A Regularity Theorem for Minimizers of Quasiconvex Integrals

Emilio Acerbi & Nicola Fusco

Communicated by E. GIUSTI

Summary

We prove $C^{1,\alpha}$ partial regularity for minimizers of functionals with quasiconvex integrand f(x, u, Du) depending on vector-valued functions u. The integrand is required to be twice continuously differentiable in Du, and no assumption on the growth of the derivatives of f is made: a polynomial growth is required only on f itself.

Introduction

Consider the functional $I(u) = \int_{\Omega} f(Du(x)) dx$, where Ω is an open subset of \mathbb{R}^n ,

$$u: \Omega \to \mathbb{R}^N$$

and $f: \mathbb{R}^{nN} \to \mathbb{R}$.

The regularity of minimizers of I has been widely investigated (see [8] and its extensive bibliography), but until recently the function f was required to be convex, which rules out many interesting physical examples (see [2]) and is far from quasiconvexity (this condition is necessary and sufficient for the semicontinuity of I on appropriate Sobolev spaces, see [1], and so it is a fundamental assumption for the existence of such minimizers).

EVANS [5] proved in 1984 the $C^{1,\alpha}$ partial regularity of minimizers of I under the assumptions that f is of class C^2 ,

$$|D^{2}f(\xi)| \leq c(1+|\xi|^{p-2})$$
(1.1)

for some $p \ge 2$, and f is uniformly strictly quasiconvex, *i.e.*

$$\int_{\Omega} f(\xi + D\varphi(x)) \, dx \ge \int_{\Omega} \left[f(\xi) + \gamma(|D\varphi(x)|^2 + |D\varphi(x)|^p) \right] \, dx \tag{1.2}$$

for some $\gamma > 0$ and all $\varphi \in C_0^1(\Omega; \mathbb{R}^N)$. This conclusion may be generalized ([7], [9], [10]) to the case when f depends also on (x, u).

It is clear that assumption (1.2) considerably enlarges the class of functions to which the theory applies: see [5], section 8. However, while condition (1.1) is natural when f is a convex function with polynomial growth, it seems too strong when f is quasiconvex: for instance, the function (n = N = p)

$$f(\xi) = |\xi|^2 + |\xi|^n + \sqrt{1 + |\det \xi|^2}$$

is of class C^2 and satisfies (1.2), but not (1.1). More generally, let $1 < \alpha < 2$, $p = n\alpha$ and let $\beta: \mathbb{R} \to \mathbb{R}$ be a strictly convex function of class C^2 with $|\beta(t)| \leq c(1 + |t|^{\alpha})$: then again

$$f(\xi) = |\xi|^2 + |\xi|^p + \beta (\det \xi)$$

satisfies (1.2) and not (1.1).

In this paper we prove $C^{1,\alpha}$ partial regularity (theorem [II.1]) for minimizers of *I* under the assumptions that *f* satisfies (1.2) and is of class C^2 ; while there are no restrictions on its second derivatives, instead it satisfies the inequality

$$|f(\xi)| \leq c(1+|\xi|^p).$$

The examples above satisfy these assumptions.

A similar conclusion (theorem [II.2]) is proved when f depends also on (x, u).

The proofs use essentially two main tools: the blow-up method (as used in [6], where it is shown that it is not necessary to pass through a Caccioppoli inequality, which would require restrictions on the second derivatives of f), and the approximation lemma [II.6] combined with a higher integrability result for minima of certain non-coercive functionals.

Acknowledgements. We thank M. GIAQUINTA and E. GIUSTI, who interested us in this problem.

Statements and Preliminary Lemmas

We now lay down the definitions we shall use to state our main results. Let Ω be a bounded open subset of \mathbb{R}^n , and let $p \ge 2$. We begin with the particular case in which f is independent of (x, u): let $f: \mathbb{R}^{nN} \to \mathbb{R}$ satisfy

$$f ext{ is of class } C^2$$
 (2.1)

$$|f(\xi)| \leq L(1+|\xi|^p)$$
 (2.2)

$$\int_{\Omega} f(\xi + D\varphi(x)) dx \ge \int_{\Omega} [f(\xi) + \gamma(|D\varphi(x)|^2 + |D\varphi(x)|^p)] dx$$

for every $\xi \in \mathbb{R}^{nN}$ and $\varphi \in C_0^1(\Omega; \mathbb{R}^N)$ (2.3)

for suitable positive constants L, γ .

By (2.3), the function f is quasiconvex; therefore step 2 of [11], page 6, applies

and we may assume

$$|Df(\xi)| \leq L(1+|\xi|^{p-1}).$$
 (2.4)

For every $u \in W^{1,p}(\Omega; \mathbb{R}^N)$ we set

$$I(u) = \int_{\Omega} f(Du(x)) \, dx \, .$$

We say that u is a minimizer of I if

$$I(u) \leq I(u+\varphi)$$
 for every $\varphi \in W_0^{1,p}(\Omega; \mathbb{R}^N)$.

Then we have:

Theorem [II.1]. Let f be as above, and let $u \in W^{1,p}(\Omega; \mathbb{R}^N)$ be a minimizer of I. Then there is an open subset Ω_0 of Ω such that

meas
$$(\Omega \setminus \Omega_0) = 0$$

and

$$u \in C^{1,\mu}(\Omega_0; \mathbb{R}^N)$$
 for every $\mu < 1$.

If f depends also on (x, u), we assume that $f: \Omega \times \mathbb{R}^N \times \mathbb{R}^{nN} \to \mathbb{R}$ satisfies

$$f_{\xi\xi}(x, u, \xi)$$
 is continuous; (2.5)

$$|f(x, u, \xi)| \leq L(1 + |\xi|^p);$$
 (2.6)

$$|f(x, u, \xi) - f(y, v, \xi)| \le L(1 + |\xi|^p) \,\omega(|x - y|^p + |u - v|^p), \qquad (2.7)$$

where $\omega(t) \leq t^{\sigma}$, $0 < \sigma < 1/p$ and ω is bounded, concave, non-negative and increasing;

$$\int_{\Omega} f(x, u, \xi + D\varphi(y)) \, dy \ge \int_{\Omega} \left[f(x, u, \xi) + \gamma(|D\varphi(y)|^2 + |D\varphi(y)|^p) \right] \, dy$$

for every (x, u, ξ) and every $\varphi \in C_0^1(\Omega; \mathbb{R}^N)$; (2.8)

there is a continuous function $\psi: \mathbb{R}^{nN} \to \mathbb{R}$ satisfying

$$f(x, u, \xi) \ge \psi(\xi) \tag{2.9}$$

and

$$\int_{\Omega} \psi(D\varphi(y)) \, dy \ge \int_{\Omega} [\psi(0) + \gamma \, | \, D\varphi(y)|^p] \, dy \quad \text{for every } \varphi \in C_0^1(\Omega; \mathbb{R}^N),$$

with $L, \gamma > 0$.

As before, (2.6) and (2.8) imply

$$|f_{\xi}(x, u, \xi)| \leq L(1 + |\xi|^{p-1}).$$
(2.10)

We remark that (2.9) is obviously satisfied if $f(x, u, \xi) \ge |\xi|^p$, and that (2.9) allows also integrands f with variable sign. Set $I(u) = \int_{\Omega} f(x, u(x), Du(x)) dx$; then we have

Theorem [II.2]. Let f satisfy (2.5), ..., (2.9), and let $u \in W^{1,p}(\Omega; \mathbb{R}^N)$ be a minimizer of I. Then there is an open subset Ω_0 of Ω such that

meas
$$(\Omega \setminus \Omega_0) = 0$$

and

$$u \in C^{1,\mu}(\Omega_0; \mathbb{R}^N)$$
 for some $\mu < 1$.

We remark here that assumptions $(2.6), \ldots, (2.9)$ may be slightly weakened (see for instance [7], Remark 2).

It is worth noting that if the minimizer u happens to be continuous (for instance if p > n), then assumption (2.9) (first used in [10]), which is employed only in Lemma [IV.3] and Remark [IV.4], may be dropped. The same is true also when f depends only on (x, ξ) .

In the sequel we denote by the same letter c any positive constant, which may vary from line to line.

If g is any vector-valued function, we denote by $(g)_{x_0,r}$ the mean value of g on $B_r(x_0)$; if no confusion is possible, we will simply write $(g)_r$ and B_r instead of $(g)_{x_0,r}$ and $B_r(x_0)$. We shall use in the proofs of Theorems [II.1], [II.2] the following lemmas:

Lemma [II.3]. Let $p \ge 2$, and let $f: \mathbb{R}^k \to \mathbb{R}$ be a function of class C^2 satisfying

 $|f(\xi)| \leq L(1+|\xi|^p), \quad |Df(\xi)| \leq L(1+|\xi|^{p-1}).$

Then for every M > 0 there is a constant c, depending on M, such that if we set for any $\lambda > 0$ and $A \in \mathbb{R}^k$ with $|A| \leq M$

$$f_{A,\lambda}(\xi) = \lambda^{-2} [f(A + \lambda \xi) - f(A) - \lambda Df(A) \xi]$$

then

$$\begin{aligned} |f_{A,\lambda}(\xi)| &\leq c(|\xi|^2 + \lambda^{p-2} \, |\xi|^p), \\ |Df_{A,\lambda}(\xi)| &\leq c(|\xi| + \lambda^{p-2} \, |\xi|^{p-1}). \end{aligned}$$

Proof. Set $K_M = \max\{|D^2 f(\xi)|: |\xi| \le M+1\}$; then we have:

$$|\lambda\xi| \leq 1 \Rightarrow |f_{\mathcal{A},\lambda}(\xi)| = \frac{1}{2} |D^2 f(\mathcal{A} + \vartheta\lambda\xi) \xi\xi| \leq \frac{1}{2} K_M |\xi|^2;$$

$$|\lambda\xi|>1\Rightarrow |f_{A,\lambda}(\xi)|\leq \lambda^{-2}c(M)\left(1+|\lambda\xi|+|\lambda\xi|^p\right)\leq 3c(M)\,\lambda^{p-2}\,|\xi|^p,$$

and the first inequality is proven; the second is analogous. \Box

Lemma [II.4]. Let $p \ge 2$, and let $g: \mathbb{R}^{nN} \to \mathbb{R}$ be a function of class C^1 satisfying

$$|g(\xi)| \leq c_1(|\xi|^2 + \lambda^{p-2} |\xi|^p)$$
$$|Dg(\xi)| \leq c_1(|\xi| + \lambda^{p-2} |\xi|^{p-1})$$

 $\int g(D\varphi) \, dx \ge \gamma \int \left(|D\varphi|^2 + \lambda^{p-2} \, |D\varphi|^p \right) \, dx \quad \text{for all } \varphi \in C_0^1(\mathbb{R}^n; \mathbb{R}^N)$

for suitable constants c_1 , λ and γ .

Fix $v \ge 0$ and let $u \in W^{1,p}(\Omega; \mathbb{R}^N)$ satisfy

$$\int_{\Omega} g(Du) \, dx \leq \int_{\Omega} \left[g(Du + D\varphi) + \nu \left| D\varphi \right| \right] dx \quad \text{for all } \varphi \in W^{1,p}_0(\Omega; \mathbb{R}^N).$$

Then there are $c_2, \delta > 0$, depending only on c_1, γ , such that for every $B_r \subset \Omega$

$$\oint_{B_{r/2}} (|Du|^2 + \lambda^{p-2} |Du|^p)^{1+\delta} dx \leq c_2 \left[\oint_{B_r} (p^2 + |Du|^2 + \lambda^{p-2} |Du|^p) dx \right]^{1+\delta}.$$

Proof. Fix $B_r \subset \Omega$, let $\frac{1}{2}r < t < s < r$ and take a cut-off function $\zeta \in C_0^1(B_s)$ such that $0 \leq \zeta \leq 1$, $\zeta = 1$ on B_t and $|D\zeta| \leq \frac{2}{s-t}$. If we set

$$\varphi_1 = [u - (u)_r] \zeta, \quad \varphi_2 = [u - (u)_r] (1 - \zeta),$$

then $D\varphi_1 + D\varphi_2 = Du$, and

$$\gamma \int_{B_s} (|D\varphi_1|^2 + \lambda^{p-2} |D\varphi_1|^p) dx \leq \int_{B_s} g(D\varphi_1) dx = \int_{B_s} g(Du - D\varphi_2) dx. \quad (2.10)$$

In addition, by the minimality of u,

$$\int_{B_s} g(Du) \, dx \leq \int_{B_s} g(Du - D\varphi_1) \, dx + \nu \int_{B_s} |D\varphi_1| \, dx$$
$$\leq \int_{B_s \setminus B_t} g(D\varphi_2) \, dx + \frac{\gamma}{2} \int_{B_s} |D\varphi_1|^2 \, dx + \frac{\nu^2}{2\gamma} \operatorname{meas} (B_r).$$

Then

$$\int_{B_s} g(Du - D\varphi_2) dx = \int_{B_s} g(Du) dx + \int_{B_s} [g(Du - D\varphi_2) - g(Du)] dx$$

$$\leq \int_{B_s \setminus B_t} g(D\varphi_2) dx + \frac{\gamma}{2} \int_{B_s} |D\varphi_1|^2 dx + \frac{\nu^2}{2\gamma} \operatorname{meas} (B_r) \quad (2.11)$$

$$+ \int_{B_s \setminus B_t} |Dg(Du - \vartheta D\varphi_2)| |D\varphi_2| dx.$$

By (2.10), (2.11) and the assumptions on g it then follows

$$\int_{B_{t}} (|Du|^{2} + \lambda^{p-2} |Du|^{p}) dx \leq \int_{B_{s}} (|D\varphi_{1}|^{2} + \lambda^{p-2} |D\varphi_{1}|^{p}) dx$$

$$\leq c(\gamma, c_{1}) \left[v^{2}r^{n} + \int_{B_{s} \setminus B_{t}} [|Du|^{2} + |D\varphi_{2}|^{2} + \lambda^{p-2} (|Du|^{p} + |D\varphi_{2}|^{p}) dx \right]$$

$$\leq \tilde{c} \left[v^{2}r^{n} + \int_{B_{s} \setminus B_{t}} (|Du|^{2} + \lambda^{p-2} |Du|^{p}) dx + \int_{B_{s} \setminus B_{t}} \left(\frac{|u - (u)_{r}|^{2}}{(s - t)^{2}} + \lambda^{p-2} \frac{|u - (u)_{r}|^{p}}{(s - t)^{p}} \right) dx \right].$$

E. Acerbi & N. Fusco

We fill the hole by adding to both sides the term

$$\tilde{c}\int_{B_t} (|Du|^2 + \lambda^{p-2} |Du|^p) dx;$$

then we divide by $\tilde{c} + 1$, thus obtaining

$$\int_{B_t} (|Du|^2 + \lambda^{p-2} |Du|^p) dx \leq \vartheta \int_{B_s} (|Du|^2 + \lambda^{p-2} |Du|^p) dx$$
$$+ c \int_{B_r} \left[r^2 + \frac{|u - (u)_r|^2}{(s-t)^2} + \lambda^{p-2} \frac{|u - (u)_r|^p}{(s-t)^p} \right] dx,$$

with $\vartheta < 1$. Now a standard lemma (see e.g. [8] page 161 or [7] Lemma 3.2) yields

$$\begin{aligned}
& \oint_{B_{r/2}} \left(|Du|^2 + \lambda^{p-2} |Du|^p \right) dx \leq c \oint_{B_r} \left(v^2 + \frac{|u - (u)_r|^2}{r^2} + \lambda^{p-2} \frac{|u - (u)_r|^p}{r^p} \right) dx \\
& \leq c \left[\int_{B_r} \left(v^2 + |Du|^2 + \lambda^{p-2} |Du|^p \right)^{n/(n+2)} dx \right]^{(n+2)/n};
\end{aligned}$$

we have used the Sobolev-Poincaré inequality.

The result follows from (2.12) by a modification of Gehring's theorem (see [8] page 122).

The next lemma may be found in [3].

Lemma [II.5]. Let G be a measurable subset of \mathbb{R}^k , with meas $(G) < +\infty$. Assume (M_h) is a sequence of measurable subsets of G such that, for some $\varepsilon > 0$, the following estimate holds:

meas
$$(M_h) \ge \varepsilon$$
 for all $h \in \mathbb{N}$.

Then a subsequence (M_{h_k}) can be selected such that $\bigcap_k M_{h_k} \neq \emptyset$.

By Lemmas [I.9], ..., [I.12] of [1] one may deduce (see also [13] for a self-contained proof):

Lemma [II.6]. Let Ω be a regular bounded open subset of \mathbb{R}^n , $q \ge 1$ and $u \in W^{1,q}(\Omega; \mathbb{R}^N)$. For every K > 0 there is a $w \in W^{1,\infty}(\Omega; \mathbb{R}^N)$ such that

$$\|w\|_{1,\infty} \leq K$$

meas $\{x \in \Omega : u(x) \neq w(x)\} \leq c \frac{\|u\|_{1,q}^q}{K^q},$

and c is independent of K.

Proof of Theorem [II.1]

In this section we assume f satisfies (2.1), ..., (2.3) and we denote by $u \in W^{1,p}(\Omega; \mathbb{R}^N)$ a minimizer of $I(u) = \int_{\Omega} f(Du) dx$. As in [5], we will prove a decay estimate (Proposition III.1]) from which the result will follow by a standard argument.

For every $B_r(x_0) \subset \Omega$ define

$$U(x_0, r) = \oint_{B_r(x_0)} (|Du - (Du)_r|^2 + |Du - (Du)_r|^p) dx.$$

Then we have

Proposition [III.1]. Fix M > 0; there is a constant $C_M > 0$ such that for every $\tau < \frac{1}{2}$ there is an $\varepsilon = \varepsilon(\tau, M)$ such that if

$$|(Du)_{x_0,r}| \leq M$$
 and $U(x_0,r) \leq \varepsilon$,

then

$$U(x_0,\tau r) \leq C_M \tau^2 U(x_0,r).$$

Proof. Fix M and τ ; we shall determine C_M later.

Reasoning by contradiction, we assume that there is a sequence $B_{r_h}(x_h)$ satisfying

$$B_{r_h}(x_h) \subset \Omega, \quad |(Du)_{x_h,r_h}| \leq M, \quad \lim_h U(x_h,r_h) = 0$$

and

$$U(x_h, \tau r_h) > C_M \tau^2 U(x_h, r_h). \tag{3.1}$$

We introduce the following notations:

$$a_h = (u)_{x_h, r_h}, \quad A_h = (Du)_{x_h, r_h}, \quad \lambda_h^2 = U(x_h, r_h).$$

Since the proof is quite long, we divide it into several steps; moreover, we shall often pass to subsequences and still denote them by the same index h.

Step 1: Blow-up. We rescale the function u in each $B_{r_h}(x_h)$ to obtain a sequence of functions on $B_1(0)$. Set

$$v_h(y) = \frac{1}{\lambda_h r_h} [u(x_h + r_h y) - a_h - r_h A_h y];$$

then

$$Dv_h(y) = \frac{1}{\lambda_h} [Du(x_h + r_h y) - A_h],$$
$$(v_h)_{0,1} = 0, \quad (Dv_h)_{0,1} = 0$$

and

$$\oint_{B_1(0)} (|Dv_h|^2 + \lambda_h^{p-2} |Dv_h|^p) \, dy = 1.$$
(3.2)

Without loss of generality we may then assume

$$v_h \rightarrow v$$
 weakly in $W^{1,2}(B_1; \mathbb{R}^N)$ (3.3)

and, since $|A_h| \leq M$,

$$A_h \to A. \tag{3.4}$$

Step 2: v satisfies a Linear System. We show that

$$\int_{B_1} \frac{\partial^2 f}{\partial \xi^i_{\alpha} \partial \xi^j_{\beta}} (A) D_{\beta} v^j D_{\alpha} \varphi^i dy = 0 \quad \text{for all } \varphi \in C_0^1(B_1; \mathbb{R}^N).$$
(3.5)

From the Euler system for u, rescaled in each $B_{r_h}(x_h)$, we deduce for every $\varphi \in C_0^1(B_1; \mathbb{R}^N)$

$$\int_{\mathcal{B}_1} \frac{\partial f}{\partial \xi^i_{\alpha}} (A_h + \lambda_h D v_h) D_x \varphi^i \, dy = 0,$$

whence

$$\frac{1}{\lambda_h} \int_{B_1} \left[\frac{\partial f}{\partial \xi^i_{\alpha}} (A_h + \lambda_h D v_h) - \frac{\partial f}{\partial \xi^i_{\alpha}} (A_h) \right] D_{\alpha} \varphi^i \, dy = 0.$$
(3.6)

Fixing φ , we split B_1 as follows:

 $E_h^+ \cup E_h^- = \{ y \in B_1 : \lambda_h | Dv_h(y) | > 1 \} \cup \{ y \in B_1 : \lambda_h | Dv_h(y) | \le 1 \}.$ As for E_h^+ , we get by (3.2)

$$\operatorname{meas}\left(E_{h}^{+}\right) \leq \int\limits_{B_{1}} \lambda_{h}^{2} |Dv_{h}|^{2} dy \leq \lambda_{h}^{2}; \qquad (3.7)$$

therefore, using (2.4),

$$\frac{1}{\lambda_h} \left| \int_{E_h^+} \left[Df(A_h + \lambda_h Dv_h) - Df(A_h) \right] D\varphi \, dy \right| \leq \frac{c}{\lambda_h} \int_{E_h^+} (1 + \lambda_h^{p-1} |Dv_h|^{p-1}) \, dy$$
$$\leq c \left(\lambda_h + \int_{E_h^+} \lambda_h^{p-2} |Dv_h|^{p-1} \, dy \right)$$
$$\leq c \left(\lambda_h + \lambda_h^{(p-2)/p} \left[\text{meas } (E_h^+) \right]^{1/p} \left(\int_{B_1} \lambda_h^{p-2} |Dv_h|^p \, dy \right)^{(p-1)/p} \right).$$

Using (3.2), we obtain

$$\lim_{h} \frac{1}{\lambda_{h}} \int_{E_{h}^{+}} \left[Df(A_{h} + \lambda_{h} Dv_{h}) - Df(A_{h}) \right] D\varphi \, dy = 0.$$
(3.8)

On E_h^- we have

1

$$\frac{1}{\lambda_h} \int_{E_h^-} \left[Df(A_h + \lambda_h Dv_h) - Df(A_h) \right] D\varphi \, dy = \int_{E_h^-} \int_0^1 D^2 f(A_h + s\lambda_h Dv_h) Dv_h D\varphi \, ds \, dy$$
$$= \int_0^1 \int_0^1 \left[D^2 f(A_h + s\lambda_h Dv_h) - D^2 f(A) \right] Dv_h D\varphi \, ds \, dy + \int_0^\infty D^2 f(A_h) Dv_h D\varphi \, dy.$$

$$= \int_{E_h^-} \int_0^{D^2 f(A_h + s\lambda_h Dv_h)} - D^2 f(A) Dv_h D\varphi \, ds \, dy + \int_{E_h^-}^{D^2 f(A_h)} Dv_h D\varphi \, dy.$$

We observe that (3.7) implies that $\mathbb{I}_{E_h^-} \to \mathbb{I}_{B_1}$ in $L^q(B_1)$ for all $q < \infty$, and that by (3.3) we have

$$\lambda_h Dv_h(y) \to 0$$
 a.e. in B_1 .

Then by (3.3), (3.4), our choice of E_h^- , and the uniform continuity of $D^2 f$ on bounded sets, we get

$$\lim_{h} \frac{1}{\lambda_{h}} \int_{E_{h}^{-}} \left[Df(A_{h} + \lambda_{h} Dv_{h}) - Df(A_{h}) \right] D\varphi \, dy = \int_{B_{1}} D^{2}f(A) \, Dv \, D\varphi \, dy,$$

which together with (3.8) proves (3.5).

Assumption (2.3) ensures that

$$\gamma |\mu|^2 |\eta|^2 \leq \frac{\partial^2 f}{\partial \xi^i_{\alpha} \partial \xi^j_{\beta}}(A) \, \mu_i \mu_j \eta_{\alpha} \eta_{\beta} \leq c(M) \, |\mu|^2 \, |\eta|^2,$$

therefore (see [8] Chapter 3) the solution v of (3.5) satisfies

$$\oint_{B_{\tau}} |Dv - (Dv)_{\tau}|^2 dy \leq c^*(M) \tau^2 \quad \text{for every } \tau < 1/2, \qquad (3.9)$$

$$v \in C^{\infty}(B_1; \mathbb{R}^N), \tag{3.10}$$

$$\lambda_h^{(p-2)/p}(v_h - v) \to 0 \quad \text{weakly in } W_{\text{loc}}^{1,p}(B_1; \mathbb{R}^N); \tag{3.11}$$

we have used (3.2), (3.3).

Step 3: Higher Integrability of (v_h) . If we set

$$f_h(\xi) = \lambda_h^{-2} [f(A_h + \lambda_h \xi) - f(A_h) - \lambda_h Df(A_h) \xi]$$

then by Lemma [II.3] we have

$$|f_{h}(\xi)| \leq c(|\xi|^{2} + \lambda_{h}^{p-2} |\xi|^{p})$$

$$|Df_{h}(\xi)| \leq c(|\xi| + \lambda_{h}^{p-2} |\xi|^{p-1})$$
(3.12)

for a suitable constant c = c(M), while (2.3) implies

$$\int_{B_1} f_h(D\varphi) \, dy \ge \gamma \int_{B_1} (|D\varphi|^2 + \lambda_h^{p-2} |D\varphi|^p) \, dy \quad \text{for all } \varphi \in C_0^1(B_1; \mathbb{R}^N).$$
(3.13)

Set for every r < 1

$$I_r^h(w) = \int\limits_{B_r} f_h(Dw) \, dy;$$

it is easily verified that v_h is a minimizer of each I_r^h . The assumptions of Lemma [II.4] are thus satisfied, with $\nu = 0$, and therefore

$$\int_{B_{1/2}} (|Dv_h|^2 + \lambda_h^{p-2} |Dv_h|^p)^{1+\delta} \, dy \le c \tag{3.14}$$

with c, δ depending on M.

From this estimate and (3.3) we obtain

 $v_h \rightarrow v$ weakly in $W^{1,2+2\delta}(B_{1/2};\mathbb{R}^N)$.

Step 4: Upper bound. Fix $r < \frac{1}{2}$: it is not restrictive to assume that

$$\lim_{h} \left[I_r^h(v_h) - I_r^h(v) \right]$$

exists.

We prove that

$$\lim_{h} \left[I_{r}^{h}(v_{h}) - I_{r}^{h}(v) \right] \leq 0.$$
(3.15)

Choose s < r and take $\zeta \in C_0^{\infty}(B_r)$ such that $0 \leq \zeta \leq 1$, $\zeta = 1$ on B_s and $|D\zeta| \leq 2/(r-s)$; if we set

$$\varphi_h = (v - v_h) \zeta,$$

by (3.10), (3.12) and the minimality of v_h follows

$$\begin{split} I_{r}^{h}(v_{h}) &- I_{r}^{h}(v) \leq I_{r}^{h}(v_{h} + \varphi_{h}) - I_{r}^{h}(v) \\ &= \int_{B_{r} \setminus B_{s}} \left[f_{h}(Dv_{h} + D\varphi_{h}) - f_{h}(Dv) \right] dy \\ &\leq c \int_{B_{r} \setminus B_{s}} \left(1 + |Dv_{h}|^{2} + \lambda_{h}^{p-2} |Dv_{h}|^{p} + \frac{|v_{h} - v|^{2}}{(r-s)^{2}} + \lambda_{h}^{p-2} \frac{|v_{h} - v|^{p}}{(r-s)^{p}} \right) dy. \end{split}$$

But by (3.14), for every $E \subset B_{\frac{1}{2}}$

$$\int_{E} (|Dv_{h}|^{2} + \lambda_{h}^{p-2} |Dv_{h}|^{p}) dy \leq c \, [\text{meas}\,(E)]^{\delta/(1+\delta)}, \quad (3.16)$$

so that

$$I_r^h(v_h) - I_r^h(v) \leq o(r-s) + \frac{c}{(r-s)^p} \int_{B_{1/2}} (|v_h - v|^2 + \lambda_h^{p-2} |v_h - v|^p) \, dy,$$

with o(t) vanishing as $t \to 0$, and (3.15) follows by (3.3), (3.11) and since s < r is arbitrary.

Step 5: Lower bound. We prove that

$$\lim_{h} \left[I_{r}^{h}(v_{h}) - I_{r}^{h}(v_{h}) \right] \geq c(\gamma, p) \lim_{h} \sup_{B_{r}} \int_{B_{r}} \left(|Dv_{h} - Dv|^{2} + \lambda_{h}^{p-2} |Dv_{h} - Dv|^{p} \right) dy.$$
(3.17)

Fix K > 0; by (3.14), using Lemma [II.6] with $q = 2 + 2\delta$, we may find a sequence $(w_h) \subset W^{1,\infty}(B_r; \mathbb{R}^N)$ such that

$$\|w_{h}\|_{1,\infty} \leq K$$

$$\max\{y \in B_{r}: v_{h}(y) \neq w_{h}(y)\} \leq \frac{\hat{c}}{K^{2+2\delta}}$$
(3.18)

(we shall meet this \hat{c} later); set $S_h = \{y \in B_r : v_h(y) \neq w_h(y)\}$. It is not restrictive to assume that

$$w_h \rightarrow w$$
 weakly* in $W^{1,\infty}(B_r; \mathbb{R}^N)$.

We have

$$I_r^h(v_h) - I_r^h(v) = I_r^h(v_h) - I_r^h(w_h) + I_r^h(w_h) - I_r^h(w) + I_r^h(w) - I_r^h(v) = R_1^h + R_2^h + R_3^h.$$

Now by (3.12), (3.16) and (3.18)

$$\begin{aligned} |R_1^h| &= \left| \int\limits_{S_h} [f_h(Dv_h) - f_h(Dw_h)] \, dy \right| \\ &\leq c \int\limits_{S_h} (|Dv_h|^2 + \lambda_h^{p-2} |Dv_h|^p + K^2 + \lambda_h^{p-2} K^p) \, dy \\ &\leq c \left(\frac{\hat{c}}{K^{2+2\delta}} \right)^{\delta/(1+\delta)} + \frac{c}{K^{2\delta}} + c \lambda_h^{p-2} K^{p-2-2\delta}; \end{aligned}$$

therefore

$$\lim_{h} \sup |R_1^h| \leq \frac{c}{K^{2\delta}}.$$
(3.19)

Choose s < r and take ζ as in Step 4. Define

$$\psi_h = (w_h - w) \zeta;$$

then

$$\begin{aligned} R_2^h &= I_r^h(w_h) - I_r^h(w + \psi_h) \\ &+ I_r^h(w + \psi_h) - I_r^h(w) - I_r^h(\psi_h) + I_r^h(\psi_h) \\ &= R_4^h + R_5^h + R_6^h. \end{aligned}$$

By (3.12) we obtain

$$|R_4^h| = \left| \int_{B_r \setminus B_s} [f_h(Dw_h) - f_h(Dw + D\psi_h)] \, dy \right|$$

$$\leq c(K) \int_{B_r \setminus B_s} \left(1 + \frac{|w_h - w|^2}{(r-s)^2} + \lambda_h^{p-2} \frac{|w_h - w|^p}{(r-s)^p} \right) \, dy,$$

so that

$$\limsup_{h} |R_{4}^{h}| \leq (r-s) c(K).$$
 (3.20)

To bound R_{5}^{h} , following [6] we remark that

$$f_h(A+B) - f_h(A) - f_h(B) = \int_0^1 \int_0^1 D^2 f_h(sA+tB) AB \, ds \, dt; \qquad (3.21)$$

since

$$D^{2}f_{h}(s Dw + t D\psi_{h}) = D^{2}f(A_{h} + s\lambda_{h} Dw + t\lambda_{h} D\psi_{h})$$

is bounded and converges to $D^2 f(A)$ uniformly, by (3.21) with A = Dw and $B = D\psi_h$, and since $\psi_h \rightarrow 0$ weakly* in $W^{1,\infty}(B_r; \mathbb{R}^N)$,

$$\lim_{h} R_5^h = 0. (3.22)$$

Now we use (3.13) to obtain

$$R_6^h \ge \gamma \int_{B_r} (|D\psi_h|^2 + \lambda_h^{p-2} |D\psi_h|^p) \, dy$$
$$\ge \gamma \int_{B_s} (|Dw_h - Dw|^2 + \lambda_h^{p-2} |Dw_h - Dw|^p) \, dy.$$

Together with (3.20), (3.22) this implies

$$\liminf_{h} R_{2}^{h} \ge \gamma \limsup_{h} \int_{B_{s}} (|Dw_{h} - Dw|^{2} + \lambda_{h}^{p-2} |Dw_{h} - Dw|^{p}) \, dy - (r-s) \, c(K).$$
(3.23)

To deal with R_3^h we use a technique introduced in [1]: first we prove that (see (3.18) for \hat{c})

meas
$$\{y \in B_r : v(y) \neq w(y)\} \le \frac{2\hat{c}}{K^{2+2\delta}}$$
. (3.24)

Set $S = \{y \in B_r : v(y) \neq w(y)\}$ and

$$\tilde{S} = S \cap \{y \in B_r : v(y) = \lim_h v_h(y)\}:$$

then meas $(S) = \text{meas}(\tilde{S})$. We reason by contradiction: if

$$\mathrm{meas}\,(S) > 2\hat{c}/K^{2+2\delta},$$

then by (3.18)

meas
$$(\tilde{S} \setminus S_h) > \hat{c}/K^{2+2\delta}$$

for every h, and by Lemma [II.5] there is a $\overline{y} \in B_r$ such that

 $\overline{y} \in \widetilde{S} \setminus S_h$ for infinitely many h.

Passing to this subsequence, we have

$$v(\overline{y}) = \lim_{h} v_h(\overline{y}) = \lim_{h} w_h(\overline{y}) = w(\overline{y});$$

hence $\overline{y} \notin S$, which is a contradiction. This proves (3.24). Now, since Dv = Dw a.e. in $B_r \setminus S$, by (3.10), (3.12), (3.24)

$$\begin{aligned} R_3^h &| \leq \int\limits_S |f_h(Dw) - f_h(Dv)| \, dy \\ &\leq c \int\limits_S (K^2 + \lambda_h^{p-2} K^p + |Dv|^2 + \lambda_h^{p-2} |Dv|^p) \, dy \\ &\leq \frac{c}{K^{2\delta}} + c \lambda_h^{p-2} K^{p-2-2\delta} \,, \end{aligned}$$

so that

$$\lim_{h} \sup_{h} |R_{3}^{h}| \leq \frac{c}{K^{2\delta}}.$$
(3.25)

Finally, we reduce the right hand side of (3.23) to the desired form:

$$\int_{B_s} (|Dw_h - Dw|^2 + \lambda_h^{p-2} |Dw_h - Dw|^p) \, dy$$

$$\geq 3^{1-p} \int_{B_s} (|Dv_h - Dv|^2 + \lambda_h^{p-2} |Dv_h - Dv|^p) \, dy + -\int_{S_h} (|Dw_h - Dv_h|^2 + \lambda_h^{p-2} |Dw_h - Dv_h|^p) \, dy + -\int_{S_h} (|Dw - Dv|^2 + \lambda_h^{p-2} |Dw - Dv|^p) \, dy.$$

Therefore, arguing as we did for R_1^h and R_3^h , we obtain

 $\limsup_{h \to B_{s}} \int_{B_{s}} (|Dw_{h} - Dw|^{2} + \lambda_{h}^{p-2} |Dw_{h} - Dw|^{p}) dy$ $\geq 3^{1-p} \lim_{h \to B_{s}} \sup_{h \to B_{s}} \int_{B_{s}} (|Dw_{h} - Dw|^{p}) dy = \frac{c}{2}$

$$\geq 3^{k} \lim_{h} \sup_{B_{s}} \left(|Dv_{h} - Dv|^{2} + \lambda_{h}^{k} - |Dv_{h} - Dv|^{k} \right) dy - \frac{1}{K^{2\delta}}.$$

Putting together (3.19), (3.23), (3.25) and this inequality, then letting $s \rightarrow r$ and $K \rightarrow \infty$, we get (3.17).

Step 6: Conclusion. Inequalities (3.15), (3.17) imply

$$\lim_{h} \int_{B_{r}} (|Dv_{h} - Dv|^{2} + \lambda_{h}^{p-2} |Dv_{h} - Dv|^{p}) dy = 0;$$

going back to u and using (3.9) we have

$$\lim_{h} \frac{U(x_{h}, \tau r_{h})}{\lambda_{h}^{2}} = \lim_{h} \frac{1}{\lambda_{h}^{2}} \int_{B_{\tau r_{h}}(x_{h})} (|Du - (Du)_{\tau r_{h}}|^{2} + |Du - (Du)_{\tau r_{h}}|^{p}) dx$$
$$= \lim_{h} \int_{B_{\tau}} (|Dv_{h} - (Dv_{h})_{\tau}|^{2} + \lambda_{h}^{p-2} |Dv_{h} - (Dv_{h})_{\tau}|^{p}) dy$$
$$= \int_{B_{\tau}} |Dv - (Dv)_{\tau}|^{2} dy$$
$$\leq c^{*}(M) \tau^{2},$$

which contradicts (3.1) if we chose $C_M = 2c^*(M)$.

The proof of Theorem [II.1] follows from Proposition [III.1] by a standard argument, see [8] Chapter 6 or [5] Section 7.

Proof of Theorem [II.2]

Throughout this section the function f satisfies (2.5), ..., (2.9). We need some additional lemmas.

Lemma [IV.1]. Let (X, d) be a metric space, and $J: X \rightarrow [0, +\infty]$ a lower semicontinuous functional not identically $+\infty$. If

$$J(u) < \alpha + \inf J,$$

there is a $v \in X$ such that

$$d(u, v) \leq 1$$

and

$$J(v) \leq J(w) + \alpha d(v, w)$$
 for every $w \in X$.

The result above may be found in [4].

Lemma [IV.2]. Let $p \ge 1$, and let $f: \mathbb{R}^{nN} \to \mathbb{R}$ be a quasiconvex function of class C^1 satisfying

$$|f(\xi)| \leq L(1+|\xi|^p).$$

Then for every $u \in W^{1,p}(\Omega; \mathbb{R}^N)$ the functional $\int_{\Omega} f(Dw) dx$ is sequentially lower semicontinuous on the Dirichlet class $u + W_0^{1,p}(\Omega; \mathbb{R}^N)$ endowed with the weak topology of $W^{1,p}$.

Proof. It is enough to observe that f is separately convex, and thus (see 11) it satisfies also the condition

 $|f(\xi + \eta) - f(\xi)| \leq c(1 + |\xi|^{p-1} + |\eta|^{p-1}) |\eta|;$

then the result follows from [12] Theorem 5. \Box

Lemma [IV.3.] Let f satisfy (2.6), (2.9) and

$$|f(x, u, \xi + \eta) - f(x, u, \xi)| \leq c(1 + |\xi|^{p-1} + |\eta|^{p-1}) |\eta|,$$

and let $u \in W^{1,p}(\Omega; \mathbb{R}^N)$ be a minimizer of *I*. Then there are $q_0 > p$ and $C_0 > 0$, independent of *u*, such that $u \in W^{1,q_0}_{loc}(\Omega; \mathbb{R}^N)$ and for every $B_r \subset \Omega$

$$\left(\oint_{B_{r/2}} |Du|^{q_0} dx \right)^{1/q_0} \leq C_0 \left(\oint_{B_r} (1+|Du|^p)_{\alpha} dx \right)^{1/p}$$

Proof. The argument is similar to Lemma [II.4]. Fix $B_r \subset \Omega$, let $\frac{1}{2}r < t < s < r$, take the cut-off function ζ of [II.4], and again set

$$\varphi_1 = [u - (u)_r] \zeta, \quad \varphi_2 = [u - (u)_r] (1 - \zeta);$$

then $\varphi_1 + \varphi_2 = u - (u)_r$ and $D\varphi_1 + D\varphi_2 = Du$. Now, by (2.9)

$$\int_{B_s} [\gamma | D\varphi_1|^p + \psi(0)] dx \leq \int_{B_s} \psi(D\varphi_1) dx \leq \int_{B_s} f(x, u, D\varphi_1) dx$$

$$= \int_{B_s} f(x, u, Du - D\varphi_2) dx.$$
(4.1)

By the minimality of u we have

$$\int_{B_s} f(x, u, Du) dx \leq \int_{B_s} f(x, u - \varphi_1, Du - D\varphi_1) dx$$
$$= \int_{B_s} f(x, \varphi_2 + (u)_r, D\varphi_2) dx$$
$$= \int_{B_s \setminus B_t} f(x, \varphi_2 + (u)_r, D\varphi_2) dx + \int_{B_t} f(x, (u)_r, 0) dx,$$

so that by (2.6)

$$\int_{B_s} f(x, u, Du) \, dx \leq L \int_{B_s \setminus B_t} |D\varphi_2|^p \, dx + cr^n,$$

and by (2.10)

$$\int_{B_s} f(x, u, Du - D\varphi_2) dx = \int_{B_s} f(x, u, Du) dx + \int_{B_s} [f(x, u, Du - D\varphi_2) - f(x, u, Du)] dx$$

$$\leq \int_{B_s} f(x, u, Du) dx + c \int_{B_s \setminus B_t} (1 + |Du|^{p-1} + |D\varphi_2|^{p-1}) |D\varphi_2| dx$$

$$\leq cr^n + c \int_{B_s \setminus B_t} (|D\varphi_2|^p + |Du|^p) dx$$

$$\leq cr^n + c \int_{B_s \setminus B_t} \left[|Du|^p + \frac{|u - (u)_r|^p}{(s-t)^p} \right] dx.$$

Then by (4.1) we obtain

$$\int_{B_t} |Du|^p dx \leq c \int_{B_s \setminus B_t} |Du|^p dx + c \int_{B_r} \left(1 + \frac{|u-(u)_r|^p}{(s-t)^p}\right) dx.$$

The conclusion follows as in Lemma [II.4].

Remark [IV.4]. Under the assumptions of Lemma [IV.3], if Ω is a ball B and u is more regular on ∂B , then the higher integrability goes up to the boundary. Precisely, assume there is a function $u_0 \in W^{1,q}(\mathbb{R}^n; \mathbb{R}^N)$, with q > p, such that $u - u_0 \in W_0^{1,p}(B; \mathbb{R}^N)$: then there are q_0 , C_0 , with $p < q_0 < q$, such that $u \in W^{1,q_0}(B; \mathbb{R}^N)$ and

$$\left(\oint_{B} |Du|^{q_{0}} dx \right)^{1/q_{0}} \leq C_{0} \left(\left[\oint_{B} (1 + |Du|^{p}) dx \right]^{1/p} + \left[\oint_{B} |Du_{0}|^{q_{0}} dx \right]^{1/q_{0}} \right).$$
(4.2)

To prove this, adapt the proof of [IV.3] following [8], page 152.

Remark [*IV.5*]. The second inequality in (4.1), together with the analogous inequality in the proof of Remark [IV.4], is the only point in this paper where we need assumption (2.9). If f is independent of x or if the minimizer u happens to be continuous, instead of (2.9) we may just use (2.7) to show, if r is sufficiently small and x_0 is the center of B_r , that

$$\int_{B_s} f(x, u, D\varphi_1) dx \geq \int_{B_s} f(x_0, u(x_0), D\varphi_1) dx - \varepsilon \int_{B_s} (1 + |D\varphi_1|^p) dx,$$

and the inequality follows using (2.8), if $\varepsilon < \gamma$.

Lemma [IV.6]. Let f satisfy (2.6), (2.8), and fix $x_0 \in \Omega$ and $u_0 \in \mathbb{R}^N$. If B_r is any ball in \mathbb{R}^n , and $u \in W^{1,p}(B_r; \mathbb{R}^N)$, then the functional $\int_{B_r} f(x_0, u_0, Dw(x)) dx$

is sequentially weakly lower semicontinuous on $u + W_0^{1,p}(B_r; \mathbb{R}^N)$, and satisfies

$$\int_{B_r} f(x_0, u_0, Dw(x)) \, dx \ge \gamma \int_{B_r} |Dw|^p \, dx - c \int_{B_r} (1 + |Du|^p) \, dx. \tag{4.3}$$

Proof. The semicontinuity follows from Lemma [IV.2], since (2.8) implies quasiconvexity.

As for (4.3), let $\tilde{u} \in (u_r) + W_0^{1,p}(B_{2r}; \mathbb{R}^N)$ be an extension of u such that $\int_{B_{2r}} |D\tilde{u}|^p dx \leq c \int_{B_r} |Du|^p dx$; if we set for every $w \in u + W_0^{1,p}(B_r; \mathbb{R}^N)$

$$\widetilde{w} = \begin{cases} w & \text{in } B_r \\ \widetilde{u} & \text{in } B_{2r} \setminus B_r, \end{cases}$$

then by
$$(2.8)$$

$$\int_{B_{2r}} [\gamma | Dw|^p + f(x_0, u_0, 0)] dx \leq \int_{B_{2r}} f(x_0, u_0, D\tilde{w}) dx$$

= $\int_{B_r} f(x_0, u_0, Dw) dx + \int_{B_{2r} \setminus B_r} f(x_0, u_0, D\tilde{u}) dx,$

and (4.3) follows easily by (2.6). \Box

Lemma [IV.7]. There are two constants, $0 < \beta_1 < \beta_2 < 1$, and for every K > 0a constant $c_K > 0$, such that if u is a minimizer of I, r < 1, $B_{2r}(x_0) \subset \Omega$ and $(|Du|^p)_{x_0,2r} \leq K$, then there is a $v \in u + W_0^{1,p}(B_r(x_0); \mathbb{R}^N)$ such that

$$\left(\int\limits_{B_{r/2}} |Dv - Du|^p dx\right)^{1/p} \leq c_K r^{\beta_1}$$

and

 $\int\limits_{B_r} f(x_0, (u)_{x_0, r}, Dv(x)) dx$

$$\leq \int_{B_{r}} f(x_{0}, (u)_{x_{0}, r}, Dv(x) + D\varphi(x)) \, dx + r^{\beta_{2}} \int_{B_{r}} |D\varphi(x)| \, dx$$

for every $\varphi \in C_0^1(B_r(x_0); \mathbb{R}^N)$.

Proof. By Lemma [IV.3] and the minimality of u follows the existence of $q_0 > p$ and $c_0 > 0$ such that $u \in W_{loc}^{1,q_0}(\Omega)$ and

$$\left(\int_{B_{s/2}} |Du|^{q_0} dx \right)^{1/q_0} \leq c_0 \left(\int_{B_s} (1+|Du|^p) dx \right)^{1/p}$$

$$(4.4)$$

for every $B_s \subset \Omega$.

Now, by Lemma [IV.6] there is a minimum point \overline{u} on $u + W_0^{1,p}(B_r)$ of the functional

$$I_r^0(w) = \oint_{B_r} f(x_0, (u)_r, Dw) \, dx;$$

by Remark [IV.4] there are numbers q_1 and c_1 with $p < q_1 < q_0$ and both independent of r, such that $\overline{u} \in W^{1,q_1}(B_r)$ and, by (4.2), (4.3),

$$\oint_{B_r} |D\overline{u}|^{q_1} dx \leq c_1 \oint_{B_r} (1+|Du|^{q_1}) dx.$$

Now, by use only of (2.7) and (4.4), the argument employed in [7] Lemma 4.1 yields

$$I_r^0(u) - I_r^0(\overline{u}) \le \tilde{c}(K) r^{\beta}, \qquad (4.5)$$

where $\beta < 1$ depends only on σ , L, p. Consider the space $u + W_0^{1,1}(B_r)$ endowed with the metric

$$d(v,w) = (\tilde{c}(K) r^{\beta/2})^{-1} \oint_{B_r} |Dv - Dw| dx,$$

and set

$$J(w) = \begin{cases} I_r^0(w) & \text{if } w \in u + W_0^{1,p}(B_r) \\ +\infty & \text{otherwise.} \end{cases}$$

By Lemma [IV.6] the functional J is lower semicontinuous in the metric space above, and clearly

$$\inf J = I_r^0(\overline{u}),$$

E. Acerbi & N. Fusco

therefore by (4.5) and Lemma [IV.1] there is a $v \in u + W_0^{1,1}(B_r)$ satisfying

$$\oint_{B_r} |Dv - Du| \, dx \leq \tilde{c}(K) \, r^{\beta/2} \tag{4.6}$$

and

$$J(v) \leq J(v+\varphi) + r^{\beta/2} \int_{B_r} |D\varphi| \, dx$$

for every $\varphi \in W_0^{1,1}(B_r)$. In particular, J(v) is finite, hence $v \in u + W_0^{1,p}(B_r)$; this proves the last assertion of the lemma, with $\beta_2 = \beta/2$. Moreover, by (4.3)

$$\begin{split} \gamma \oint_{B_r} |Dv|^p dx &\leq I_r^0(Dv) + c \oint_{B_r} (1 + |Du|^p) dx \\ &\leq I_r^0(Du) + r^{\beta/2} \oint_{B_r} |Dv - Du| dx + c \oint_{B_r} (1 + |Du|^p) dx \\ &\leq c \oint_{B_r} (1 + |Du|^p) dx + r^{\beta/2} |Dv - Du| dx \\ &\leq c(K). \end{split}$$
(4.7)

Consider the functional

$$w \mapsto I_r^0(w) + r^{\beta/2} \oint_{B_r} |Dv - Dw| dx.$$

Since its integrand $f(x_0, (u)_r, \xi) + r^{\beta/2} |Dv(x) - \xi|$ satisfies the assumptions of Lemma [IV.3], by the minimality of v there are numbers q and c, independent of K, r and satisfying $p < q < q_0$, such that $v \in W_{loc}^{1,q}(B_r)$ and

$$\left(\int_{B_{r/2}} |Dv|^q dx \right)^{1/q} \leq c \left(\int_{B_r} (1+|Dv|^p) dx \right)^{1/p}.$$

$$(4.8)$$

Now if $\vartheta = \frac{q-p}{(q-1)p}$ we have $\frac{1}{p} = \vartheta + \frac{1-\vartheta}{q}$, and so

$$\left(\oint_{B_{r/2}} |Dv - Du|^p dx \right)^{1/p} \leq \left(\oint_{B_{r/2}} |Dv - Du| dx \right)^{\vartheta} \left(\oint_{B_{r/2}} |Dv - Du|^q dx \right)^{\frac{1-\vartheta}{q}}.$$

This inequality, together with (4,4), (4.6), (4.7), (4.8), implies

$$\left(\int_{B_{r/2}} |Dv - Du|^p \, dx\right)^{1/p} \leq c_K r^{\beta \theta/2},$$

and the result follows with $\beta_1 = \beta \vartheta/2 < \beta_2$.

The key to Theorem [II.2] is a statement similar to Proposition [II.1]: define for every $B_r(x_0) \subset \Omega$

$$U(x_0, r) = r^{\delta} + \oint_{B_r(x_0)} (|Du - (Du)_{x_0, r}|^2 + |Du - (Du)_{x_0, r}|^p) dx,$$

for some positive $\delta < \beta_1$.

Proposition [IV.8]. Fix M > 0; there is a constant $C_M > 0$ such that for every $\tau < 1/8$ there is an $\varepsilon = \varepsilon(\tau, M)$ such that if

$$|(u)_{x_0,r}| \leq M, \quad |(Du)_{x_0,r}| \leq M, \quad U(x_0,r) \leq \varepsilon$$

then

$$U(x_0,\tau r) \leq C_M \tau^{\delta} U(x_0,r).$$

Proof. As in Proposition [III.1], fix M and τ (we shall determine C_M later), and assume

$$B_{4r_h}(x_h) \subset \Omega$$

$$|(u)_{x_h, 4r_h}| \leq M, \quad |(Du)_{x_h, 4r_h}| \leq M$$
(4.9)

$$U(x_h, 4r_h) = \lambda_h^2 \to 0 \tag{4.10}$$

and

$$U(x_h, 4\tau r_h) > C_M \tau^\delta \lambda_h^2. \tag{4.11}$$

By (4.9), (4.10) we have

$$\int_{B_{4r_h}(x_h)} |Du|^p \, dx \leq 2^{p-1} (M^p + \lambda_h^2) \leq c, \tag{4.12}$$

so that by Lemma [IV.7] we may choose for every h a function $u_h \in u + W_0^{1,p}(B_{2r_h}(x_h); \mathbb{R}^N)$ satisfying

$$\left(\int_{B_{r_h}(x_h)} |Du - Du_h|^p dx\right)^{1/p} \leq c(M) r_h^{\beta_1}$$
(4.13)

 $\oint_{B_{2r_h}(x_h)} f(x_h, (u)_{2r_h}, Du_h(x)) dx$

$$\leq \int_{B_{2r_h}(x_h)} f(x_h, (u)_{2r_h}, Du_h + D\varphi(x)) dx + (2r_h)^{\beta_2} \int_{B_{2r_h}(x_h)} |D\varphi| dx.$$

By (4.12), (4.13) we have also

$$|(Du_h)_{x_h,r_h}| \leq c(M),$$

and we may rescale in $B_{r_h}(x_h)$, setting

$$v_h(y) = \frac{1}{\lambda_h r_h} [u_h(x_h + r_h y) - (u_h)_{x_h, r_h} - r_h(Du_h)_{x_h, r_h} y].$$

After this, the proof goes on as in Proposition [III.1], with some changes. Those worth noting are the following.

(4.14)

Formula (3.6). Differentiating in (4.14), we show that the left-hand side of (3.6) is no longer equal to zero, but instead it vanishes as $h \to \infty$; indeed, it is dominated by $r_h^{\beta/2}/\lambda_h$, and by (4.10) and our choice of $\delta < \beta_1 < \beta_2$

$$r_h^{\beta_2} < c \, \lambda_h^2 \, r_h^{\beta_2 - \delta}$$

whence

$$r_h \to 0, \quad \frac{r_h^{\beta_2}}{\lambda} \to 0, \quad \frac{r_h^{\beta_2}}{\lambda_h^2} \to 0$$
 (4.15)

and similarly

But by (4.13)

$$\frac{r_h^{\beta_1}}{\lambda_h} \to 0. \tag{4.16}$$

Formula (3.14). Lemma [II.4] must now be used with $v = (2r_h)^{\beta_2}/\lambda_h^2$, after which the formula remains unchanged by (4.15).

Formula (3.15). The estimate begins with

$$I_r^h(v_h) - I_r^h(v) \leq (I_r^h(v_h + \varphi_h) - I_r^h(v)) + \frac{(2r_h)^{\beta_2}}{\lambda_h^2} \int_{B_r} |D\varphi_h| dx$$

The first term is dealt with as before, while the second term vanishes as $h \to \infty$ by (4.15) and since $(D\varphi_h)$ is bounded in L^2 .

Step 6. In this case, since $4\tau < \frac{1}{2}$, we obtain

$$\lim_{h} \frac{1}{\lambda_{h}^{2}} \oint_{B_{4\tau r_{h}}(x_{h})} (|Du_{h} - (Du_{h})_{4\tau r_{h}}|^{2} + |Du_{h} - (Du_{h})_{4\tau r_{h}}|^{p}) dx \leq c(M) \tau^{2}.$$
(4.17)

$$\begin{aligned} \frac{1}{\lambda_h^2} \oint_{B_{4\pi r_h}(x_h)} (|Du - Du_h|^2 + |Du - Du_h|^p) \, dx \\ & \leq \frac{c(\tau)}{\lambda_h^2} \left[\left(\oint_{B_{r_h}(x_h)} |Du - Du_h|^p \, dx \right)^{2/p} + \oint_{B_{r_h}(x_h)} |Du - Du_h|^p \, dx \right] \\ & \leq \frac{c(\tau)}{\lambda_h^2} (r_h^{2\beta_1} + r_h^{p\beta_1}), \end{aligned}$$

which vanishes as $h \rightarrow \infty$ by (4.16).

This, together with (4.17), implies by (4.10)

$$\lim_{h}\frac{U(x_{h}, 4\tau r_{h})}{\lambda_{h}^{2}} \leq c\tau^{\delta} \limsup_{h} \frac{r_{h}^{\delta}}{\lambda_{h}^{2}} + c(M) \tau^{2} \leq c^{*}(M) \tau^{\delta},$$

and the contradiction follows for $C_M = 2c^*(M)$.

The conclusion of the proof of Theorem [II.2] may be attained by adapting [7] Section 6 to our simpler situation.

References

- 1. ACERBI, E., & N. FUSCO, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145.
- 2. BALL, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403.
- 3. EISEN, G., A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals, Manuscripta Math. 27 (1979), 73-79.
- 4. EKELAND, I., Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443-474.
- 5. EVANS, L. C., Quasiconvexity and partial regularity in the calculus of variations.
- 6. EVANS, L. C., & R. F. GARIEPY, Blow-up, compactness and partial regularity in the calculus of variations.
- 7. FUSCO, N., & J. HUTCHINSON, C^{1,x} partial regularity of functions minimising quasiconvex integrals, Manuscripta Math. 54 (1985), 121–143.
- 8. GIAQUINTA, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton, 1983.
- 9. GIAQUINTA, M., & G. MODICA, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non linéaire 3 (1986), 185-208.
- 10. HONG, M.-C., Existence and partial regularity in the calculus of variations,
- 11. MARCELLINI, P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985), 1-28.
- 12. MEYERS, N. G., Quasi-convexity and lower semicontinuity of multiple variational integrals of any order, Trans. Amer. Math. Soc. 119 (1965), 125-149.
- ACERBI, E., & N. FUSCO, An approximation lemma for W^{1,p} functions, Proceedings of the Symposium on Material Instabilities and Continuum Mechanics, Edinburgh, 1986; Ed. by J. M. BALL.

Scuola Normale Superiore Pisa

Dipartimento di Matematica Università di Napoli

(Received December 3, 1986)