a minimizer of  I. 

If  f depends also on (x, u), we assume that f :  ~Q)<]~NxRnN---~R satisfies 

f~(x, u, 2) is continuous; (2.5) 

If(x, u, ~e)[ =< L(1 -t- [2 IP); (2.6) 

]f(x,u,#) - f (y ,v ,#)l  <=L(1 + I~[~) oJ([x - - y f +  [ u -  vl~), (2.7) 

f w(D~(y)) dy ~ f [~o(0) + 7 IDa(y)]el dy for every ~ E Col(Q; RN), 
t2 D 

with L, 7 > 0. 

As before, (2.6) and (2.8) imply 

[f~(x, u, 2)] ~ L ( 1  -k I~1~-'). (2.10) 

We remark that (2.9) is obviously satisfied if f ( x ,  u, 2) >= I~] ~', and that (2.9) 
allows also integrands f with variable sign. Set I(u) = f f ( x ,  u(x), Du(x)) dx; 
then we have a 

and 

where to(t) ~ t ~ 
increasing; 

f f(x, u, ~ + Dc;(y)) dy ~ f [f(x, u, ~) + ;,(]D~(y)l 2 + [Dcp(y)[P)] dy 
a a (2.8) 

for every (x, u, 2) and every q~ E C01(g2; R u); 

there is a continuous function ~0: R nu-+ R satisfying 

f ( x ,  u, 2) ~ ~P(~) (2.9) 

0 < a < lip and co is bounded, concave, non-negative and 
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Theorem lII.2 l. Let f satisfy (2.5) . . . . .  (2.9), and let u ~ W~'P(g2; ~N) be a mini- 
mizer o f  L Then there is an open subset [20 o f  0 such that 

meas (/2 \ s = 0 

and 

u ~ C~'~(s ; ~u)  for some # < 1. 

We remark here that assumptions (2.6) . . . . .  (2.9) may be slightly weakened (see 
for instance [7], Remark 2). 

It is worth noting that if the minimizer u happens to be continuous (for instance 
if p > n), then assumption (2.9) (first used in [10]), which is employed only in 
Lemma [IV.3] and Remark [IV.4], may be dropped. The same is true also w h e n f  
depends only on (x, ~e). 

In the sequel we denote by the same letter c any positive constant, which may 
vary from line to line. 

If  g is any vector-valued function, we denote by (g) .... the mean value of g 
on B~(x0); if no confusion is possible, we will simply write (g)r and B~ instead of 
(g) .... and B,(xo). We shall use in the proofs of Theorems [II.1], [I1.2] the following 
lemmas : 

Lemma [II.3]. Let p >= 2, and let f :  lZ k -+ R be a function o f  class C 2 satisfying 

]f(~)] ~ L ( 1  + I~[~'), ]Df(~:)] ~ L ( 1  + ]~]P-~). 

Then for  every M > 0 there is a constant e, depending on M, such that i f  we set 
for  any 2 > 0  and A E R  k with ]A] ~ M  

fA,z(~) =- 2-2[f( A + 2~) -- f (A )  -- 2 Df(A) ~] 

lfA c(l l 2 + I t0, 

]OfA,x(~)l ~ C([~[ + 2 ~-z i~l~-,). 

Proof. Set K M = max {]DZf(~)]: < M + 1}; then we have: 

[2~1 ~ 1 ~ IfA,a(~) I = �89 IOZf(A + 02~) ~ l  ~ �89 KM 1~12; 
12~ I > 1 ~ IfA,~(8)] ~ 2-2c(M) (1 + 12~[ + 12~10 ~ 3c(M)2" 2 i~l~, 

and the first inequality is proven; the second is analogous. [ ]  

Lemma [II.4]. Let p ~ 2, and let g: RnN--~ R be a function o f  class C 1 satisfying 

Ig( )l < cl(l l + 

for all ~oECo~(R";R N) 

for  suitable constants cx, 2 and 7. 

then 
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Fix v ~ 0 and let u C W L P(O; R  N) satisfy 

f g(Vu) dx < f [g(Du + D~) + v I aq~l] dx for all q~ ~ Wo"~(O; RN). 
g2 

Then there are c2, 6 > O, depending only on cl, ~, such that for every Br C D 

(iDu]2 + .~.-z ]Dul,,),+Odx < c: [ f ( :  + IDul 2 + ,~.-z IDu[") dx] '+'. 
B~/: I.B, J 

Proof .  Fix B r ( / 2 ,  let �89 r < t < s < r and take a cut-off  funct ion ~ E C~(B~) 
2 

such that  0 < r < 1, $ = 1 on B t and IDOl < ~ I f  we set 

f~l = [ $ /  - -  (u)A ~, ~: = [u - -  (u),] (1 - -  ~'), 

then Dqh § D~o2 ---- Du, and 

9' f (IDqg, 12 §176 dx< f g(Dch)dx= f g (Du--  Dcpe) dx. (2.10) 
ns t~s 1Js 

In addition, by the minimality o f  u, 

f g(Du) dx < f g(Du -- D~l) dx § v f l Dq3, [ dx 
l~s B~ s~ 

,i} 2 

'2' ~ meas (B~). _< f g(D~) d~ + - -  f I D~I I ~ dx + 
- -  Bs~B t 2 BS 

Then 

f g(Du -- Dcf2 ) dx = f g(Du) dx § f [g(Du -- Dq~2) -- g(Du)l dx 
Bs Bs 

f g(Dqo2)dx§ ~ flDr247 (2.11) 
Bs~B t 1.. Bs 

+ f ]Dg(Du -- ~ D~)I  ID~ l dx. 
Bs~Bt 

By (2.10), (2.11) and the assumptions on g it then follows 

f (I Du [ 2 + 2 p-2 I Du l') dx =< f (I D~, 12 + ~"-: [D~ ~ I') dx 
B t Bs 

z ~(~,, ~,)[:: + ,,,,~,f tl.ou: + ID,~I ~ + :.,'-~(I.Ou1" + l.o~o., :) dx] 

~ [ v~r" § ~s,B, f (]Du[~ -I- ~'-2 IDul')dx 

. :. . .  4 e~ , " ( s - -  O 2 ]- ( s - - t ) "  ! " 
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We fill the hole by adding to both sides the term 

f (IDul ~ + X'-2[Dul')dx; 
Bt 

then we divide by b + 1, thus obtaining 

f (IDu[ 2 + 2 ~-2 IDul p) dx ~ 0 f (lDul 2 + )~-z IDu[:)dx 
Bt Bs 

+ c f It2 + l u  - (u),l 5 
Br (S - -  t )  2 

, , - 2  l u - ( u ) r  71 
+ "  is--  ] d.,c, 

with O < 1. Now a standard lemma (see e.g. [8] page 161 or [7] Lemma 3.2) 
yields 

f (IDul ~ @2, elouf")dx<~ e f (r 2 + 
Br/2 Br \ 

l u - ( u ) , l  ~ 
r 2 

~- )~P 2 I u  ---- ._~ )r ,P| d [ ~ 
r" ] 

(2.12) 
] (n + 2)/n 

<: c f ( , 2 +  IDul z + 2" 21DuIP)"/r ; 
Br 

we have used the Sobolev-Poincar6 inequality. 
The result follows from (2.12) by a modification of Gehring's theorem (see 

[8] page 122). [ ]  

The next lemma may be found in [3]. 

Lemma 111.5 I. Let G be a measurable subset of  R k, with meas (G) ,< -~oo. As- 
sume (Mh) is a sequence o f  measurable subsets of  G such that, for some e > O, 
the following estimate holds: 

meas (Mh) ~ e for all h E N. 

Then a subsequenee (Mhk) can be selected such that /r~ Mh k ~= O. 
k 

By Lemmas [1.9] . . . . .  [1.12] of [1] one may deduce (see also [13] for a self- 
contained proof):  

Lemma 1II.6]. Let [2 be a regular bounded open subset of  R ~, q => 1 
u C= W 1'q([2; RN). For every K > 0 there is a w E W I'~([2; R N) such that 

II Wtll,~ _< K 

meas {x E [2: u(x) + w(x)} < c [[uIl~'q = g q ' 

and 

and c is independent o f  K. 
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Proof of Theorem [II.11 

In this section we assume f satisfies (2.1) . . . . .  (2.3) and we denote by u E W I'p 
(-Q;R N) a minimizer of  I(u) = f f ( D u ) d x .  As in [5], we will prove a decay 

t~ 

estimate (Proposition III.  1 ]) f rom which the result will follow by a standard argu- 
ment. 

For  every Br(xo) ~ if2 define 

V(xo, r) = f (IDu - (nu)r l  2 + IDu -- (Du),l') dx .  
Br(Xo) 

Then we have 

Proposition [III.1]. Fix  M > O; there is a constant C m > 0 such that f o r  every 
< � 8 9  there is an e : e ( z , M )  such that i f  

then 

I (DU)xo,r I <= M and U(xo,  r) <= e, 

U(xo, ~'r) =< Cm z2 U(xo, r). 

Proof. Fix M and 3; we shall determine C M later. 
Reasoning by contradiction, we assume that there is a sequence Brh(Xh) satis- 

fying 

Brh(Xh) ~ if2, [ (DU)xh,rh ] ~ M, lim U(xh, rh) = 0 h 

and 

U(xh, zrh) > CMT2U(xh, rh). (3.1) 

We introduce the following notations: 

a h : ( U ) x h , r h  , Ah : (DU)xh,rh, 2 2 : U(xh, rh). 

Since the proof  is quite long, we divide it into several steps; moreover, we shall 
often pass to subsequences and still denote them by the same index h. 

Step  1: Blow-up. We rescale the function u in each Brh(Xh) to obtain a sequence 

of functions on Bt(0). Set 

1 
vh(y ) : ~ [u(xh + rhy) - -  a h - -  rhAhy ] ; 

~hl h 

then 

1 
DVh(y) = -7- [Du(xh + rhY) - -  Ah], 

(Vh)o. I : O, (Dvh)o: : 0 
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and 

f ([Dvh] 2 + 2~ -2 ]DVhlP)dy = 1. (3.2) 
B~(0) 

Without loss of generality we may then assume 

v h --> v weakly in WI'2(B1 ; R N) (3.3) 

and, since ] Ah[ ~ M, 

A h --> A. (3.4) 

Step 2: v satisfies a Linear System. We show that 

~ (  )DevJD~'dy = 0 for all 9E C](B,; RN). (3.5) 

From the Euler system for u, rescaled in each B,h(Xh), we deduce for every 

~ Ca(B1 ; R  N) 

B~ 

whence 

~ ~ ( A ,  + a~ D~,) - ~ (~1 D~0 i ay = o. (3.6/ 

Fixing % we split B~ as follows: 

E + W E ;  --- {y E S~ : 2 h I Dvh(y)[ > 1} W {y e B~ : 2 h [Dvh(y)[ <= 1}. 

As for E +, we get by (3.2) 

meas (E +) 

therefore, using (2.4), 

f2~ IOvhl2dY~=2~; (3.7) 
Bt 

" ~ f [Df(Ah + 2h Dvh) -- Df(Ah)] Dq) dy < c_~ f (1 + 2f-~ I Dvhl p ') dy 
~h E~ = 2h E~ 

<: C (2h + jh+Af-2IDvhIP-' dY ) 

[ \(p--1)/p\ 
~ e  ~-h + 2~p-2)/~ [meas (E+)] lip ( f 2~ 21DvhlP dy) ) .  

Using (3.2), we obtain 

1 
lim~ -~h feb+ [Df(A h - ~ -  2 h DVh) - -  Df(Ah) ] D~ dy = O. (3.8) 
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On E~- we have 

1 1 

--2n e f  [Df(Ah + 2 h Dvn) -- Of(Ah) ] 0 9 dy = E~ f o f O2f(Ah + s2h Dvn) Dvh D9 ds dy 

1 

~-- f f [DZf(An + s2h Dvh) -- DZf(A)] Dv h D 9 ds dy + f D2f(A~) Dv h D 9 dy. 

We observe that (3.7) implies that Ile~- ~ 1B, in Lq(B1) for all q < ~ ,  and 
that by (3.3) we have 

2 h Dvh(y ) ~ 0 a.e. in B1. 

Then by (3.3), (3.4), our choice of E~-, and the uniform continuity of D2f on 
bounded sets, we get 

limb ~ e f  [Df(Ah + 2h Dvh) -- Df(Ah)] D9 dy = B, f D2f(A) Dv D 9 dy, 

which together with (3.8) proves (3.5). 
Assumption (2.3) ensures that 

~2f A" 12 ~,]#l 2 1~/[ = = < ~ (  J~i~j~o~--r ]/z I~l ~, 

therefore (see [8] Chapter 3) the solution v of (3.5) satisfies 

f IOv--(OvLledy<=c*(M)~ 2 for every - r <  1/2, (3.9) 
Br 

v c C~176 ;RN), (3.10) 
2(fl-2)/P(vh v) --~ 0 weakly in 1,p . N . - -  Wior R ), (3.11) 

we have used (3.2), (3.3). 

Step 3: Higher Integrability of (vh). If  we set 

fh(~) = 2h-2[f(Ah + 2h~) --f(Ah) -- 2h nf(Ah) ~] 

then by Lemma [11.3] we have 

IA(~)I =< e(l~l ~ + &g-z I~[0 (3.12) 

I ofn(#)l =< c(l~[ + 2g -z ]~I p-l) 
for a suitable constant c = c(M), while (2.3) implies 

fA(Dg)dy>~, f (IogV + ~-ZlOglOdy for all 9ECg(B~;RN). (3.13) 
B~ B~ 

Set for every r ~ 1 

l~(w) = f fh(Ow) dy; 
B~ 
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it is easily verified that  v h is a minimizer of  each I h. The  assumptions of  L e m m a  
[II.4] are thus satisfied, with v ----- 0, and therefore 

f (IOvh? + ;~-~ ]OvhlO~+~dy <= e (3.14) 
BI/2 

with c, 6 depending on M. 
F r o m  this est imate and (3.3) we obtain 

Vh ~ V weakly in Wl"2+26(BI/2;RN). 

Step 4: Upper bound. Fix r < �89 

exists. 
We  prove  that  

it is not  restrictive to assume tha t  

lim[I)(vh) - -  I)(v)] 
h 

lim [I~(vh) - -  I~(v)] ~ O. 
h 

Choose  s < r and take ~ E C ~ ~  such that  0 ~ ~ ~ 1, ~ = 1 
]D~ l<=2 / ( r - - s ) ;  if  we set 

~0 h = (v  - vh) ~, 

by (3.10), (3.12) and the minimali ty  of  v h follows 

I~(vh) -- I~(v) <~ l~(v h + cph ) -- Ihr(V) 

= f [fh(Dvh + D~vh) --fh(Dv)] dy 
Br\Bs 

Iv~ - ~I ~ 
<~c f l +lDvhp +~-21Dv,, lP+ (r s) --------T 

Br\B s 

But by (3.14), for every E ~ B�89 

so tha t  

(3.15) 

on Bs and 

+ 't~-2 (r - s)"  l dy.  

.f (I Dvhl 2 + 2~A -2 I Dvh] p) dy ~ c [meas (E)] ~l(l+~), 
E 

C 
f ( I v h  - vl 2 + ~ - 2  lvh - vlOdy, 

( r - -  S)PB 2 
I~(vh) -- I~(v) ~ : o ( r - -  s ) + ~  

(3.16) 

(3.17) 

Step 5: Lower bound. We prove that  

limb [I~(vh) - -  Ih(vh)] ~ e(~', p) l i m s u p  f (I DVh - -  Dv] 2 + 2~ -2 [Dvh -- Dv ] t') dy. 
Br 

with o(t) vanishing as t---~ O, and (3.15) follows by (3.3), (3.11) and since s < r 
is arbi t rary.  
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Fix K >  0; by (3.14), using L e m m a  [II.6] with q = 2 q -2~ ,  
sequence (w~,) Q WI"~(Br;R N) such that  

Ilw,,!h,~ =< K 

meas {y E B~: Vh(Y ) =J(= wh(y)} ~ K2+2 ~ 
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we may  find a 

then 

Choose  

(we shall meet  this ~ later); set S h = {y E Br: vh(y) 4= Wh(y)}. I t  is not  restrictive 
to assume tha t  

therefore 

We have 

w h ~ w weakly* in WI'~(Br;RN). 

l~(v,,) - I~(v) = I~,(v~) - g ( w h )  

+ Ihr(W~) - -  l~r(W) 

+ I~(w) -- Ihr(V) 

= R~ + R'~ + R~. 

N o w  by  (3.12), (3.16) and (3.18) 

: [fh(DVh) -- fh(OWh) ] dy ] 
I 

< c f(IDo.l  ~ + z~-~ IDylL" + K ~ + ~g-~K0 4' 
Sh 

C 
limsup I Rr ~ kz~.  

s < r and take ~ as in Step 4. Define 

~h = (Wh--  W) ~; 

R~ = I)(Wh) -- I)(W q- ~h) 

+ l ) ( w  + v,h) - g ( w )  - g'(v,h) + l)(v,h) 

= e~ + R~ + R~. 

By (3.12) we obtain  

1Rh41 =- f [fh(Dwh) -- fh(Dw -~ Dvh)l dy [ 
Br\Bs I 

<_c(K) f (~ + Iwh-wL2 Iw . -  w_l"tay ' 
- -  s,~ns (r - -  s) 2 + 2~-2 (r - -  s) p ] 

(3.19) 

(3.18) 
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SO that 

l imsup I g4hl <= (r - -  s) c (K) .  (3.20) 

To bound R~, following [6] we remark that 

1 1 

fh(A + B) -- fh(A) -- fh(B) = f f D2fh(sA + t B ) A B d s d t ;  (3.21) 
0 0 

since 

DZfh(s Dw + t D~ph ) = D2f(Ah -}- s2 h Dw -}- t2 h D~oh) 

is bounded and converges to DZf(A) uniformly, by (3.21) with A -----Dw and 
B = D~ph, and since Wh~ 0 weakly* in WI'~(Br;RN), 

lim R~ = 0. (3.22) 
h 

Now we use (3.13) to obtain 

R~ => 9' f (IOwhl 2 + 2'~ -2 IOwnf) dy 
B r 

>= 7" f ([Dwh -- Dwl 2 + 2~ -2 IDWh -- Dw]O dy. 

Together with (3.20), (3.22) this implies 

lim infR~h ~ ~' limhsup f (IDwh -- Dw[ 2 + 2~-2 iDwh _ DwlOdy _ (r -- s)c(K). 
Bs 

(3.23) 

To deal with R3 h we use a technique introduced in [1]: first we prove that (see (3.18) 
for ~) 

2~ 
meas {y E B,: v(y) =~ w(y)} ~ KE+z o . (3.24) 

Set S = {y E Br: v(y) ~ w(y)} and 

?S : S A {y E B,: v(y) = lira Vh(Y)) : 

then meas (S) = meas (S). We reason by contradiction: if 

meas (S) > 2c/K 2+2~, 

then by (3.18) 

meas (S \ Sh) > c /K 2+2~ 

for every h, and by Lemma [II.5] there is a ~ E Br such that 

E S \ Sh for infinitely many h. 
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Passing to this subsequence, we have 

v@) : lira vh(-~) = lira wh@ ) = w(y); 

hence ~ S, which is a contradiction. This proves (3.24). Now, since 
a.e. in B, \ S, by (3.10), (3.12), (3.24) 

I R~I ~ f IA(Dw) - A(Dv) I dy 
S 

<_ c f (K 2 + ~,-2 v ,  ,tg -2 IDv]O _ ,,/, ,~ +. IDv]: + dy 
S 

C 
~ - ~  "+" c~,~-2K p-2-2~  ' 

so that 
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Dv = Dw 

f (IDWh - -  D W [  2 + 2~ -2 [ D w h  - -  DwlO dy 
Bs 

3'-" f ([DVh - Dr12 + 2g -e [013 h - -  Dv[') dy + 
B, 

- f (]Dwh -- Dvhl 2 + ).g-2 ]Dwh --  DvhiP)dy + 
Sh 

- f(IDw - Ovl 2 + 2~ -2 IDw -- OvlP)dy. 
S 

Therefore, arguing as we did for R~ and R~, we obtain 

limsup f (lDwh -- Dwl 2 + 2f, -2 IDWh -- DwlO dy 
Bs 

C 
3'-~ limsup f (I DVh --  Dvl ~ + 2g-~lDvn -- DvlO dy K2 ~ . 

B s 

Putting together (3.19), (3.23), (3.25) and this inequality, then letting s ~ r and 
K - + o o ,  we get (3.17). 

Step 6: Conclusion. Inequalities (3.15), (3.17) imply 

lim f ( IDvh - -  Dr] 2 + 2g -~ I D v h  - -  D v l  ~') d y  = O; 
h Br 

Finally, we reduce the right hand side of (3.23) to the desired form: 

C 
limhsup I R3hl ~ K2~. (3.25) 
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going back to u and using (3.9) we have 

lirn U(xh' zrh) 1 
h 22 --  lira 2-~h f (]Du -- (DU)~rh[2 -b ]Du -- (Du)~rhl")dx 

Brrh(Xh)  

= lim f (]Dv h -- (Dvh).l ~ ~- 2.~, - 2  IDvh - (Dvh)~V') dy 
B. r 

= f l D v - - ( D v ) ~ t  2dy 
B r 

<= c*(M) T 2, 

which contradicts (3.1) if we chose C M = 2c*(M). []  
The proof  of  Theorem [II.1] follows from Proposition [III.1] by a standard 

argument, see [8] Chapter 6 or [5] Section 7. 

Proof of Theorem !11.21 

Throughout  this section the function f satisfies (2.5), . . . ,  (2.9). We need some 
additional lemmas. 

Lemma [IV.l].  Let (X, d) be a metric space, and J: X -~ [0, + ~ ]  a lower semi- 
continuous functional not identically q - ~ .  I f  

there is a v E X  such that 

J(u) < o~ q- inf J ,  

d(u, v) ~: 1 

and 

J(v) < J(w) + ~d(v, w) 

The result above may be found in [4]. 

Lemma IIV.2]. Let p >~ 1, and let f:  R"N-~ R 
class C 1 satisfying 

for every w E X. 

be a quasiconvex function o f  

If(~)l < z ( 1  + I~lp). 

Then for every u C W1'P(-Q; R N) the functional f f(Dw) dx is sequentially lower 

semicontinuous on the Dirichlet class u q- Wo1'P(Q; p~N) endowed with the weak 
topology of  W I"p. 

Proof. I t  is enough to observe that f is separately convex, and thus (see 11) it 
satisfies also the condition 

If(~ + 7) - f (~ ) l  ~< c(1 -~ I~1~-, + iTlp-,)171; 
then the result follows from [12] Theorem 5. [ ]  
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Lemlna [IV.3.] Let f satisfy (2.6), (2.9) and 

If(x, u, ~ + 7) -- f ( x ,  u, ~e)] ~ c(1 + I~1, - t  +~ i~l, -t) [~1, 

and let u E Wt'P(-Q; R N) be a minimizer o f  L Then there are qo > P and Co > O, 
independent o f  u, such that u E Wllgq~ R N) and for  eve ry  B~ Q s 

, t / g o  ~ Du ]P)~dxi (Br~[2[Dulqodx) .~ Co (Br~ (1 ..+_ I : xt/p 

Proof. The argument is similar to Lemma [11.4]. Fix B r Q s let �89 r < t < s < r, 
take the cut-off function ~ of [I1.4], and again set 

~o~ = [ u  - ( u ) , ]  ~ ,  ~ = [ u  - ( u ) , ]  (1  - ~ ) ;  

then ~ot + 92 = u - -  ( U ) r  and Dgt + D~2 -~ Du. Now, by (2.9) 

f [r I D~Ol ]" @- ~(0)] dx ~ f w(Dq~,) dx <= f f (x,  u, Dq)t) dx 
B s n~ Bs 

: f f (x ,  u, Du --  D~o2) dx. 
Bs 

(4.1) 

By the minimality of u we have 

f f (x ,  u, Du) dx ~ f f (x ,  u - ~Ol, Du -- DqD1) dx 
Bs Bs 

= f f (x ,  ~02 + (u)~, D92) dx 
B~ 

= f f ( x ,  cp2 + (u),, Dcp2 ) dx + f f (x,  (U)r , O) dx,  
B s \ e  t B t 

so that by (2.6) 

ff(x,u, Du)dx~L f ID~o~l'dx + c:, 
Bs B s \B t 

and by (2.10) 

f f ( x ,  u, Du --  D92 ) dx = f f(x, u, Du) dx + f If(x, u, Du -- D92 ) - - f ( x ,  u, Du)] dx 
Bs Bs Bs 

f f (x ,u ,  Du)dx +c  f (1 + ]Du]'-~+ ID~o2lP-')lDqJzldx 
Bs Bs\B t 

cr"-t- c f ([D~02l'+ [DulOdx 
Bs\Bt 

[ ~ cr"-r c f [DulP q - (s__ t)p .l dx. 
Bs~Bt 
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Then by (4.1) we obtain 

flOul'dx<=e f IOul~dx+e f ( l +  
B t Bs \B t B r k 

The conclusion follows as in Lemma [I1.4]. [ ]  

[U --  (U)r[P~ 
(;-- t7 / dx. 

Remark [IV.4]. Under the assumptions of Lemma [IV.3], i f / 2  is a ball B and 
u is more regular on ~B, then the higher integrability goes up to the boundary. 
Precisely, assume there is a function Uo E w~'q(R~;RN), with q > p, such that 
u - -  UoE WIO'V(B;RN): then there are qo, Co, with p < qo < q, such that  
u E WI'q~ R N) and 

( ]  [O$1lq~176 C 0 ( [ ]  (1 ~-]Ou] p) dx]l]P-Af - [ ]  [Ouol q~ dx]l/q~ (4.2) 

To prove this, adapt the proof  of [IV.3] following [8], page 152. 

Remark [1V.5]. The second inequality in (4.1), together with the analogous 
inequality in the proof  of Remark [IV.4], is the only point in this paper where 
we need assumption (2.9). I f f  is independent of x or if the minimizer u happens 
to be continuous, instead of (2.9) we may just use (2.7) to show, if r is sufficiently 
small and Xo is the center of Br, that 

ff(x, u, Dqax) dx >: ff(xo, U(Xo), D~oa) dx -- e f (1 + ]D<vx I v) dx, 
S~ S~ B~ 

and the inequality follows using (2.8), if e < y. 

Lemma [IV.6]. Let f satisfy (2.6), (2.8), and f ix  Xo E/2 and Uo E RN. I f  B~ 
is any ball in R ~, and u E WI'P(B~; RN), then the functional f f(xo, Uo, Dw(x)) dx 

Br 
is sequentially weakly lower semicontinuous on u q- Wd'P(Br;RN), and satisfies 

f f(xo, Uo, Dw(x)) dx ~ 7 f Iawl" dx -- c f (1 + IDulO dx. 
B r B r B r 

(4.3) 

Proof. The semicontinuity follows from Lemma [IV.2], since (2.8) implies quasi- 
convexity. 

As for (4.3), let fi E ( u r ) +  W~'P(B2r;R N) be an extension of u such that 
f I o;, I ~ dx < e f IOn I s dx; if we set for every w E u + WI'P(Br; R N) 

B2r B r 

~ :  in B2r \Br ,  

then by (2.8) 

f [9, I Dw V' + f(xo, Uo, 0)] ax <= f f ( xo ,  Uo, Dff,) dx 
B2r B2r 

= f f ( xo ,  Uo, Dw) dx + f f(xo, Uo, D~t) dx, 
Br B2r ~B r 

and (4.3) follows easily by (2.6). [ ]  
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Lemma [IV.7]. There are two constants, 0 < fl~ < f12 < 1, and for  every K > 0 
a constant c K > O, such that i f  u is a minimizer o f  I, r < 1, B2~(Xo) ( s and 
(Ihul,)xo,2r<= K, then there is a vE u + Wd'P(Br(xo);R N) such that 

( rf " , ,  IDv -- Du[P dx) ~_ cxr~ 
/2 

and 

f f(xo, (u) ..... Dr(x)) dx 
Br  

< f f ( x o ,  (U)~o.,, Dr(x) + D~o(x)) dx + r :~ f IDq(x) l dx 
ar  a r 

for  every 9 r Clo(Br(xo) ; RN) �9 

Proof. By Lemma [IV.3] and the minimality of u follows the existence of qo > P 
and Co > 0 such that u C Wl~q~163 and 

(sf2 ]Dulq~ dx) l:q~ <= Co ( s f  (1 + [Du[P) dx) I/p (4.4) 

for every B~ C s 

Now, by Lemma [IV.6] there is a minimum point ~ on u + W]'P(Br) of the 
functional 

I~ = f f(xo,  (u),, Dw) dx; 
B, 

by Remark [IV.4] there are numbers q~ and cl with p < ql < qo and both 
independent of r, such that ~ E WI"a'(B,) and, by (4.2), (4.3), 

f lO-alq  dx <= c, f ( 1  + [Dutql) dx. 

Now, by use only of (2.7) and (4.4), the argument employed in [7] Lemma 4.1 
yields 

1Or(U) -- lO(-ff) ~ ~(K) r e, (4.5) 

where fl < 1 depends only on a, L,p .  Consider the space u + Wd'I(B,) en- 
dowed with the metric 

a(v, w) = (~(K)rm) -1 f lDv -- Dw I dx,  
Br 

and set 

I~ if w E u + Wg'P(Br) 
J(w) 

+cx~ otherwise. 

By Lemma [IV.6] the functional J is lower semicontinuous in the metric space 
above, and clearly 

inf J = l~ 
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therefore by (4.5) and Lemma [IV.l] there is a vE u + W]'I(B,) satisfying 

f [Dr - -  Du [ dx _~ c(K) r ~/2 
Br 

and 

(4.6) 

J(v) ~ J(v + ~) + r ~:~ l iBel  dx 
B r 

for every q~E WoLI(Br). In particular, J(v) is finite, hence vEu + Wd'V(B,); 
this proves the last assertion of the lemma, with /32 ~ 3/2. Moreover, by (4.3) 

f IOvlPdx <= I~ + c f ( 1  + [Oul" ) dx 
B r B r 

l~ + r ~/2 f IDv - Dul dx + c f ( l  + ]DulO dx 
B r Br 

c f(1 + [DulOdx + r t~n [Dr -- Dul dx 
Br 

<= c(K). (4.7) 

Consider the functional 

w ~ I~ + r an f ]Dr - Dw I dx. 
Br 

Since its integrand f(xo, (u), ~) + / /2  [Dv(x) -- ~e[ satisfies the assumptions of 
Lemma [IV.3], by the minimality of v there are numbers q and c, independent 

" l z l ' q l ' B  ~ and o f K ,  r and satisfying p < q < q o ,  such that vE Vr~oc~ ~, 

(.: ) IDvlqdx ~ c (1 + ]DvlOdx '/p (4.8) 

q - - p  1 1 - - 0  
Now if # =  we h a v e ~  = 0  + ~ ,  and so (q - Op p q 

( ~2 \ t i p  (n~2 dx)~ ( f2 dx) t -~  8 I D v -  Dul~dx) <= [Dr--  Duj . IDv - Dula T .  

This inequality, together with (4,4), (4.6), (4.7), (4.8), implies 

( L  IDv-- Dul" dx) '/P~ cKr ~~ 

and the result follows with fl~ = flO/2 < f12- [ ]  

The key to Theorem [II.2] is a statement similar to Proposition [II.1]: define 
for every B,(xo) ~ O 

U(xo, r) = r ~ + f ([ Du - -  ( D u )  . . . .  I z + I Du - ( D u )  .... ] p) dx, 
Br(Xo) 

for some positive ~ </31. 



Minimizers of Quasiconvex Integrals 279 

Proposition [IV.8]. Fix M ~ 0; there is a constant CM > 0 such that for every 
< 1/8 there is an e = e(z, M) such that i f  

(u) .... I ~ M, I (DU)xo,, I <---- M, U(xo, r) <= e 

then 

U(xo, "rr) <: CMZ'~U(Xo, r). 

Proof. As in Proposition [III.1], fix M and l- (we shall determine CM later), and 
assume 

and 

n4rh(Xh) C ~'~ 

I(U)xh.4rhl ~ M, I(DU)xh,4~hl <= M 

U(xh, 4rh) = 22 -+ 0 

U(xh, 4zrh) > CMTe2~. 

By (4.9), (4.10) we have 

f IDul"dx < 2" - ' (M  p + 22) ~ c, 
B4rh(Xh ) 

so that by Lemma [IV.7] we may choose for every h a function 
Wd,P(B2,h(xh); RN) satisfying 

( h h)]Du-- DUh[" dx) l," <= c(M) r~' 

f f ( x  h, (u)zr h, hUh(X)) dx 
-B2rh(Xh ) 

<= f f(xh, (U)2rh , Ou h + Og(x)) dx + (2rh) ~ 
B2rh(Xh) 

By (4.12), (4.13) we have also 

[(3Uh)xh.~hl <= c(m),  

and we may rescale in B,h(xh), setting 

1 
vt,(y ) = ~hrh [Uh(Xh + rhy) -- (Uh)xh,, h -- rh(DUh)xh., h Y]. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

uhEu + 

(4.13) 

(4.14) 

f ID~[dx.  
B2rh(Xh ) 

After this, the proof goes on as in Proposition [IliA], with some changes. Those 
worth noting are the following. 
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Formula (3.6). Differentiating in (4.14), we show that the left-hand side of 
(3.6) is no longer equal to zero, but instead it vanishes as h -+  cx~; indeed, it 
is dominated by r~/Z/2h, and by (4.10) and our choice of ~ < fl~ < f12 

~2 pfl2--~ 
rh a ~ C "~h "h , 

whence 

and similarly 

rg. rg' . 
r n -+ 0, -~--+ 0, -75--+2h v (4.15) 

- - - +  O. (4.16) 
2h 

Formula (3.14). Lemma [11.4] must now be used with v = (2rh)a'/2hz, after 
which the formula remains unchanged by (4.15). 

Formula (3.15). The estimate begins with 

(2rh) a~ f 
I~(vh) -- l~(v) ~ (I~(v h + ~h) -- Ih(v)) + -~,.  ~ ID~I ax. 

h B r 

The first term is dealt with as before, while the second term vanishes as h -+ oo 
by (4.15) and since (D~h) is bounded in L 2. 

Step 6. In this case, since 43 < �89 we obtain 

1 
lim-~- f ( I D u h  - -  (Duh)4~hl 2 + ]Du h - -  (DUh)4rrh Ip) dx ~ c (M)z  2. 

h A h B4rrh(Xh ) 

But by (4.13) 

1 
z~ f (IDu - D.,,I 2 + IDu - Duhl") ax 

B4~rh(xh) 

(4.17) 

c(~) tr2~ 1 =< ~ ,  h + r~'), 

which vanishes as h - +  ~ by (4.16). 
This, together with (4.17), implies by (4.10) 

lim U(xh' 4zrh) r~ 
h 2~ ~ e ~  l imsup ~h 2 + e(M) ~2 <= c*(M) ~ ,  

and the contradiction follows for CM = 2c*(M). [ ]  

The conclusion of  the proof  of Theorem [II.2] may be attained by adapting 
[7] Section 6 to our simpler situation. 
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