An Approximation Lemma for $W^{1, p}$ Functions

by Emilio Acerbi \& Nicola Fusco

In this paper we give a direct proof of the following approximation result:
Theorem. Let $\Omega \subset \mathbf{R}^{n}$ be a regular open set, and $p \geq 1$. There exists a constant c such that, for every $u \in W^{1, p}(\Omega)$ and every $K>0$ there exists $v \in W^{1, \infty}(\Omega)$ satisfying

$$
\begin{gathered}
\|v\|_{1, \infty} \leq K \\
\operatorname{meas}\{x: u(x) \neq v(x)\} \leq c \frac{\|u\|_{1, p}^{p}}{K^{p}} .
\end{gathered}
$$

Unlike several results of Luzin type available ([3],[4]), in this theorem we do not look for an approximating function v which is close to u in the $W^{1, p}$ norm, but we want a precise control on the gradient of v. Thus, when the result is applied to a bounded sequence in $W^{1, p}$ one obtains a sequence of approximating functions which is bounded in $W^{1, \infty}$.
This theorem was successfully applied by the authors in two different contexts: in a weaker form ([1]) when dealing with the semicontinuity of quasiconvex integrals, and in the general form ([2]) to obtain a regularity theorem for the same functionals.
The proof was not written explicitly in [2], where the reader was referred to the weaker result of [1], so we decided to present the details here, also thinking that this Lemma might be of interest by itself.

For every $f \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ we set

$$
M f(x)=\sup _{r>0} f_{B_{r}(0)}|f(x+y)| d y
$$

and if $u \in W_{l o c}^{1,1}\left(\mathbf{R}^{n}\right)$ we write

$$
M^{\prime} u(x)=M(|D u|)(x) .
$$

We now show that through the maximal function M^{\prime} we may control the difference quotient of u outside a small set. We set, for any $u \in W_{l o c}^{1,1}\left(\mathbf{R}^{n}\right)$ and for any $\lambda>0$

$$
H_{\lambda}=\left\{x: M^{\prime} u(x)<\lambda\right\} .
$$

Lemma 1. There exists a constant $c_{1}=c_{1}(n)$ such that, for every $u \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$, we have

$$
\frac{|u(x)-u(y)|}{|x-y|} \leq c_{1} \lambda
$$

for all $x, y \in H_{\lambda}$.
PROOF. Fix $\lambda>0$ and $x \in H_{\lambda}$, and set

$$
S_{k, r}(x)=\left\{y \in B_{r}(x): \frac{|u(x)-u(y)|}{|x-y|} \geq k \lambda\right\}
$$

We prove that, as k increases, $S_{k, r}(x)$ occupies a smaller and smaller portion of $B_{r}(x)$, independently of the particular function u : indeed,

$$
\begin{aligned}
& k \lambda \frac{\operatorname{meas} S_{k, r}(x)}{\operatorname{meas} B_{r}(x)} \leq f_{B_{r}(0)} \frac{|u(x+y)-u(x)|}{|y|} d y=f_{B_{r}}\left|\int_{0}^{1} \frac{1}{|y|}\langle D u(x+t y), y\rangle d t\right| d y \\
& \leq f_{B_{r}} \int_{0}^{1}|D u(x+t y)| d t d y=\int_{0}^{1} f_{B_{t r}}|D u(x+y)| d y d t \leq \int_{0}^{1} M^{\prime}(x) d t<\lambda
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{meas} S_{k, r}(x) \leq \frac{1}{k} \operatorname{meas} B_{r} \tag{1}
\end{equation*}
$$

Now fix $x, y \in H_{\lambda}$, and set $r=|x-y|$. Denote by γ_{n} the measure of the intersection of two balls of radius 1 in \mathbf{R}^{n}, whose centers are also at distance 1 from each other. If $\omega_{n}=$ meas B_{1}, it is clear from (1) that for $k=3 \omega_{n} / \gamma_{n}$ the measure of $S_{k, r}(x) \cup S_{k, r}(y)$ is less than the measure of $B_{r}(x) \cap B_{r}(y)$, so that we may choose

$$
z \in\left[B_{r}(x) \cap B_{r}(y)\right] \backslash\left[S_{k, r}(x) \cup S_{k, r}(y)\right] .
$$

Then

$$
\begin{gathered}
|u(x)-u(z)|<k \lambda r \\
|u(y)-u(z)|<k \lambda r
\end{gathered}
$$

whence

$$
|u(x)-u(y)|<2 k \lambda r=\frac{6 \omega_{n}}{\gamma_{n}}|x-y|
$$

and the Lemma is proved.

The following result may be found in [5].

Lemma 2. For every $p \geq 1$ there exists $c_{2}=c_{2}(n, p)$ such that

$$
\operatorname{meas}\{x: M f(x) \geq \lambda\} \leq c_{2} \frac{\|f\|_{p}^{p}}{\lambda^{p}}
$$

for every $f \in L^{p}\left(\mathbf{R}^{n}\right)$ and $\lambda>0$.
We may now extend Lemma 1 to the case of $W^{1, p}$ functions.
Lemma 3. For every $u \in W^{1, p}\left(\mathbf{R}^{n}\right)$ there exists $E \subset \mathbf{R}^{n}$ with meas $E=0$ such that

$$
\frac{|u(x)-u(y)|}{|x-y|} \leq c_{1} \lambda
$$

for every $\lambda>0$ and every $x, y \in H_{\lambda} \backslash E$.
PROOF. Let $\left(u_{h}\right) \subset C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ be a sequence converging to u strongly in $W^{1, p}\left(\mathbf{R}^{n}\right)$ and a.e. in \mathbf{R}^{n}. We remark that

$$
|M f(x)-M g(x)| \leq M(f-g)(x),
$$

so that, using Lemma 2, we have for all $\epsilon>0$,

$$
\begin{gathered}
\lim _{h} \operatorname{meas}\left\{x:\left|M^{\prime} u(x)-M^{\prime} u_{h}(x)\right| \geq \epsilon\right\} \leq \lim _{h} \operatorname{meas}\left\{x: M^{\prime}\left(u-u_{h}\right)(x) \geq \epsilon\right\} \\
\leq c_{2} \epsilon^{-p} \lim _{h}\left\|D u-D u_{h}\right\|_{p}^{p}=0
\end{gathered}
$$

i.e., $M^{\prime} u_{h} \rightarrow M^{\prime} u$ in measure. We may then suppose that, at least for a subsequence,

$$
M^{\prime} u_{h} \rightarrow M^{\prime} u \text { a.e. in } \mathbf{R}^{n}
$$

Set

$$
\mathbf{R}^{n} \backslash E=\left\{x: u_{h}(x) \rightarrow u(x), M^{\prime} u_{h}(x) \rightarrow M^{\prime} u(x)\right\} ;
$$

then meas $E=0$, and for every $x, y \in H_{\lambda} \backslash E$, and h sufficiently large, we have

$$
M^{\prime} u_{h}(x)<\lambda, \quad M^{\prime} u_{h}(y)<\lambda
$$

so that by Lemma 1

$$
\frac{\left|u_{h}(x)-u_{h}(y)\right|}{|x-y|} \leq c_{1} \lambda
$$

and the assertion follows by taking the limit as $h \rightarrow \infty$.
The following extension result is well known.
Lemma 4. Let X be a metric space, $E \subseteq X$, and let $f: E \rightarrow \mathbf{R}$ be a K-lipschitz function. There exists a function $g: X \rightarrow \mathbf{R}$ which is K-lipschitz and satisfies

$$
g \equiv f \text { in } E, \sup _{X}|g|=\sup _{E}|f| .
$$

Now we have all the necessary ingredients needed to prove the main result.
PROOF OF THE THEOREM. Fix $u \in W^{1, p}(\Omega)$; since Ω is regular, we may assume that $u \in W^{1, p}\left(\mathbf{R}^{n}\right)$, with

$$
\|u\|_{1, p} \leq c_{3}\|u\|_{1, p, \Omega}
$$

and c_{3} independent of u. For $K>0$ let $\lambda=K / 2 c_{1}$, then consider the set

$$
H_{\lambda}^{\prime}=\left\{x: M u(x)+M^{\prime} u(x)<\lambda\right\} .
$$

By Lemma 2, we have

$$
\operatorname{meas}\left(\mathbf{R}^{n} \backslash H_{\lambda}^{\prime}\right) \leq \operatorname{meas}\left\{x: M u(x) \geq \frac{\lambda}{2}\right\}+\operatorname{meas}\left\{x: M^{\prime} u(x) \geq \frac{\lambda}{2}\right\} \leq c_{4} \frac{\|u\|_{1, p, \Omega}^{p}}{K^{p}}
$$

On the other hand, by Lemma 3, we have

$$
\begin{aligned}
& |u(x)| \leq M u(x)<\lambda \leq \frac{K}{2} \\
& \frac{|u(x)-u(y)|}{|x-y|}<c_{1} \lambda=\frac{K}{2}
\end{aligned}
$$

a.e. on H_{λ}^{\prime}. Applying Lemma 4 we obtain a function v with lipschitz constant $K / 2$, and L^{∞} norm not greater than $K / 2$, so that

$$
\|v\|_{1, \infty} \leq K
$$

Since $v=u$ a.e. in H_{λ}^{\prime} the theorem is proved.
As an example, an easy consequence of the above theorem is the following:
Corollary 5. Let Ω be a regular open subset of \mathbf{R}^{n} and $p \geq 1$, and let $\left(u_{h}\right) \subset W^{1, p}(\Omega)$ converge strongly to u in $W^{1, p}$. Then for every $\epsilon>0$ there exist a subset A_{ϵ} of Ω, with meas $A_{\epsilon}<\epsilon$, a subsequence $\left(h_{k}\right)$ and a sequence $\left(w_{k}\right) \subset W^{1, \infty}(\Omega)$ such that

$$
\begin{gathered}
w_{k} \equiv u_{h_{k}} \text { in } \Omega \backslash A_{\epsilon} \\
w_{k} \rightarrow w \text { strongly in } W^{1, \infty}(\Omega)
\end{gathered}
$$

and

$$
w \equiv u \text { in } \Omega \backslash A_{\epsilon}
$$

REFERENCES

[1] Acerbi, E. \& Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984).
[2] Acerbi, E. \& Fusco, N.: A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal., to appear.
[3] Liu, F.-C.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26 (1977).
[4] Michael, J.H. \& Ziemer, W.P.: A Lusin type approximation of Sobolev functions by smooth functions. Contemporary Mathematics 42 (1985).
[5] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, 1970.

Emilio Acerbi - Scuola Normale Superiore - P. dei Cavalieri, 7-56100 PISA
Nicola Fusco - Dipartimento di Matematica - V. Mezzocannone, 8 - 80134 NAPOLI

