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1 Introduction 

Many classical results concern the regularity of minimizers u of 

r F(x ,  Du)  dx, 

where F satisfies the standard growth conditions 

(1) ]z] p < _ F ( x , z ) < _ c ( l + I z l  p) for s o m e p >  1. 

Following an example by Giaquinta [5], see also [7],[9], several papers appeared in 
which (1) is replaced by 

Izl p <_ F ( x , z )  <_ c(l + lzl q) for s o m e q > p >  1. 

Most of these deal with anisotropic (but essentially homogeneous) situations, as e.g. 

N 

F(x ,  z) = Z a i ( x ) l z i l  pi 
i=l 

with ai _> e > 0 and 1 < Pl <_ �9 "" <_ PN, SO that the growth with respect to z is the 
same for all x: see e.g. [1], [10], [3]. 
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However, in some physical situations (as e.g. electrostatic fields in which con- 
ductivity depends on the intensity of the field, or thermal equilibrium in composite 
nonlinearly conductive materials) it is natural to consider energies of the form 

f a(z, ID'ul)l/)ul 2 d z  

in which the growth exponent of  a(x, z) with respect to z depends on the position x. 
The simplest model is the functional 

(2) f~ lDul p(x) dx, with 1 < Po ~ p(x) <_ q0, 

which was investigated by Zhikov [131 in the context of  homogenization. 
We study some regularity properties for minimizers of  a class of  functionals which 

includes (2) in the case when p(x) has only two possible values (this corresponds to 
the case of  a conductor made of two different homogeneous materials). To fix the 
ideas, take an open set ~ which is split by a Lipschitz surface Z in two parts, 22- 
and f2 +, and take 

o ~ ( u ) =  [ IDu[ p dx + f ]Dul q dx (3) 
- -  , ]  J ~ +  

with 1 < p < q. One of  the results we prove (Theorem 2.3) implies that any local 
minimizer u of  ~ in ~ is HSlder continuous. We remark that we only deal with the 
scalar case (u : 22 ---+ R) but, unlike any previous result (see [1], [11], [12]) we do 
not impose any restriction on q with respect to p. It is well known that any minimizer 
to (3) is smooth inside f ? -  and 22§ thus the point here (as in classical transmission 
problems) is to provide regularity across ~ .  Trying to follow the general lines of [2] 
arid [8], one is led to an unbalanced Caccioppoli estimate (6) in the balls intersecting 
,E, which is still enough to prove boundedness of the minimizers u, which is done in 
Sect. 3, but is not useful to bound the oscillation of u; this difficulty is overcome in 
Sect, 4. 

2 Notation and statement of the results 

Let ~c2 be a connected open subset of  R n, and let Z be a compact lipschitz continuous 
(n - D-dimensional manifold in Rn: by this we mean that for ever 5, x0 6 Z there 
exist a neighbourhood U of  x0, and a bilipschitz mapping from U to I~, ~ such that 
the image of S n U lies in a hyperplane; due to the compactness of  S ,  we denote by 
L the greatest of the lipschitz constants of  the mappings needed to cover Z and their 
inverses. 

We denote by f2 § f2-  two open subsets of  ~ such that ~ is the disjoint union 
of ~'2 +, ~'2- and 22 n Z ,  and for every x0 6 D N ~ and every neighbourhood U of  
x0 there exists a neighbourhood V of x0, contained in U, and such that both 22+ N V 
and 22- N V are connected (i.e., Z locally separates g2 + and X2-). 

Let F : ~c2 • R '~ -+ IR be a Caratheodory function (i.e., measurable with respect 
to x 6 f2, continuous with respect to z 6 N'*) satisfying 

[z[ q <_ F(x, z) <_ L(1 + [zi q) for a.e. x E ~Q+ 
(4) 

Iz[ p _< F(x ,  z) <_ L(a + Izl p) for a.e. x 6 22- 
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with 1 < p _< q; note that we used the same letter L as above. We will sometimes 
use the notation 

{ q  i f x E  ~+ 
p(x)  = if x C ~ - .  

We introduce a space of  weakly differentiable functions in ~ by setting for every 
open set A 

WI'(q+'v-)(A) = WI 'P(A)  N W I ' q ( A  ng?+) 

and 
1,(q+,;-) W t'(q+ 'v-) f ly)  ~ }  Wlo  c (x?) = {u : u e VX?' c c  . 

In the sequel we study local minimizers of  the functional 

J T ( v ,  A)  = f A  F (x ,  Dv)  dx  

1,(q+,p -)  
i.e., functions u E Wlo c (/2j such that 

g ' ( u ,  spt ~) _< o ~ ( u  + ~, spt ~) Vg~ E C~ ( ~ ) .  

First we give a higher integrability and a local boundedness result: 

T h e o r e m  2.1 Assume condition (4) holds; for  every i < p <_ q there exists c > O, 

Vr 1'(q+'p-)([2~ is a local minimizer of  o~ depending on (n, p, q, L), such that i f  u C loc ~ i 
then 

1+~ ]Du] p(~) e LiocGC2), 

and for  every ball Bn(xo)  C g? 

ID< (1+~>(~) dx  < e _ .(~o)(1 + ID< p(~)) dx, 

with c independent o f  u. Moreover if i < p ~ q <_ n then r >_ r L). 

T h e o r e m  2.2 Assume condition (4) holds; for  any 1 < p < q, every local minimizer 
I,;[71 ,(q +,p- ) { 0~ u C ,. loc ~..o~ o f  5 ~" is locally bounded in Y2. 

TO obtain the following Ht lder  continuity result we need another assumption: 

(5) F is convex with respect to z. 

Then we have: 

y~l,(q+,p - ) 
T h e o r e m  2.3 Assume conditions (4),(5) hold, with 1 < p < q. I f  u C loc ((2~ 

is a local minimizer o f  ~ satisfying 

sup [u[ < M 
52 

there exists c~ > O, depending on (n, p, q, L, M ) ,  such that u E C~ 

However, 
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Proposition 2.4 For every p > 1 there exists qo < n such that if q > qo the convexity 
assumption (5) is no longer needed in Theorem 2.3. 

Remark 2.5 Due to Theorem 2.2, one may remove the assumption sups ? M 
in Theorem 2.3 and Proposition 2.4, thus obtaining that for every s CC s one has 
u E C ~  7) with c~ depending on sups?, [u[. 

Remark2.6 Our results are local, hence we will always assume that u E WI'(q+'P-)(s 
remarking that all the relevant constants will not be affected by this restriction. 

Remark 2.7 In a subject which is already burdened with technicalities, we preferred 
not to introduce any explicit dependence of F on u; the most interested readers, 
although, could quite easily deal with this general case. 

Remark 2.8 It is not restrictive to suppose in the sequel that Z lies on a hyperplane. 
Indeed, fix :Co E Z N s there exist a neighbourhood U of  :Co in R~, a neighbourhood 
U ~ of  0 in R n and a bilipschitz homeomorphism ~ : U'  ---+ U such that Z N U = 

x I , 
l ~({:C~ E U ~ : z~ = 0}). If F satisfies (4), and eventually (5), the function 

G(x' ,z)  : / d e t D ~ ( x ' ) l  F ( ~ ( x ' ) , z  [D~(x')]  - ' )  

satisfies (4), and eventually (5), although with different constants, depending on L 
and n but not on :Co. Moreover if u is a local minimizer of  ~ in U, then u~(z ') = 
u(r is a local minimizer of  fu '  G(:C~, Dv)d:C'. Finally, the summability and 
H61der continuity exponents of  u and u ~ are the same. 

We will often make use of  cubes: all will be supposed to have a face parallel to 
Z ,  and to be contained in s The symbol QR (or occasionally QR(:Co) to stress its 
center) will denote a cube with side R, whereas QaR will be for any positive A a cube 
concentric with QR. Also, if the center of QR belongs to Z we set Q~ = QR N s 
and Q~  = QR M s 

If u : QR ~ R we set for any real K 

QR,K = {Z C QI~ : u(z) > K } ,  

and similarly for Q+ and Q~ K" R,K 
Finally, the symbol fA denotes the average over a set A. 

3 Higher integrability and local boundedness 

As in the standard case p = q, the tools needed in order to prove higher integrability 
for the gradient Du, and local boundedness of  a minimizer u, are Gehring theo- 
rem, and suitable versions of  Caccioppoli (Proposition 3.4) and Sobolev - Poincard 
(Proposition 3.2) inequalities. 

In the sequel, we shall usually not remark any dependence on n and L, which is 
shared by virtually all constants. 

Let QR be a cube centered on Z ,  set ~ R  = Q• n ~ and denote by Tr (u) the 
trace of  u on Z,  whenever it exists. 
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Proposition 3,1 I f  u E W L s ( Q ) )  with 1 <_ s < So < n then 

:  o,y (j; , '  
,so--+R i n t & < e IDuF dX}l ' +~ 

where 
# 

= " i  Tr (u) d.-~3(Yn_ 1 (o-) 
J z  

andc=e(so) .  

Proof Assume the statement is false. Then we may find a sequence (8h)h with 
1 <_ Sh <_ sO, and a sequence (Uh)h, with uh C WI'~.(Q~),  such that 

~ Tr (uh) &~;~_i(o? = 0, 
R 

~ ]DUhI s~ dx --+, O, 

-RI ~dx=I. 

ttence uh --+ 0 strongly in W 1,1. Remarking that 

1" sh - 1 = s~ 

if we set vu = l~hl s~/I* then 

IIDvh]I1 _< c]lDuhlt~,~ il~shNs~, -+ 0 

and, interpolating between 1 and s*, 

i!v~ii~ + o ,  

since II~ll~ -+ 0, By Rellich theorem, NvhNx~ II~dl;~ = --+ 0, thus achieving a 

contradiction, 

As we did for p and q, we set 

if  x ~: Q ~  
r(x) -- if x e Q~.  

If  u E WL(s+'r-)(QR), in particular u ~ WL~(Q~), therefore, the traces of u on 
both sides of kS~z agree . ~ , - 1 - a . e .  on ER, and their averages on ZR are the same. 
Therefore we have the following Sobolev-Poincar6 inequality: 

P r o p o s i t i o n  3.2 I f  1 < r < s < So < n a M  u E Wt'(s+'~-)(Qa), then 
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where 
i *  

A = ~ Tr (u )d~n_~(cr )  
JE R 

and c = c(so). The result still holds with both exponents n / ( n  - r) replaced by any 
number between 1 and n / ( n  - r). Moreover, if u C W~'r(QR) the inequality above 
holds even if we take A = 0 instead of  the average of  the trace. 

Proof Remarking that 

[ /Q+R(~___ ) u _ A 8  ~l(n-r)dx]  ('~-~)/~ -< [ f2~  ( u - " 8 ~ l ( ~ - ~ ) d x ]  ( ~ - ~ ) / ~ R  / 

we get by Proposition 3.1 (which clearly holds also with r and Q~)  

and the result follows. The final remarks are easy. 

The following algebraic lemma is similar to [4] Sect. 5, Lemma 3.1. 

L e m m a  3.3 Let f : [R, 2R] --+ [0, +(x~) be a bounded function satisfying 

f ( t l )  <_ Of(re)+ - -  + - -  + 7  
(t2 -- t i)  p (t2 -- t l)  q 

for some 0 < z9 < 1 and all R <_ tl < t2 <_ 2R, with a,/3, 7 >- 0 and 1 < p <_ q. Then 
there exists a constant c such that 

f ( R )  << e + ~ +~/ . 

The constant c = c(~, q) is increasing with respect to q. 

Proof  Let ~- = ((1 + 0)/2)1/q < 1, and set tk = 2R(1 - ~-k/2). Then 

to : R ,  lim~k = 2 R ,  tk+~ - tk = R(1 - T)7 -k , 
k 

and for all k we get from the assumption on f 

f ( t k )  <_ ~)f(tk+l) + (1 - T)qT kq q- + ~/ ' 

whence by induction, remarking that vq/~- < 1, we obtain 

f (R)<_ ( 1 - ~ - ) q ( ~ - q - O )  ~ + R ~  + "~ ' 
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hence the result with e - 1 --v~ - 1 

This result enables us to prove a Caccioppoli inequality for the minimizers. 

Proposition 3.4 There exists a constant c = c(n,p, q) such that for every minimizer 
u E WI'(q+'P-)(g?) o f o  ~ and any Qn such Nat QaR C 

fQR [DulP(X) dx < c ( l  + fQ2R ~ P(X)dx) 

.for every A E llL Moreover if  1 < p <_ q < n we have c < c(n). 

Proof Fix A, and take Qn centered on S.  With a standard choice of test functions, 
using the hole-filling technique (see e.g. [4] p. 160) we get for any R < t < s < 2R 

iQ 'DutP(X) dx <_ ~ iQ 'DuF(X) dx 

c i o  l u -  AIp dx + (s ~)--------~ - - ;R  

c iQ l u - A I  q d x + c R  ~ + (s t)-----q ~ 

where ~0 < 1 and c depend on p,q,n and if 1 < p < q < n 

0 < ~ ( n )  < 0 <_ ~)2(n) < 1 ,  c < c(n).  

For this class of cubes the result then follows from Lemma 3.3. If Q2R is entirely 
contained in ~+ or in ~2-, the proof is even easier. Finally, if Q2n(Xo) n Z ?~ ~, there 
exists x~ E ~ such that 

QR(xo) C Q3R(x~) c Q6R(x~) c QsR(x0) ; 

since the result is true on Q3R(x~), we deduce in the case Qsn(xo) c [2 

iQ ( f  , u -Alp (x )  \ IDulP(X) d x < c  1+4-  i - - I  d x l  
n(~o) - JQsR,(~o) R " J ' 

and the inequality with Qn and Q:R follows by a (finite) covering argument. 

The Sobolev - Poincar6 and Caccioppoli inequalities just proved are the key tools 
to prove the higher integrability result. 

Lemma 3.5 There exists a constant c = c(n,p, q) such that for every minimizer 
u E WL'(q+'P-)([2) o f ~  and for every Q~ such that QzR C f2 

j;RiOuiP(=)dx<-c[l+(j;2R(xo)IDulV(=)/(1+')dx)l+'] , 

where cr = p / n  if p >_ n / (n  - 1), and (r = p - 1 if 1 <_ p < n / (n  - 1). Moreover if 
1 ~ p < q ~ n w e h a v e e < c ( n ) .  
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Proof We deal first with the case p _>_ n / ( n  - 1). If Q2R is centered on Z ,  we choose 

A = f Tr (u) d3d'n_ I(~7) 
a~:2 R 

in Proposition 3.4, then we apply Proposition 3.2 on Q2R with 

n 
r -  p ,  8 = - - q ,  

n + p  n + p  

so that 
n 

p ( x )  = - -  r e ) ,  gb-- r 
and we immediately get the required inequality. We remark that if p < q < n we 
have r, s <_ n2 / (n  + 1) < n. 

If  Q2R c s the result follows by Proposition 3.4 and the classical Sobolev - 
Poincar6 inequality, with 

P 

A = ~./c)2R u dx 

The same argument, if Q2R C g?+, leads to 

~C[I+ (fQ2R([Du]q)n/(n+P)dx)(n+p)/n] . 

The generic case Q2R n Z r (~ is dealt with as in the proof  of  Proposition 3,4. 
The case 1 _< p < n / ( n -  1) is treated as above, but with the choice r = 1, s = q/p  

in Proposition 3.2, applied with exponent p instead of  n / ( n  - 1). 

The higher integrability result (Theorem 2.1) follows easily from Lemma 3.5 and 
Gehring lemma ([4] Sect. 5, Proposition 1.1). 

We now prove the local boundedness result (Theorem 2.2). 

Proof Since by [6] we already know that u E L ~ ( f 2  + U ~(2 ), we only have to show 
luL. 

that u C L ~ ( Q R )  for every cube QR centered on Z with QzR C f). The starting 
point is the following Caccioppol inequality for (u - K )  +, which can be obtained as 
in Proposition 3.4 by a suitable choice of  test functions: for every ~' < ~ < 2R there 
exists c = c(p, q) such that for every K and every minimizer u 

The rest of the proof is (simpler than) the proof of  [8] Lemma 5.4, p. 76. 

4 H61der continuity  

In the standard case p = q, inequality (6) is enough to get the hSlder continuity of  a 
minimizer u, but if p r q it does not allow to bound the oscillation of  u on a ball 
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intersecting S .  Thus, assuming henceforth 1 < p < q, we first wove  that u is locally 
hSlder continuous on S? + U S ,  then we use the following result, which states that a 
minimizer of  ~ with h61der continuous datum on a part of the boundary is hSlder 
continuous up to that part of the boundary. 

T h e o r e m  4.1 Assume (4) holds; if u E WhPU2-) N L~(~? - )  is a minimizer of .~" 
in its Dirichlet class, and if the trace of u on S is of class C ~ then 

u E C~162 - u S ) ,  

where ct = o~(p, /3, sup u). 

Proof Take any cube Qo intersecting Y2- and such that Qe does not intersect 
o s ? -  \ . 

If Qo N S r 0, consider for every K > s u P % n s  u and every ~ with compact 

support in Qo the function (u - K )  § ~: its trace vanishes on the boundary of Qo N ~2-, 
thus it may be used as a test function to get 

f Q # ~ n s ? - l D u ' P d x < - 7 ( / % K n s ?  , (u-~-K--)+~ - g, " d x + m e a s ( Q 0 , K  N Y2-))  

for every ff < 8, with ~ = ~/(p) constant. 
Otherwise, if Qo c Y2-, we already have (6) which may be written as the inequal- 

ity above, with no restriction on K .  In conclusion, referring to [8] p. 90, u belongs 
to ~ p ( g 2 -  U Z ,  sup lul, % oo, 0), and the result comes from [81 Theorem 7.1, p. 91. 

Thus, we only have to prove regularity up to Z'R in (Y2t) + with Y2 t CC S'L A first result 
in this direction (Proposition 2.4) is an easy consequence of the higher integrability: 

Proof Referring to Theorem 2.1, i f p  > 1 is fixed and q > q0 = n/(1 +c0(P)) then 
w l,n+6 + u C  loc (Y2 UZ) with6=~5(P,q)>O, t husucC~  

we have u E C~ by Theorem 4.1. 

According to this result, we may  confine ourselves in the sequel to the case 1 < p < 
q < n. Also, all cubes chosen below will be contained in Y2, without mentioning it 
any further. By assumptions (4),(5) one easily gets 

(7) IF(x ,  z +.w) - F ( z ,  z)l <_ L (1 + c p<~)tzl '~<x) + ~-~(~)/(P(~)-~)IwlP(~)). 

The next two lemmas will enable us to get the proper energy estimate which we will 
use instead of (6) to prove the hSlder continuity following the general lines of  [2], 
see also [8] Chap. 2, Sect. 6. Hereafter, if A c Y2 + and f : A -+ R we denote by fii 
the symmetric of A with respect to Z ,  and by f (x )  the function f evaluated at the 
symmetric of the point x c fiz. For typographical reasons, we employ the notation 
Qo,K instead of putting a wide tilde over the whole symbol. 

L e m m a  4.2 For every ff < 0 and K ~ > I45 > supQ~ u - 1 we have 

(K '  - hO p IDuJ p dx < c (JDui p + + 
~,,~, - Q : o , ~  ~o - ~o' 

with c = c(M, p). 
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Proof Let ( E C~(Q~) satisfy: 0 ~ ( ~< 1, ( = 1 on Q0', IDCI ~< 2 / ( 4 -  d)  and set 

= 1(~- ]rO+ T ( u -  ~)(p;  

then ~ vanishes outside Q+ Remarking that 102 - /~)+I  p ~P < 1, and by the con- e~K* 
vexity of F,  

~+ 
,~ ( ,Q~,K)  

_< ~ ( u  - ~, Q~,~:) 

= F[x, (i - I ( ~ - K ) + I P ( V ) D u  

�9 Q;~K 

(u - (t)D(t (u - (t)D( 
+I( ( t -K)+IP(P(D~-p  ( ( t_K)  + p ( ) ]dx  

/ (1 - [((t, - K)+i p r Pu) dx < 
Jd 

Q;,K 

+ ](~1- K)+/P(VF x , D ( t - p  ( ( t - K )  + p - dx 
Q+e,K 

so that 

[ l(u - K)+T (ViDuiP dx <_ c(M,p) f (1 + IDu] p + ](u - K)+IID([P)dx 
Js Q+e,I< J Q+e,K 

and the result follows. 

Lemma  4.3 For ever>, ff < 8 and evecv K E R and s > 0 

/Q IDu'q dx <- sP ]~ ]DulP dx 
+~, ~ Q~,~ 

([ - K)+ I + s -pq/(p-1)(q-p)) dx 

with c = c(p, q). 

Proof Let r be as in Lemma 4.2; the function 

(u-K) +(q ifxEQ; 
~(x)= (~ K) +~q ifxeQ~- 

has compact support, thus 

fQ F(x, Du) dx + -+ 
~,KUQ~,K 

+ f F(x, Du - CqD(t -q(q-'(~ - K) + D() dx 
J(_ 

Q+o,K 
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and using again the convexity of F and (7) 

fQ ~q F(x, Du) dx + Q,K 
<_ c [ l(u - K)+I q LD~I q dx  

J c  

+ e f [1 + sP lau]  p + s -~ / (~ - I ) ( ]~qD~lP  + t~q-l(~ - K) § D~tP)] d x .  

By Young inequality we deduce 

Q;,~ ~q F(x,  D u )  d x  

,,(I 
1 f (qlDu[qd x 

+ csV/i  ]Du]v dx ,  
JQ;,K 

and the result follows. 

The following lemma gives the appropriate energy estimate on Q+: set r = n[1 + ( p -  
1)(q - p ) / p ] .  Then we have: 

L e m m a  4.4 There exist c = e(M, p, q) > 0 and go < 1 such that the inequality 

fQ ]Du]q dx <- c[[meas(Qo, K)]~-q/r 
+! ! 
0 ~K 

"}-f~+ ((Kt-K)-Pq/(p-I)(q-P)-t-I(~-~fS-)+ q)dz] 
O o,K g - ~ 

holds for every ~r < o < go and every K , K  r with supQ~ u - 1 < K < K t < supQ; u. 

Proof Let N be a positive integer such that N >_ (r - q)p/(q - p)q, so that 

q - P q N > l _ q _  
p r r 

and divide both [g', g] and [K, K'] into N subintervals by setting for i = 0 , . . . ,  N 

i g - ~~ K / - K 
e~ = g' + -~r ' K~ = K '  = i ~  ; 

moreover set 
Oi + gi+l 

f f i  = - -  
2 
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We apply Lemma 4.3 with ~t replaced by gi ,g by c%, K by Ki  and e by Ki - Ki+l, 
and we majorize the last integral thus getting 

fQ fDul q dx + 

(Ki - K~+l) p f?_+ [Dul p dx 
o" i ,K i 

+ c~, ~,) f ~r((~---~)+) +' + ( ~ ' -  ~:>-'~'~'~-'~'-'~l d ~ ,  ~- ~o, Q~j,; 

Lemma 4.2 applied to the first term appearing at the right-hand side yields 

(K~ - K~+I) p fQ+ ~: ]Oul p dx 
i, i 

c(M,p) + K ]DttlP + ( 0i+1 - o'i / + 
c~ i+1 

~ f IDu[ p dx 

+<,,~,M)j<~s,,<_r(('-"-'<)+~'+ _ ~)-,q;~,,-~(~,-p~] i_', 7 - - 7  ; (K' d~ 

by Young inequality, where we used the fact that K '  - K <_ 1. As for the integral of  
IDul v, we apply HOlder and Young inequality to get 

f(~ + q--P iQ 8 IDu] p dx <_ [meas (Qo,K)]--7 q IDul q dx 

+ c(M, p, q)[meas (Q; ,K) ] I -  q , 

so that finally 

f + IDuI q dx 

+ q--P JQ _<_ [meas(Qe,K)] p ~ IDutqdx 
+ 

ffi+l ,Ki+t 
+c(M,p,q) {+ r((u -~-~----)+) q+(t~l- I~)--Pq/(pil)(q--P)J dx 

aQo, KL\ g - - g '  

+ c(M,p, q)[meas (Q~,,K)] ~-~ . 

We choose go such that meas (Q;o) < 1 and fQ+~o !D%tIq dx < 1 for all cubes; letting 

i = 0 , . . . ,  N - 1 in the previous estimate yields 
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fQ IDul q dz 
+1 ! 0 ,K 

[ m e a s ( Q ; ' K ) ] ~  ~ / i  IDu[qdx 
' Q~,K 

+ c(M, p, q)[meas (Q;,K)]I-  

Q+o.,K 
+c(M,p,q)[measr )11-~ 

by our choice of N. 

We remark that the choice of 00 is the only point where we used the condition 
D u  C Lq(~+) .  

The following is a rephrasing of the result just proved. 

Remark 4.5 With the notation of Lemma 4.4, if K ~ >_ K + ;~ l -n / r  for some A < 1, 
the inequality 

~--pq/(p--1)(q--p) m e a s  ~ r~" l -~ I D u ! q d x < c  k -~L--~ ] dx+ [ (Q~,_)I 
+~ ! ; t(  0 ,K 

holds, with c = e(M, p, q). 

The following lemma is a slight modification of [2] Lemma 2, see also [8] Lemma 3.5, 
p. 55, whereas the subsequent one is technical (see [8] Lemma 4.7, p. 66). 

Lemma 4.6 There exists c = c(n) such that for every u e WLI(Q+o) and eve~7 
Is > K '  

_ c g  [ tD~I d~. (K"  - K')[meas (Q;,K,)] t Vn < meas (Q; \ Q;,K,) & + Q+ 
Qo,K t \  e,K tr 

Lemma 4.7 Let {a~} be a sequence of nonnegative real numbers, satisfying for some 
positive constants c,e, and b > 1 

ai+l ~ cb'ia~ +~ �9 

There exists Oo = Oo(c, b, E) > 0 such that 

ao_~Oo ~ t ima i - -O.  
i 

Using the inequality stated in Lemma 4.4, it is possible to prove the equivalent of the 
results of [8] Chap. 2, Sect. 6. 

Lemma 4.8 With the notation of Lemma 4.4, there exists 0 = O(M, p, q) such that for 
any ~ < o~o and any K > supQ~ u - 1, the inequality 
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meas (Q+o,K) <- ~0 n 

implies 
meas (Q+_o K+_H ) = 0 

2 ~ 2 

provided H = supQ; u - K _> ~1-~/~. 

Proof We set 

~ i=  ( 1 + 2  - i ) ,  K ~ = K + - ~ - ( 1 - 2  - i ) ,  

so that 

K ~  -- K i  q- K i+ i  

2 ' 

Now, 
meas(Q+ K') < + 00 ~ , meas (Qo,K) < 

~i+1,  i - -  

and we will choose t9 such that 

1 + 1 + 
(10) tgO~ < ~meas (Qo/2) <- ~meas (Qa+ l ) '  

therefore 

Hq /Qo~+l IDulq dx ' 2 ( ~  q [meas (Qor ,K~+I )]q-q/n <_ c[meas (Q;~+I,K~)]q-1 

and (8) implies 

[meas (Q~i+I,Ki+I)]q q / n  ~ C 2i(a+l)q(~ ~- q + H-q)[meas  (Qo~,K~)]q-q/r . 

Using the assumption on H,  

( + ) ] l - - 1 / n  ~ 2 i ( a + l )  ~--~ - -1~  (1"~+ ~ ] l - - 1 / r  [meas Qoi+~,Ke+~ <-- ~ u [meas  k ~ o i , K i ]  ] , 

& -- &+l = 2- i -2~ ) , [~ = Ki + 2 - i - 3 H  > Ki + 2 - i - 3 p  1-'Vr , 

and we may apply Remark 4.5 to obtain 

fQ + tDulq dx 

Oi+l ,K~ 

(g) < c (  2*q [(u -- Ki)+l q dx + 2iPq/(P-')(q-P)[meas "~a,KC J 
- -  ~ " ~ q  + g  

Qi, i 
�9 nq [ i q +  ~ ] l - - q / r  

< c 2 * a q ( H q ~  ~ - - q  + 1)[meas 
- -  t ~ O i , g  i ] 

where a = max{1 ,p / (p  - 1)(q - p ) } .  Next, from Lemma 4.6 we have 

+ ) ] l - - 1 / n  (Ki+l - K~)[meas (Qa<  ,Ki+i 

(9) < fQ IDul ax 
- meas (Q;~< \ Q+o~+I,K~) +i+~,K: 
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that is 
(meas(Q+~i+~,I4~+l)) 1-1/n 2i(a+l)(meas(Q+oi,K~)~ l-1/~" 

Qn - \ 7 J 

Besides (10), we impose on z9 the condition that 0 _< ~0, and the conclusion follows 
from Lemma 4.7. 

The difference between this proof and [8] Lemma 6.1, which is essentially [2] 
Lemma 4, is that the energy estimate (Lemma 4.4) involves different levels K , K  I of 
u, thus we must introduce the level K~, average of Ki and Ki+l, whereas in [8] our 
inequalities (8) and (9) appear with K~ = Ki. 

Now we refer to [8] Lemma 6.2, p. 85: if a similar average is taken of the levels 
%i - cu/2 t and %i - cu/2 t+l to get the versions valid in our case of (6.15) and of the 
formula at the bottom of p. 87, one may repeat line by line the proof of Lemma 6.2, 
with some simplifications (~ = 1 in our case) and the obvious modifications (one 
works on Q;,  not on Qo), to obtain: 

Lemma  4.9 There exists a constant s = s(M,p,  q) such that for every L) < 0o/4 at 
least one of the inequalities 

osc [u, Q;] < 2~Q 1-n/~ 

osc [u, Q;]  _< (1 - f - ~ ) o s c  [u, (?~o1 

hoMs. 

This result, together with the next ([8] Lemma 4.8, p. 66), will enable us to prove 
h61der continuity. 

Lemma  4.10 Assume that for each ~ < Q0/4 at least one of the following inequalities 
holds: 

osc [u, Q;]  _< el f 

C + ?Z + OS [U, QO] < O O S C [  ,Q4o] 

for suitable constants Cl, ~ <_ 1 and 0 < 1. Then for all ~ < Oo 

(11) 

where 

a n d  c 2 is independent of ~. 

osc [u, Q;] < c2(~ /oo)  ~ , 

= m i n ( -  log 0/log 4, e} 

We may now prove Theorem 2.3: 

Proof Inequality (11), together with the well known interior estimates in X? +, implies 
that u C C~ + U Z). The result then follows by Theorem 4.1, remarking that the 
h61der exponent depends on ~ only through M = SUps ? lul. 
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