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Summary

We prove C* partial regularity for minimizers of functionals with quasi-
convex integrand f(x, u, Du) depending on vector-valued functions u. The inte-
grand is required to be twice continuously differentiable in Du, and no assump-
tion on the growth of the derivatives of fis made: a polynomial growth is required
only on f itself.

Introduction

Consider the functional I(u) = f f(Du(x)) dx, where £ is an open subset
2
of R”,
u: QRN

and f:R™Y =R,

The regularity of minimizers of I has been widely investigated (see [8] and
its extensive bibliography), but until recently the function f was required to be
convex, which rules out many interesting physical examples (see [2]) and is far
from quasiconvexity (this condition is necessary and sufficient for the semiconti-
nuity of I on appropriate Sobolev spaces, see [1], and so it is a fundamental
assumption for the existence of such minimizers).

Evans [5] proved in 1984 the C'* partial regularity of minimizers of f under
the assumptions that f is of class C?,

| DG < el + &) (1.1)

for some p = 2, and fis uniformly strictly quasiconvex, i.e.

gf f& + Dp(x)) dx = Qf [AO + (| De(0)|* + | Dp(x)[")] dx (1.2)



262 E. Acersl & N. Fusco

for some y >0 and all ¢ ¢ CiL2;RY). This conclusion may be generalized
([71, 9], [10]) to the case when f depends also on (x, u).

It is clear that assumption (1.2) considerably enlarges the class of functions
to which the theory applies: see [5], section 8. However, while condition (1.1)
is natural when f'is a convex function with polynomial growth, it seems too strong
when f is quasiconvex: for instance, the function (n = N = p)

f& = |62 + |&]" +V1 + |det &

is of class C? and satisfies (1.2), but not (1.1). More generally, let 1 < & << 2,
p =no and let f:R — R be a strictly convex function of class C2 with |3(¢)| =
c(1 -+ |t1*): then again

S@) = &7 + [&7 + B (det &)

satisfies (1.2) and not (1.1).

In this paper we prove C'~ partial regularity (theorem [IL.1]) for minimizers
of 7 under the assumptions that f satisfies (1.2) and is of class C?; while there are
no restrictions on its second derivatives, instead it satisfies the inequality

A = el + [£7).

The examples above satisfy these assumptions.
A similar conclusion (theorem [I1.2]) is proved when f depends also on (x, u).
The proofs use essentially two main tools: the blow-up method (as used in
[6], where it is shown that it is not necessary to pass through a Caccioppoli
inequality, which would require restrictions on the second derivatives of f), and
the approximation lemma [I1.6] combined with a higher integrability result for
minima of certain non-coercive functionals.

Acknowledgements. We thank M. GiaQuinta and E. Giusti, who interested us in
this problem.

Statements and Preliminary Lemmas

We now lay down the definitions we shall use to state our main results. Let
£2 be a bounded open subset of B”, and let p = 2. We begin with the particular
case in which f is independent of (x, #): let f:R"™” —R satisfy

fis of class C? .0
/@] = L(1 + &7 2.2

[fE+ Dp(x)) dx = [ [f(€) + ¥(| De(x) |* + | Dg(x)|7)] dx
2 a (2.3)
for every £€R™ and ¢c CYQ2;RY)

for suitable positive constants L, y.
By (2.3), the function f'is quasiconvex; therefore step 2 of [11], page 6, applies
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and we may assume
| DA®)| < LA + [£177). 2.4)
For every uc WPP(Q2;RY) we set
I(u) = Qf S(Du(x)) dx.
We say that u is a minimizer of [ if

Iw) < I(u+ @) for every g € WiP(Q2;RY).

Then we have:

Theorem [I1.1]. Let f be as above, and let uc W'P(Q;R¥) be a minimizer of I.
Then there is an open subset £, of £2 such that
meas (2 \ 2,) =0

and

u€ CH¥(Qy;RN) for every p << 1.

If £ depends also on (x, %), we assume that f: @ xR¥XR"™ >R satisfies
See(x,u, &) is continuous; (2.5)
1fCx, v, &) = LA + |£]7); (2.6)
L, 4, &) — f, 0, O] S LA + [EP) o(|x — P + [u — 0], 2.7

where w(t)<1°, 0 <o < 1/p and o is bounded, concave, non-negative and
increasing;

nf fOe,u, &+ Dp(»)) dy = [ [ftx, 4,8 + (| D) |* + | De(») )] dy

(2.8)
for every (x, u, &) and every ¢ € Co(2;R");
there is a continuous function y:R"¥ —R satisfying
SO, u, &) = p(&) (2.9)

and
[ w(De(») dy = gf [9(0) + y | Dg(»)|P]dy  for every g€ C3(2;RY),

with L,y > 0.

As before, (2.6) and (2.8) imply
|flx, u, O] = LA + £, (2.10)

We remark that (2.9) is obviously satisfied if f(x, u,&) = |£]7, and that (2.9)
allows also integrands f with variable sign. Set I(¥) = f S (x, u(x), Du(x)) dx;
then we have a
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Theorem [I1.2]. Let f satisfy (2.5), ..., (2.9), and let uc W'(Q;R") be a mini-
mizer of 1. Then there is an open subset £, of Q such that

meas (2 \ 2,) =0
and
u€ C(Qy;RY)  for some u < 1.

We remark here that assumptions (2.6), ..., (2.9) may be slightly weakened (see
for instance [7], Remark 2).

It is worth noting that if the minimizer » happens to be continuous (for instance
if p > n), then assumption (2.9) (first used in [10]), which is employed only in
Lemma [IV.3] and Remark [IV.4], may be dropped. The same is true also when f
depends only on (x, &).

In the sequel we denote by the same letter ¢ any positive constant, which may
vary from line to line.

If g is any vector-valued function, we denote by (g), , the mean value of g
on B,(x,); if no confusion is possible, we will simply write (g), and B, instead of
(8),.r and B,(xg). We shall use in the proofs of Theorems [I11.1], [I1.2] the following
lemmas:

Lemma [IL.3). Let p = 2, and let f:R* —R be a function of class C? satisfying

Ol =LA+ 1EP),  [DAOI =LA + [E]77H.

Then for every M >0 there is a constant ¢, depending on M, such that if we set
Jor any A>0 and AcRF with |A|< M

Ja (&) = 272 [f(4 + 28) — f(4) — A Df(A) &)
then

fai®] = (& + 22| €]D),
| Dy p(&)] < c(&] + 2772 ]€]P7T).
Proof. Set K,, = max {| D*/(§)|: |£| < M + 1}; then we have:
2] = 1= [f1x&)] = 1 | Df(A4 + 92E) £ < % Ky €]
14| > 1= | £ O] = A72e(M) (1 + |A8] + [2E]7) < 3e(M) 4272 |&]?,

and the first inequality is proven; the second is analogous. []

Lemma [IL4]. Let p = 2, and let g:R"™ —R be a function of class C' satisfying
18Q)| < e(|§]7 + 2772 |£]7)
| Dg(@)| = ei(|&] + 4772 |&P 7Y
[eDp)dx =y [(Dy|* + 2772 | Dg|r)dx  for all p € C{(R"; RY)

Jor suitable constants ¢y, A and y.
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Fix v=0 and let uec W (Q;RY) satisfy

265

fe(Dwydx =< [ [g(Du+ Dy)+» |Dp|ldx for all g € WHa(2;RY).
2 0

Then there are c,, & > 0, depending only on ¢, y, such that for every B, £

Br/ 2

£ (Dul* + 72 | Dulpy 0 dx < ¢ [ {6 + | Dul* + =2 | Dul?) dx]'“.
Bf

Proof. Fix B, C 2, let }r < t<s<r and take a cut-off function {¢€ Ci(B,)

2
such that 0= ¢ <1, {=1 on B, and IDC]gs—:—t-. If we set

gpr=Mk—wl g=k—wld-20,
then D¢, + D¢, = Du, and

y [ (Dg.[*+ 27| Do, ) dx = [g(Dy;)dx = [g(Du— Dg,) dx.
By By By

In addition, by the minimality of #,

[e(Duydx = [g(Du— Do) dx + v [ 1Dy | dx
BS BS

By

,y2
< [ g(Dpy)dx+ %BﬂDqJ,IZ dx + Emeas (B,).
5

B;\B,
Then

[ 8(Du — Dg,) dx = [ g(Du) dx + [ [g(Du — Dg,) — g(Du)] dx
BS BS BS

,vl
< [ &g dx+— [|Dgi|? dx + 5 meas (B,)
B\B; By Y

+ [ |Dg(Du — & Dg,)| | Do, | dx.

Bs\B;

By (2.10), (2.11) and the assumptions on g it then follows
f([ Dul? + 27?2 | DuP)dx < f (| Doy > + 4772 | Dg, |?) dx
By By

(2.10)

(2.11)

< ey, ¢1) [vzrwr f [lDul“rID%P+1”"2(IDu1”+quozl”)dx]

Bs\B,

< [vzr" + [ (Dul? + 2% | Dul?) dx
B\B,

lu "" (u)rl2 p—2 |u — (u)'lp
+Bsw,( P i F— )""]'
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We fill the hole by adding to both sides the term

¢ [(1Duj? 4 4772 | Dul?) dx;
By

then we divide by ¢ + 1, thus obtaining

[ ((Dul? 4+ 2772 | Du|?ydx <& [ (|Du|* + 2*~2|Du|")dx
B, By

2 Iu"_(u)r'2 p— Iu_(u)rlp
“B,f[” T P Ty ]‘”

with ¢ < 1. Now a standard lemma (see e.g. [8] page 161 or [7] Lemma 3.2)
yields

‘u _ (LI),|2
Yo ”

f (Du> + 22| Dufydx<c § (

Br/2 B,
(2.12)

(1+2)in
= c[ §f @* + | Duj? + 47~ 2| Du|py"lt+D dx] ;
Br

we have used the Sobolev-Poincaré inequality.
The result follows from (2.12) by a modification of Gehring’s theorem (see

[8] page 122). [
The next lemma may be found in [3].

Lemma [IL.5]. Let G be a measurable subset of R*, with meas (G) < --oo. As-
sume (M) is a sequence of measurable subsets of G such that, for some &> 0,
the following estimate holds:

meas (M,) = ¢ for all he N.

Then a subsequence (M, w,) can be selected such that N\ M, = 0.
2

By Lemmas [1.9], ..., [1.12] of [1] one may deduce (see also [13] for a szlf-
contained proof):

Lemma [I1.6]). Let 2 be a regular bounded open subset of R", q=1 and
ue WH(Q;RN). For every K> 0 there is a we WH(Q;RN) such that

[wlli,eo = K

l[u]q
Ke

meas {x € Q2: u(x) + w(x)} Z ¢

and c is independent of K.
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Proof of Theorem [II.1]
In this section we assume f'satisfies (2.1), ..., (2.3) and we denote by u ¢ W'?
(2;R") a minimizer of I(u) = [ f(Du) dx. As in [5], we will prove a decay

Q
estimate (Proposition ITI.1]) from which the result will follow by a standard argu-
ment.
For every B,x,) C £ define

Uxo, ) = § (I1Du — (Du),|* + | Du — (Du),|?) dx.

By(xo0)

Then we have

Proposition [IIL.1]. Fix M > 0; there is a constant Cy; > 0 such that for every
T <% there is an & = ¢(r, M) such that if

|((Dw),,,| <M and U(xe,r) <e,
then

U(xy, tr) = Cp72U(x0, 1).

Proof. Fix M and 7; we shall determine C,, later.
Reasoning by contradiction, we assume that there is a sequence B, (x,) satis-

fying
B, (x) C Q, |(Du)xh,rh| =M, li}r'n Ulxpy 1) =0
and
Ulxy, 7ry) > Com? Uy, 1) (3.1)
We introduce the following notations:
a4y = Wypry  An= D)y 2= Ulxy ry)-

Since the proof is quite long, we divide it into several steps; moreover, we shall
often pass to subsequences and still denote them by the same index A.

Step 1: Blow-up. We rescale the function « in each B,h(x,,) to obtain a sequence
of functions on B,(0). Set

1
u(y) = i [u(xy + ryy) — a, — r,Apy];
then
1
Dyy(y) = Z" [Du(xp + rpy) — 4,),

o1 =0, (Dvy)y, =0



268 E. Acers1 & N. Fusco

and
§ (Dv|> + 2572 | Dy |y dy = 1. 3.2)

B.(0)
Without loss of generality we may then assume
v,—~v weakly in W3(B;R") 3.3)
and, since |4,| < M,
A,— A. 3.9

Step 2: v satisfies a Linear System. We show that
azf Jj i 1 N
f 75775 () D’ D' dy =0 for all ¢ € CY(BL; RY). (3.5)
B °*

From the Euler system for u, rescaled in each B, (x;), we deduce for every
S Co(B1;RY)

/) .
f'a?j:(Ah + }'h Dvh) Dfx(pldy - 03
B *

whence
lf 2 A+ 1 Do) — L (4| Dy dy = 0 6
aé; h h h. 361 h [ . .
Fixing ¢, we split B; as follows:
E;f VE; ={y€By: 24| Do(y)| > 1}V {y€ By: 4, | Dyy(»)| = 1}.
As for E;, we get by (3.2)
meas (E; ) < fﬂ.z | Dv,|* dy < A%, G.7D

therefore, using (2.4),

£y

Ey

=c (Ah + [ }*5¥2|D”h1p‘ldJ’)
Ef

(r—Dlp
=c (ﬂ. -+ AP~ [meas (E, )]”P( [ 2272 Do, |7 dy) )

Using (3.2), we obtain

lim 7 J IS4, + 4, Dv,) — Df(4;)] Dy dy = 0. (3.8)
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On E, we have

1 1
Z f [DA(A4,, + 2, Dv,) — Df(4,)] Dy dy = f of D*f(Ay + sk, Dvy) Do, Dy ds dy

By By
1
= [ [ [D*f(4; + sk, Dv)) — D*f(A)] Dv, Dy ds dy + [ D*f(4;) Dv, Dy dy.
ES 0 Ep

We observe that (3.7) implies that HE;T — lp, in LYB,) for all g << oo, and
that by (3.3) we have

Ay Dry(3)—>0 a.e. in B,.
Then by (3.3), (3.4), our choice of E;, and the uniform continuity of D3f on
bounded sets, we get
.1
lim 7= [ [DA(4, + % Dus) — Df(4,)] Dy dy = [ D*f(4) Dv Dp dy,
By 1
which together with (3.8) proves (3.5).
Assumption (2.3) ensures that

o3f
Y |,“|2 |7712 = m(/l)ﬂiﬂj%’?ﬁ = (M) ],u|2 |77|2,

therefore (see [8] Chapter 3) the solution v of (3.5) satisfies

£ [ Do — (Dv),|* dy < c*(M) 7>  for every T < 1/2, 3.9
Bf

v€ C*(B,;RY), (3.10)

APy, — ) >0  weakly in WLAB,;RY); 3.11)

we have used (3.2), (3.3).

Step 3: Higher Integrability of (v,). If we set

[il® = 4Ly + 18 — f(A4y) — 2y DF(Ay) &]
then by Lemma [I1.3] we have
IO = (€17 + 272 |5P) (3.12)
| DA = (€| + A2 1E[PD)

for a suitable constant ¢ = ¢(M), while (2.3) implies

[fDe)dy =y [(|Dp|> + 22| DpP)dy for all p € C3(B;RY).  (3.13)
By By

Set for every r<<1
nwy= [ f,(Dw)dy;
El‘
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it is easily verified that v, is a minimizer of each I”. The assumptions of Lemma
[IL4] are thus satisfied, with » = 0, and therefore

[ (Do, + 22| Doy Hody < c (3.14)

By

with ¢, 6 depending on M.
From this estimate and (3.3) we obtain

v,—v weakly in W' 2(B,,;RV).

Step 4: Upper bound. Fix r < %: it is not restrictive to assume that

lim [(2,) — T4(0)]

exists.
We prove that

lim [74(e3) — I(0)] < 0. (3.15)
Choose s < r and take € Cy°(B,) such that 0 =< =1, {=1 on B, and
|DC| < 2/(r — s5); if we set

(pll - (U - Uh) Cs

by (3.10), (3.12) and the minimality of v, follows
I}@y) — I}0) < 1o, + ) — IHD)

f /Dy, + Dgy) — f(Dv)] dy

B,\By
— P
=c f (1+|Dvh‘2+}‘p lehlp—Jf“ '2 + A4 ZM—L—)dy'
B,\B; — ) (r—s
But by (3.14), for every E B%
[ (Do) + 4272 | Dv,|P) dy < ¢ [meas (E)]" 7, (3.16)
E

so that

S oy — o + 372 o, — o] dy,

B2

Ii(v) — 1) = o(r — 5) + s)"

with o(¢) vanishing as 7— 0, and (3.15) follows by (3.3), (3.11) and since s <C r
is arbitrary.

Step 5: Lower bound. We prove that
lim [I7(2s) — I}@) = ey, p) limsup [ (| Dv,, — Dv|* + 22| Dv, — Do*) dy.

B,

(3.17)
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Fix K > 0; by (3.14), using Lemma [I1.6] with ¢ = 2 4 26, we may find a
sequence (w,) C WL>(B,;RY) such that

Iwalli,o = K

a

meas {y € B,: 0,(0) = Wi} = 53 (3.18)
(we shall meet this ¢ later); set S, = {y € B,:v,()) & w,(»)}. It is not restrictive
to assume that
w, —w  weakly* in Wh=(B,;RY),
We have
I}(v;) — ;@) = I}(v,) — L(wy)
+ Ii(wy) — I(w)
+ I}(w) — I(v)
= R{+ R} + R%.
Now by (3.12), (3.16) and (3.18)
|R}| = sf [f(Dvy) — fi{(Dwp)] dy
h

=c¢ [((Dv,|* + 2272 | Do, |? + K* + 2 ?K?) dy
Sp

A

&\ oo \

—2pp—2-25.

:C(—zm) + @+ ATk ;
therefore

lim Sup |RY < —5 (3.19)

K26
Choose s << r and take { as in Step 4. Define
Y=, —w) {3
then
RS = IXwy) — Ii(w + 3)
FIHw + ) — IHw) — LiGpy) + Ly
— R+ R{+ RS
By (3.12) we obtain

|Ri| =| [ [fDwy) — fiDw + Dyy)ldy

Br \BS .

sem) [ (140mEl g gl g,

B,\Bg (r )? r
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so that
limhsup |RE| < (r — 5) e(K). (3.20)

To bound R% following [6] we remark that

1 1
fi(A -+ B) — fi(A) — f(B) = Of of D*f(sA + tB) AB ds dt; (3.21)
since
D*f,(s Dw + t Dy,) = D*f(A,, -+ sA, Dw + A, Dy,)

is bounded and converges to D2f(A4) uniformly, by (3.21) with 4 = Dw and
B = Dy,, and since w,— 0 weakly* in WL(B,;RN),

lihm Rt=0. 3.22)
Now we use (3.13) to obtain

Rizy [ (Dyaf* + 42 | Dyylt) dy
Br

=y [(|Dw,— Dw|* + 72| Dw, — Dw|?) dy.
BS

Together with (3.20), (3.22) this implies
limhinfRé’ = y lim sup [ ( Dwy — Dw|? 4 22 | Dw,, — Dw[?) dy — (r — s) c(K).
BS
(3.23)

To deal with R% we use a technique introduced in [1]: first we prove that (see (3.18)
for ¢)

a

2
meas {y € B,: v(y) = w(y)} = Ezf—m- (3.24)

Set S ={y€B,:u(y) £ w(y)} and
§=SN{yeB:v) = limv,()}:
then meas (S) = meas (S‘). We reason by contradiction: if
meas (S) > 2¢/K**2,
then by (3.18)
meas (S \ S,) > ¢/K2+%
for every h, and by Lemma [I1.5] there is a y € B, such that

y€S\ S, for infinitely many A.
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Passing to this subsequence, we have
o) = lim 2,5) = lim w,(3) = w();

hence y4¢ S, which is a contradiction, This proves (3.24). Now, since Dv = Dw
a.e. in B,\ S, by (3.10), (3.12), (3.24)

|RY| = Sf |/(Dw) — f,(Dv)| dy

Sc [(K*+ 2K + | Do|? + 472 | Do) dy
S

é ,I<_C;5 + Czﬁ—ZKp—2v26 ,
so that
lim sup | RY| < —5 (3.25)
I 31 = K26 . .
Finally, we reduce the right hand side of (3.23) to the desired form:
[ Dw;, — Dw|* + 2572 | Dw;, — Dw|?) dy
By
=37 [(|Dv, — Dv|* 4 2,72 | Dv;, — Dol?) dy +
BS
— [(Dw, — Dvy|* + 3;7%|Dw, — Duv, Py dy +
Sh

— [(Dw — Dv|* 4 237* | Dw — Do|?) dy.
s

Therefore, arguing as we did for R and R%, we obtain

lim sup [(Dw, — Dw|* 4 227 | Dw;, — Dwl?) dy
BS

e limhsup [ (Do, — Dv|* 4 2272 | Dv, — Dol?) dy _I—;;T"
BS

Putting together (3.19), (3.23), (3.25) and this inequality, then letting s->r and
K-> oo, we get (3.17).

Step 6: Conclusion. Inequalities (3.15), (3.17) imply

lim f (Do, — Dv|* + i ~*| Do, — Dof?) dy = 0;
Br
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going back to u# and using (3.9) we have

U(x,, 1
lim ﬁ}"?"—") —lim = f (Du—Du,,|? + | Du — (Du),,, ) dx
h ‘i b A By o
= lim § (1 Doy, — (Doy).|* + 2372 | Dv, — (Doy),|?) dy
Bf
— {1Do— (Do) dy
B'!'
= (M) 1*,

which contradicts (3.1) if we chose C,, = 2¢*(M). [J
The proof of Theorem [11.1] follows from Proposition [III.1] by a standard
argument, see [8] Chapter 6 or [5] Section 7.

Proof of Theorem [IL.2}

Throughout this section the function f satisfies (2.5), ..., (2.9). We need some
additional lemmas.

Lemma [IV.1]. Let (X, d) be a metric space, and J: X — [0, +o0] a lower semi-
continuous functional not identically ~+oo. If
Jw) < & + inf J,
there is a v€ X such that
du,v) = 1
and
J@) = Jw) + ad(v,w) for every we X,

The result above may be found in [4].

Lemma [IV.2]. Let p=1, and let f:R™ R be a quasiconvex function of
class C*! satisfying

A& = LA + |&9).
Then for every uc W'P(Q;R™) the functional [ f(Dw) dx is sequentially lower
semicontinuous on the Dirichlet class u -+ W(}"’(QQ;RN) endowed with the weak

topology of W'?,

Proof. It is enough to observe that f is separately convex, and thus (see 11) it
satisfies also the condition

IfE+m) — O = el + &P+ |97 [n];
then the result follows from [12] Theorem 5. []
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Lemma [IV.3.] Let f satisfy (2.6), (2.9) and

|fx, w4, & + ) — fx, w0, O] < e+ [E]771 A [P [,

and let uc W'(Q;R"™) be a minimizer of I. Then there are q, > p and Cy > 0,
independent of u, such that uc WL(2;R™) and for every B, C 2

( f |Du]"°dx)”q0 =G (Bf 1+ ]Dul”)qu)”pj

By 2

Proof. The argument is similar to Lemma [I1.4). Fix B, C Q, let 1 r<t<s<r,
take the cut-off function { of [II.4], and again set

pr=u—-w] @=[u—>wll-—70;
then ¢, 4 ¢, = u — (1), and D¢, -+ Dp, = Du. Now, by (2.9)

J Iy 1 Dg( I + 9@ dx < [w(Dg,) dx = [f(x,u, Dp,) dx
B By B
4.1
= [f(x,u, Du— Dp,) dx.
BS
By the minimality of # we have

ff(x’ u, Du) dx g ff(x’ u— @, Du — D(pl) dx
By B,
= ff(x’ (p2 + (u)ra D(pz) dx
Bs

= f f(x, P2 + (u)r’ D‘Pz) dx + ff(x’ (u)r’ 0) dx,
B;

Bg\B;
so that by (2.6)
[fC,u,Diydx <L [ |Dg,|"dx+cr,
BS

B\B;

and by (2.10)

ff(x, u, Du— Dg,)dx = [ f(x,u, Du)dx + [ [f(x,u, Du— Dgy) — f(x,u, Du)] dx
B, B, B

= ff(x,u,Du)dx+c f (1 + | DulP~! + | Dg,|?~ ")y | Do, | dx
BS

Bg\By

S +c [ (Dp.| + |Dul?)dx

BB,
n |ll— (u)r‘p
e+ ch\fB‘ [lDu1P+ W] d)f.
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Then by (4.1) we obtain
—_ p
[|DupPdx <c [ |DulPdx+c f(1+|u——g4-)dx.
B, B,\B, B, (s—1)

The conclusion follows as in Lemma [11.4]. []

Remark [IV.4]. Under the assumptions of Lemma [IV.3], if £ is a ball B and
u is more regular on &B, then the higher integrability goes up to the boundary.
Precisely, assume there is a function u, € WH(R"; RY), with g > p, such that
u—uy€ Wh?(B;R™): then there are q,, C,, with p < g, < g, such that
ue whe(B;RM) and

( F1Dupe dx)”qo < ¢, ( [Bf (1 + | Dul?) dx]”p n [Bf | Dug |7 dx] ”‘“). “2)

To prove this, adapt the proof of [IV.3] following [8], page 152.

Remark [IV.5]. The second inequality in (4.1), together with the analogous
inequality in the proof of Remark [IV.4], is the only point in this paper where
we need assumption (2.9). If fis independent of x or if the minimizer # happens
to be continuous, instead of (2.9) we may just use (2.7) to show, if r is sufficiently
small and x, is the center of B,, that

[fCxe, u, Dpy) dx = [ f(xo, u(xo), Dpy) dx — & [(1 + | Dy, [?) dx,
BS BS BS
and the inequality follows using (2.8), if & << .

Lemma [IV.6]. Let f satisfy (2.6), (2.8), and fix xo€ 2 and u, € RM. If B,
is any ball inR”, and uc W'?(B,;RY), then the functional f S(xo, o, DW(x)) dx

is sequentially weakly lower semicontinuous on u - W} "(B,,]RN) and satisfies

[f(x0, tto, DW(x)) dx =y [|Dw|?dx — ¢ [(1 + |Dul?) dx. 4.3)
Br Br Br

Proof. The semicontinuity follows from Lemma [IV.2], since (2.8) implies quasi-
convexity.
As for (4.3), let u € (u,) + WiP(B,,; RY) be an extension of u such that
[ Duldx <c leu]I’ dx; if we set for every we€ u -+ W§P(B,;R"Y)
By,
- [w in B,
v ﬁ in B2r \ Br:
then by (2.8)
[y | DwI? + f(xo, o, 001 dx = [ f(xo, o, DW) dx
By, B,
= ff(x09 MO,DW) dx+ f f(an uO’Dl})dx:
B, By, \B,
and (4.3) follows easily by (2.6). []
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Lemma [IV.7]. There are two constants, 0 << B, << B, << 1, and for every K> 0
a constant cx > 0, such that if u is a minimizer of I, r << 1, B, (xo) C 2 and
(| Dul?),, 2 < K, then there is a v€u -+ WiP(B,(xo); RY) such that

1
( f | Do — Dul? dx) < ™
Brj2

and

ff(XQ, (u)xo,ra Dv(x)) dx
Br
< [f(Xo, sy, DUX) + Dp(x)) dx + r* [ | Dp(x)| dx
B, . B,

Sor every @€ CYB,(xo); R™).

Proof. By Lemma [IV.3] and the minimality of « follows the existence of g, > p
and ¢, > 0 such that € W}%(£2) and

( § 1 Dul dx)”““ < ¢, ( £ + | Dulry dx)”" (4.4)
Bs2 By
for every B, Q.

Now, by Lemma [IV.6] there is a minimum point % on u 4 W{?(B,) of the
functional

Iro(w) = ff(xo, (ll),, DW) dx;
B,

by Remark [IV.4] there are numbers ¢, and ¢, with p < g, < g, and both
independent of r, such that u¢ W%(B,) and, by (4.2), (4.3),

flDu|®dx <¢; (1 -+ |Dul®)dx.

Now, by use only of (2.7) and (4.4), the argument employed in [7] Lemma 4.1
yields '

Rw — RP@) < &«K) r’, 4.5
where <1 depends only on o, L, p. Consider the space u - Wj'(B,) en-
dowed with the metric

d(v, w) = (&(K) "2~ §|Dv — Dw| dx,
Br

and set
Pw) if weu+ WH(B,)
~+oco  otherwise.

Jw) = {

By Lemma [IV.6] the functional J is lower semicontinuous in the metric space
above, and clearly

inf J = I%u),
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therefore by (4.5) and Lemma [IV.1] there is a v€u + WH'(B,) satisfying
f|Dv — Du|dx < &(K) r"? (4.6)
Br

and

J@) = J@ + @) + r"* | Dl dx
Br

for every ¢ € WL(B,). In particular, J(v) is finite, hence v€u + WEP(B,);
this proves the last assertion of the lemma, with f, = /2. Moreover, by (4.3)

y §1DolP dx < I%Dv) + ¢ §(1 + | Dul’) dx
B, B

(e

= I(Du) + P2 {|Dv — Duldx + ¢ §(1 + |Du) dx
5, B,

<c f( +|Duf)dx + 2| Dv — Du)| dx
Br
< o(K). 4.7
Consider the functional
wi> I)(w) + rP? | Do — Dw| dx.
Bf

Since its integrand f(xo, (u),, &) + r®2 [ Dv(x) — &| satisfies the assumptions of
Lemma [IV.3], by the minimality of v there are numbers ¢ and ¢, independent
of K, r and satisfying p < g < ¢o, such that v¢ WL4B,) and

J
( { | Dofs dx)'”§ ¢ (f(l + | Dol?) dx)””_ 4.8)
Br/2 r
_ 1 1 —
Nowifﬂ:—g———p—wehave—:q‘}+ , and so
(g—Dp P q
1p P =9
(f]Dv—Du]”dx) §(f|Dv—-Dujdx) (f]Dv—-Du]"dx)q .
B2 By 12 By12

This inequality, together with (4,4), (4.6), (4.7), (4.8), implies

1
( § | Dv — Dul? dx) "< ot
By (2

and the result follows with 8, = /2 < §,. [

The key to Theorem [I1.2] is a statement similar to Proposition [I1.1}: define
for every B,(x,) C 2

U(x0a I‘) = ré + f (I Du — (Du)xc,rl2 + ]Du - (Du)xo,rlp) dx,
B,-(xo)

for some positive & << f,.
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Proposition [IV.8]. Fix M > 0; there is a constant C,; > 0 such that for every
T << 1/8 there is an & = e(tv, M) such that if

{Wrorl = M,  [(DU),,,| =M, Ulxo,n)=c¢
then

Ul(xo, Tr) < Cp7°U(x,, 7).

Proof. As in Proposition [II1.1], fix M and r (we shall determine C,, later), and
assume

By, (xn) C Q

|@spar,| = M, |(DU)y, 4| = M 4.9
U(x,, 4ry) = 22— 0 (4.10)

and
U(xy, d1ry) > Cpt22. 4.11)

By (4.9), (4.10) we have

|DulPdx < 277 \(MP + i) < ¢, (4.12)
Bar, O

so that by Lemma [IV.7] we may choose for every 4 a function u,€u +
ws P(Ba,(Xn)s RY) satisfying

( f |Du— Du,p dx)”” < (M) Fi @“.13)
Brh(xh)
f f(xhs (u)2rh’ Duh(x)) dx
Bar, (0 4.14)
= f f(xh’ (u)Zrh’ Duh + D(p(X)) dx -+ (2"it)ﬁ2 Jc |D‘P[ dx.
Bory ) Bar, p)

By (4.12), (4.13) we have also
i(Duh)xh,rh é C(M),

and we may rescale in B, (x,), setting

1
o (y) = m ln(xp + 1aY) — (Udsyr, — 7 W Dp)yr, V1

After this, the proof goes on as in Proposition [I11.1], with some changes. Those
worth noting are the following.
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Formula (3.6). Differentiating in (4.14), we show that the left-hand side of
(3.6) is no longer equal to zero, but instead it vanishes as s — oo; indeed, it
is dominated by r#%/1,, and by (4.10) and our choice of 8 < 8, < 8,

R

whence
rﬁz r’ﬁ;Z
r,— 0, 7——)0, E»O 4.15)
and similarly
rﬁ‘
——0. (4.16)
Ay

Formula (3.14). Lemma [I1.4] must now be used with » = (2r,)’2/A2, after
which the formula remains unchanged by (4.15).

Formula (3.15). The estimate begins with

h h " h @, h)ﬂz
L) — L) = (I, + @) — I/(©0) + - 2 Bf | Dy | dx.

The first term is dealt with as before, while the second term vanishes as 4 — oo
by (4.15) and since (Dg,) is bounded in L2

Step 6. In this case, since 4t << 4, we obtain

L1

lim—z  f  (Duy — (D, |* + | Dty — (D), I7) dx = c(M) 7>, (4.17)
h B4-rrh(xh)

But by (4.13)

1

— § (Du— Duwy|* + | Du — D) dx

h B4rrh(xh)

2/p

gﬁ[( f1DuDujras) " f |Du— D ax
A AR B, (op)
c(v)

= _2("121/3}1 + ’ﬁﬁ‘),
i
which vanishes as A->occ by (4.16).
This, together with (4.17), implies by (4.10)

. U(xh9 4‘”';,)
llm —2—_—'
A A

and the contradiction follows for C,, = 2¢*(M). [

3
r

< c7t lim sup 1% + e(M)1? < c*(M) 7P,
h

The conclusion of the proof of Theorem [I1.2] may be attained by adapting
[7] Section 6 to our simpler situation.
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