To appear on the Proceedings of the Symposium Year on Material Instabilities and Continuum Mechanics

An Approximation Lemma for $W^{1,p}$ Functions

by Emilio Acerbi & Nicola Fusco

In this paper we give a direct proof of the following approximation result:

Theorem. Let $\Omega \subset \mathbf{R}^n$ be a regular open set, and $p \ge 1$. There exists a constant c such that, for every $u \in W^{1,p}(\Omega)$ and every K > 0 there exists $v \in W^{1,\infty}(\Omega)$ satisfying

$$\|v\|_{1,\infty} \le K$$

meas{
$$x: u(x) \neq v(x)$$
} $\leq c \frac{||u||_{1,p}}{K^p}$.

Unlike several results of Luzin type available ([3],[4]), in this theorem we do not look for an approximating function v which is close to u in the $W^{1,p}$ norm, but we want a precise control on the gradient of v. Thus, when the result is applied to a bounded sequence in $W^{1,p}$ one obtains a sequence of approximating functions which is bounded in $W^{1,\infty}$.

This theorem was successfully applied by the authors in two different contexts: in a weaker form ([1]) when dealing with the semicontinuity of quasiconvex integrals, and in the general form ([2]) to obtain a regularity theorem for the same functionals.

The proof was not written explicitly in [2], where the reader was referred to the weaker result of [1], so we decided to present the details here, also thinking that this Lemma might be of interest by itself.

For every $f \in L^1_{loc}(\mathbf{R}^n)$ we set

$$Mf(x) = \sup_{r>0} \oint_{B_r(0)} |f(x+y)| \, dy \; ,$$

and if $u \in W^{1,1}_{loc}(\mathbf{R}^n)$ we write

M'u(x) = M(|Du|)(x) .

We now show that through the maximal function M' we may control the difference quotient of u outside a small set. We set, for any $u \in W_{loc}^{1,1}(\mathbf{R}^n)$ and for any $\lambda > 0$

$$H_{\lambda} = \{x: M'u(x) < \lambda\}$$

Lemma 1. There exists a constant $c_1 = c_1(n)$ such that, for every $u \in C_0^{\infty}(\mathbb{R}^n)$, we have

$$\frac{|u(x) - u(y)|}{|x - y|} \le c_1 \lambda$$

for all $x, y \in H_{\lambda}$.

PROOF. Fix $\lambda > 0$ and $x \in H_{\lambda}$, and set

$$S_{k,r}(x) = \{ y \in B_r(x) : \frac{|u(x) - u(y)|}{|x - y|} \ge k\lambda \}$$

We prove that, as k increases, $S_{k,r}(x)$ occupies a smaller and smaller portion of $B_r(x)$, independently of the particular function u: indeed,

$$\begin{split} k\lambda \frac{\mathrm{meas}S_{k,r}(x)}{\mathrm{meas}B_r(x)} &\leq \int_{B_r(0)} \frac{|u(x+y) - u(x)|}{|y|} dy = \int_{B_r} \left| \int_0^1 \frac{1}{|y|} \langle Du(x+ty), y \rangle dt \right| dy \\ &\leq \int_{B_r} \int_0^1 |Du(x+ty)| \, dt \, dy = \int_0^1 \int_{B_{tr}} |Du(x+y)| \, dy \, dt \leq \int_0^1 M'(x) \, dt < \lambda \;, \end{split}$$

so that

(1)
$$\operatorname{meas} S_{k,r}(x) \le \frac{1}{k} \operatorname{meas} B_r$$

Now fix $x, y \in H_{\lambda}$, and set r = |x - y|. Denote by γ_n the measure of the intersection of two balls of radius 1 in \mathbb{R}^n , whose centers are also at distance 1 from each other. If $\omega_n = \text{meas}B_1$, it is clear from (1) that for $k = 3\omega_n/\gamma_n$ the measure of $S_{k,r}(x) \cup S_{k,r}(y)$ is less than the measure of $B_r(x) \cap B_r(y)$, so that we may choose

$$z \in [B_r(x) \cap B_r(y)] \setminus [S_{k,r}(x) \cup S_{k,r}(y)] .$$

Then

$$|u(x) - u(z)| < k\lambda r$$
$$u(y) - u(z)| < k\lambda r ,$$

whence

$$|u(x) - u(y)| < 2k\lambda r = \frac{6\omega_n}{\gamma_n} |x - y| ,$$

and the Lemma is proved.

The following result may be found in [5].

Lemma 2. For every $p \ge 1$ there exists $c_2 = c_2(n, p)$ such that

$$\max\{x: Mf(x) \ge \lambda\} \le c_2 \frac{\|f\|_p^p}{\lambda^p}$$

for every $f \in L^p(\mathbf{R}^n)$ and $\lambda > 0$.

We may now extend Lemma 1 to the case of $W^{1,p}$ functions.

Lemma 3. For every $u \in W^{1,p}(\mathbf{R}^n)$ there exists $E \subset \mathbf{R}^n$ with meas E = 0 such that

$$\frac{|u(x) - u(y)|}{|x - y|} \le c_1 \lambda$$

for every $\lambda > 0$ and every $x, y \in H_{\lambda} \setminus E$.

PROOF. Let $(u_h) \subset C_0^{\infty}(\mathbf{R}^n)$ be a sequence converging to u strongly in $W^{1,p}(\mathbf{R}^n)$ and a.e. in \mathbf{R}^n . We remark that

$$|Mf(x) - Mg(x)| \le M(f-g)(x) ,$$

so that, using Lemma 2, we have for all $\epsilon > 0$,

$$\lim_{h} \operatorname{meas}\{x: |M'u(x) - M'u_h(x)| \ge \epsilon\} \le \lim_{h} \operatorname{meas}\{x: M'(u - u_h)(x) \ge \epsilon\}$$

$$\leq c_2 \epsilon^{-p} \lim_h \|Du - Du_h\|_p^p = 0 ,$$

i.e., $M'u_h \rightarrow M'u$ in measure. We may then suppose that, at least for a subsequence,

$$M'u_h \to M'u$$
 a.e. in \mathbf{R}^n .

 Set

$$\mathbf{R}^n \setminus E = \{x: u_h(x) \to u(x), M'u_h(x) \to M'u(x)\}$$

then meas E = 0, and for every $x, y \in H_{\lambda} \setminus E$, and h sufficiently large, we have

$$M'u_h(x) < \lambda$$
, $M'u_h(y) < \lambda$,

so that by Lemma 1

$$\frac{|u_h(x) - u_h(y)|}{|x - y|} \le c_1 \lambda ,$$

and the assertion follows by taking the limit as $h \to \infty$.

The following extension result is well known.

Lemma 4. Let X be a metric space, $E \subseteq X$, and let $f: E \to \mathbf{R}$ be a K-lipschitz function. There exists a function $g: X \to \mathbf{R}$ which is K-lipschitz and satisfies

$$g \equiv f$$
 in E , $\sup_X |g| = \sup_E |f|$.

Now we have all the necessary ingredients needed to prove the main result.

PROOF OF THE THEOREM. Fix $u \in W^{1,p}(\Omega)$; since Ω is regular, we may assume that $u \in W^{1,p}(\mathbf{R}^n)$, with

$$\|u\|_{1,p} \le c_3 \|u\|_{1,p,\Omega}$$

and c_3 independent of u. For K > 0 let $\lambda = K/2c_1$, then consider the set

$$H'_{\lambda} = \{x: Mu(x) + M'u(x) < \lambda\}.$$

By Lemma 2, we have

$$\operatorname{meas}(\mathbf{R}^n \setminus H'_{\lambda}) \le \operatorname{meas}\{x: \ Mu(x) \ge \frac{\lambda}{2}\} + \operatorname{meas}\{x: \ M'u(x) \ge \frac{\lambda}{2}\} \le c_4 \frac{\|u\|_{1,p,\Omega}^p}{K^p} \ .$$

On the other hand, by Lemma 3, we have

$$|u(x)| \le Mu(x) < \lambda \le \frac{K}{2}$$
$$\frac{|u(x) - u(y)|}{|x - y|} < c_1 \lambda = \frac{K}{2}$$

a.e. on H'_{λ} . Applying Lemma 4 we obtain a function v with lipschitz constant K/2, and L^{∞} norm not greater than K/2, so that

 $\|v\|_{1,\infty} \leq K \; .$

Since v = u a.e. in H'_{λ} the theorem is proved.

As an example, an easy consequence of the above theorem is the following:

Corollary 5. Let Ω be a regular open subset of \mathbb{R}^n and $p \geq 1$, and let $(u_h) \subset W^{1,p}(\Omega)$ converge strongly to u in $W^{1,p}$. Then for every $\epsilon > 0$ there exist a subset A_{ϵ} of Ω , with meas $A_{\epsilon} < \epsilon$, a subsequence (h_k) and a sequence $(w_k) \subset W^{1,\infty}(\Omega)$ such that

$$w_k \equiv u_{h_k}$$
 in $\Omega \setminus A_\epsilon$
 $w_k \to w$ strongly in $W^{1,\infty}(\Omega)$

and

REFERENCES

 $w \equiv u \text{ in } \Omega \setminus A_{\epsilon}$.

- Acerbi, E. & Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984).
- [2] Acerbi, E. & Fusco, N.: A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal., to appear.
- [3] Liu, F.-C.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26 (1977).
- [4] Michael, J.H. & Ziemer, W.P.: A Lusin type approximation of Sobolev functions by smooth functions. Contemporary Mathematics 42 (1985).
- [5] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, 1970.

Emilio Acerbi – Scuola Normale Superiore – P. dei Cavalieri, 7 – 56100 PISA Nicola Fusco – Dipartimento di Matematica – V. Mezzocannone, 8 – 80134 NAPOLI