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Partial Regularity
under Anisotropic (p,q) Growth Conditions

E. Acerbi and N. Fusco

1 . Introduction

In this paper we give a contribution to the study of the regularity of minimizers of
integral functionals of the kind

∫

Ω
f(Du) dx under the assumption

(1.1) |ξ|p ≤ f(ξ) ≤ c(1 + |ξ|q).

Until recently it was customary to take

q = p,

but the question of whether regularity in the general case (1.1) could be obtained
remained open. In 1987 some examples were produced (see [7],[11]) that showed that
the answer to this question is in general negative. The example, as modified by [9],
shows that in the particular case of

∫

Ω

[|Du|2 + |D1u|
p1 ] dx,

with u : Ω ⊂ R
n → R, if p1 is too far from 2 (depending on n) there exist minimizers

which are not only discontinuous, but even unbounded.
More in general, consider the model functional

(1.2)

∫

Ω

[|Du|p +

k
∑

α=1

|Dαu|
pα ] dx,

where 1 ≤ k ≤ n, and 2 ≤ p < pα for α = 1, . . . , k, and set

1

p̄
=

1

n

[n− k

p
+

k
∑

α=1

1

pα

]

;

This work has been supported by the Italian Ministry of Education



2 E. Acerbi and N. Fusco

assume for simplicity p̄ < n and define p̄∗ = np̄/(n− p̄). In the examples [7],[9],[11] one
has

max {pα : α = 1, . . . , k} > p̄∗;

in the general case (1.2), a sufficient condition for the minimizers to be bounded is that

(1.3) max {pα : α = 1, . . . , k} ≤ p̄∗

(see [3],[5]). This condition means essentially that the exponents pα may not be too
dispersed, nor (if k < n) too far from p. The presence of the harmonic mean in
condition (1.3) depends (see [14] and Lemma 2.1 below) on the fact that if Du ∈ Lp

and Dαu ∈ Lpα for α = 1, . . . , k then u ∈ Lp̄∗

.
Higher regulatity, such as boundedness or Hölder continuity of Du, has been stud-

ied in two papers by Marcellini [12],[13] where, however, the more restrictive condition

(1.4) max {pα : α = 1, . . . , k} <
np

n− 2

is needed.
All these results deal with scalar minimizers. In this paper we prove a theorem

concerning the vector-valued case, i.e. when

u : Ω ⊂ R
n → R

N .

As is to be expected for systems, the regularity we prove is only partial. Precisely, we
have (as a consequence of the more general Theorem 2.3) the following

Theorem . If u ∈ W 1,p(Ω; RN ) is a minimizer of (1.2), with Dαu ∈ Lpα for α =
1, . . . , k, and if

(1.5) max {pα : α = 1, . . . , k} < p̄∗

then Du is Hölder continuous in an open set Ω0 such that meas (Ω \ Ω0) = 0.

It is to be remarked that the assumption (1.5) on the exponents pα is close to
condition (1.3), and indeed it would be interesting to replace (1.5) by (1.3).

Another question arising naturally from this statement is whether, in the scalar
case, one could improve the results of [12],[13] by deducing from it a global regularity
result (Ω0 = Ω). It seems to us that an important step to show that the singular set is
empty lies in proving that Du is bounded, and this is exactly the point where condition
(1.4) is used in [12],[13]: it would therefore be interesting to prove boundedness of Du
in the scalar case under a less restrictive condition than (1.4), possibly condition (1.5).

We give in the next section the notation needed, and we state the main theorem,
while section 3 is devoted to its proof; a fourth section of remarks is also present.
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2 . Notations and preliminary lemmas

By ωh we shall denote any sequence converging to 0 as h → ∞, and by c any
positive constant; both ωh and c may sometimes vary from line to line.

A cut-off function η between two open sets A ⊂⊂ B is a smooth function with
compact support in B, values between 0 and 1, value 1 in A, and gradient less than
2/dist (A, ∂B).

If pα ≥ 1 for all α = 1, . . . , n, we define for any open subset Ω of R
n the spaces

W 1,(pα)(Ω; RN ) = {u ∈W 1,1(Ω; RN ) : Dαu ∈ Lpα(Ω; RN ) for all α}

W
1,(pα)
0 (Ω; RN ) = {u ∈W 1,1

0 (Ω; RN ) : Dαu ∈ Lpα(Ω; RN ) for all α},

with the natural norm ‖u‖1 +
∑

α ‖Dαu‖pα
. If no confusion is possible, we shall omit

R
N when mentioning these spaces.

Since the index α will always take its values in the set {1, . . . , n}, we shall hence-
forth omit any explicit reference to this range.

If the harmonic mean of {pα} is p̄, and if p̄ < n, then we write

p̄∗ =
np̄

n− p̄
,

the Sobolev exponent; if p̄ ≥ n, we shall denote by p̄∗ any number strictly larger than
the maximum of {pα}: we make this choice for future convenience; remark that in the
case p̄ < n it is not guaranteed that p̄∗ > max{pα}.

Finally, for any integrable function g on a set E, we denote its average by

(g)E = −

∫

E

g dx = [meas (E)]−1

∫

E

g dx;

if E is a ball Br(x0), instead of (g)Br(x0) we shall simply write (g)x0,r or even (g)r.
The following lemma is essential when dealing with anisotropic functionals of the

type (1.2).

Lemma 2.1 . Let Q ⊂ R
n be a cube with edges parallel to the coordinate axes, and if

p̄ < n then assume that pα < p̄∗ for all α (otherwise no restriction on {pα} is needed).
Then

(2.1) ‖u‖p̄∗ ≤ c
(

‖u‖1 +
∑

α

‖Dαu‖pα

)

for all u ∈ W 1,(pα)(Q). If (u)Q = 0, then (2.1) holds without ‖u‖1; moreover if u ∈

W
1,(pα)
0 (Ω) then (2.1) holds, without ‖u‖1, for the generic bounded open set Ω, not

only for a cube.

Proof . By Theorem 1.2 of [14] we have

(2.2) ‖u‖p̄∗ ≤ c
(

∏

α

‖Dαu‖pα

)1/n

for all u ∈ C∞
0 (Rn), where the constant c depends on n, {pα} and (only in the case

p̄ ≥ n) also on p̄∗ and the measure of the support of u. It is easy to see that C∞
0 (Rn) is
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dense in W
1,(pα)
0 (Ω), thus giving (2.1) without ‖u‖1 by the geometric mean - arithmetic

mean inequality. Take any cubeQ with edges parallel to the coordinate axes, and denote
by 3Q the cube with the same center as Q, and three times the side, and let η be a
cut-off function between Q and 3Q. If u ∈W 1,(pα)(Q), we may extend it by reflections

to a function ũ ∈ W 1,(pα)(3Q); set v = ηũ: since v ∈ W
1,(pα)
0 (3Q), in particular

v ∈ Lp̄∗(3Q), thus u = v
|Q

∈ Lp̄∗

(Q). By (2.2),

‖u‖Lp̄∗

(Q) ≤ ‖v‖Lp̄∗

(3Q) ≤ c
∏

α

(

‖Dαũ‖Lpα(3Q) + ‖ũ‖Lpα(3Q)

)1/n

≤ c
∑

α

(

‖Dαu‖Lpα (Q) + ‖u‖Lpα(Q)

)

≤ c
(

∑

α

‖Dαu‖Lpα (Q) + ε‖u‖Lp̄∗

(Q) + Cε‖u‖L1(Q)

)

,

and the result follows. The case (u)Q = 0 may then be deduced easily by the Sobolev-
Poincaré inequality.

The following lemma is just a technicality.

Lemma 2.2 . If γ > −1 and a, b ∈ R
k we have

c1 ≤

∫ 1

0
|a+ sb|γ ds

(|a|2 + |b|2)γ/2
≤ c2

with c1, c2 > 0 depending only on γ and k.

The proof may be found in [1] Lemma 2.1 for γ ≤ 0, and e.g. in [4] Lemma 8.1 in
the case γ > 0. We remark that the same lemma is true if the integral is replaced by
∫ 1

0
(1 − s)|a+ sb|γ ds.

Let pα ≥ p ≥ 2, and let f : R
nN → R, fα : R

N → R be functions of class C2

satisfying for some positive c,ν,L the following assumptions: first, some growth and
coercivity conditions:

(2.3)
1

c
|ξ|p ≤ f(ξ) ≤ c|ξ|p,

1

c
|ξα|

pα ≤ fα(ξα) ≤ c|ξα|
pα

(2.4) |D2f(ξ)| ≤ c|ξ|p−2, |D2fα(ξα)| ≤ c|ξα|
pα−2

(2.5) D2f(ξ)ηη ≥ ν|ξ|p−2|η|2, D2fα(ξα)ηαηα ≥ ν|ξα|
pα−2|ηα|

2;

then, Hölder continuity of the second derivatives: for some 0 < δ < min{1, p− 2}

(2.6)
|D2f(ξ)−D2f(η)| ≤ c(|ξ|p−2−δ + |η|p−2−δ)|ξ − η|δ

|D2fα(ξα) −D2fα(ηα)| ≤ c(|ξα|
pα−2−δ + |ηα|

pα−2−δ)|ξα − ηα|
δ;

finally, a uniformity condition on f which ensures that for ξ close to zero it behaves
very much like |ξ|p:

(2.7) lim
t→0+

Df(tξ)

tp−1
= L|ξ|p−2ξ.
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Let cα ≥ 0, and define on W 1,p(Ω) the functional (possibly infinite)

F(u) =

∫

Ω

[f(Du) +
∑

α

cαfα(Dαu)] dx.

In order to avoid that fα interferes with the leading term f , we will assume that for
those fα effectively present in the functional (i.e., those for which cα 6= 0) the exponent
pα is strictly larger than p:

(2.8) for each α, either [pα > p and cα > 0] or [pα = p and cα = 0];

then we have:

Theorem 2.3 . Let cα ≥ 0 and pα ≥ p ≥ 2 satisfy (2.8), let u ∈W 1,(pα)(Ω) be a local
minimizer of F , and assume the growth, coercivity, Hölder continuity and uniformity
conditions (2.3), . . . ,(2.7) hold. In addition, if p̄ < n, assume that pα < p̄∗ for all
α (otherwise, no further condition on pα is needed). Then there exist a constant
γ > 0, independent of u, and an open set Ω0 ⊂ Ω, with meas (Ω \ Ω0) = 0, such that
u ∈ C1,γ(Ω0).

This result clearly applies to the model case presented in the introduction.
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3 . Proof of Theorem 2.3

We will prove Theorem 2.3 only for cα = 1 for all α, the case when some of
the cα vanish requiring only an obvious modification of the argument. The result
will be proved via an integral characterization of Hölder continuous functions due to
Campanato, asserting roughly that a function g is Hölder continuous once the integral
oscillation −

∫

Br(x)
|g − (g)x,r|

q dy decays as a power of r: thus our goal is to estimate

−
∫

Br(x)
|Du− (Du)x,r|

q dy. To this aim it is useful to introduce the function

U(x0, r) = −

∫

Br(x0)

[

|(Du)x0,r|
p−2 |Du− (Du)x0,r|

2

+ |Du− (Du)x0,r|
p

+
∑

α

|Dαu− (Dαu)x0,r|
pα

]

dx.

For the minimizers of the simpler functional
∫

|Du|p dx the following result, essentially
due to Uhlenbeck, holds (see [8], Theorem 3.1 modified using equation 2.4):

Lemma 3.1 . There exist µ ∈ (0, 2) and ĉ > 0 such that if u ∈ W 1,p(B1; R
N ) is a

minimizer of
∫

B1

|Du|p dx

then for all ̺ < 1

−

∫

B̺

[|(Du)̺|
p−2|Du− (Du)̺|

2 + |Du− (Du)̺|
p] dx

≤ ĉ̺µ −

∫

B1

|(Du)1|
p−2|Du− (Du)1|

2 + |Du− (Du)1|
p] dx.

We will later need this inequality as a tool to prove the following result, which is
commonly called “main lemma” and is the essential ingredient to estimate the decay
of U :

Lemma 3.2 . If u ∈ W 1,(pα)(Ω) is a local minimizer of the functional F , for every
M > 0 there exists a constant C(M) such that for every τ < 1 there exists ε > 0 such
that for any Br(x0) ⊂ Ω if

U(x0, r) < ε and |(Du)x0,r| < M

then
U(x0, τr) ≤ C(M)τµ U(x0, r),

where µ is the same exponent as in Lemma 3.1.

The proof of the main lemma is based, as usual, on a blow-up argument around
a point x, however two important features should be remarked: first, if p > 2 the
behaviour of the leading term f(Du) is different depending on whether Du is “large” or
“small” at x; secondly, we do not prove an a priori energy estimate of the Caccioppoli
type, relying instead on the method of improving weak convergence of the rescaled
functions vh defined below to strong convergence.
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To deal with rescaled functions, we introduce also a rescaled version of the inte-
grand: for all A ∈ R

nN and λ > 0 define

fA,λ(ξ) = [f(A+λξ)−f(A)−λDf(A)ξ]+
∑

α

[fα(Aα +λξα)−fα(Aα)−λDfα(Aα)ξα].

We have:

Lemma 3.3 . The following estimates hold:

D2fA,λ(ξ)ηη ≥
1

c
λ2

(

p|A+ λξ|p−2|η|2 +
∑

α

pα|Aα + λξα|
pα−2|ηα|

2
)

|DfA,λ(ξ)| ≤ cλ2
(

[|A|p−2 + |λξ|p−2]|ξ|+
∑

α

[|Aα|
pα−2 + |λξα|

pα−2]|ξα|
)

|fA,λ(ξ)| ≤ cλ2
(

[|A|p−2 + |λξ|p−2]|ξ|2 +
∑

α

[|Aα|
pα−2 + |λξα|

pα−2]|ξα|
2
)

,

with c > 0 independent of A,λ.

Proof . We have

(3.1)
[

D2fA,λ(ξ)
]ij

αβ
= λ2

{

[D2f(A+ λξ)]ijαβ +
∑

γ

[D2fγ(Aγ + λξγ)]ijδαγδβγ

}

,

whence the required estimates follow easily.

Proof of the main lemma . Fix M ; we shall determine C(M) later. We argue by
contradiction: assume there exists τ such that for every choice of ε there is a ball which
violates the assert of the lemma; then, there is a sequence of balls Brh

(xh) such that

|(Du)xh,rh
| < M, U(xh, rh) = λp

h → 0, U(xh, τrh) > C(M)τµλp
h.

We set
ah = (u)xh,rh

, Ah = (Du)xh,rh
, Ãh = (Du)xh,τrh

,

and also for brevity Aα
h = (Ah)α, and we define in the ball B1(0) the rescaled functions

vh(z) =
1

λhrh
[u(xh + rhz) − ah − rhAhz],

so that Dvh(z) = λ−1
h [Du(xh + rhz) − Ah]. Then by the definition of λh

(3.2) −

∫

B1

[

λ2−p
h |Ah|

p−2|Dvh|
2 + |Dvh|

p +
∑

α

λpα−p
h |Dαvh|

pα

]

dz = 1

and also
(vh)0,1 = 0, (Dvh)0,1 = 0.

If we set

wh =

(

|Ah|

λh

)(p−2)/2

vh,
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the sequences vh, wh, Ah and λ
(pα−p)/pα

h Dαvh are relatively compact, therefore we may
suppose

(3.3)















Ah → A
vh ⇀ v weakly in W 1,p

wh ⇀ w weakly in W 1,2

λ
(pα−p)/pα

h Dαvh ⇀ 0 weakly in Lpα ,

the latter being an easy consequence of the fact that pα > p for all α. Also, we assume
that limh(|Ah|/λh) exists, finite or not.

The function vh minimizes in its Dirichlet class the functional

∫

B1

[f(Ah + λhDϕ) +
∑

α

fα(Aα
h + λhDαϕ)] dz,

therefore the Euler equation

(3.4)

∫

B1

[Df(Ah + λhDvh)Dϕ+
∑

α

Dfα(Aα
h + λhDαvh)Dαϕ] dz = 0

holds. The second variation of the functional at vh may be written

(3.5)

∫

B1

[D2f(Ah + λhDvh)DvhDϕ+
∑

α

D2fα(Aα
h + λhDαvh)DαvhDαϕ] dz = 0

One of the crucial points in the proof is to remark, as we said, that if p > 2 the behaviour
of the principal part f(Du) in the functional F is different depending on whether Du is
large at a point (then |Du|p is essentially quadratic) or small. In our setting, this will
be reflected in the fact that for p > 2 two different proofs are required depending on
the size of Ah (rescaled by the factor λh): precisely, we will find a quadratic behaviour
when |Ah|/λh → ∞. We assume from now on that p > 2; we will later make some
remarks to adapt the proof to the simpler case p = 2.

First case : assume limh(|Ah|/λh) = +∞.

In particular, Ah 6= 0; even if Ah → 0, we may assume that limh(Ah/|Ah|) exists, and
we shall conventionally denote it by A/|A|.

By (3.3) we deduce that

(3.6) vh ⇀ 0 weakly in W 1,p;

dividing (3.5) by

|Ah|
p−2

(

λh

|Ah|

)(p−2)/2

we obtain

∫

B1

∫ 1

0

[

D2f(Ah + sλhDvh)

|Ah|p−2
DwhDϕ+

∑

α

D2fα(Aα
h + sλhDαvh)

|Ah|p−2
DαwhDαϕ

]

dz = 0.
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Using (2.6) one deduces that

lim
h→∞

∫

B1

[

D2f(Ah)

|Ah|p−2
DwhDϕ+

∑

α

D2fα(Aα
h)

|Ah|p−2
DαwhDαϕ

]

dz = 0;

Taking eventually a subsequence, we may assume by (2.4) that

lim
h→∞

D2f(Ah)

|Ah|p−2
= C, lim

h→∞

D2fα(Aα
h)

|Aα
h |

p−2
= Cα

exist, therefore w satisfies

(3.7)

∫

B1

[C DwDϕ+
∑

α

|Aα|pα−p
( |Aα|

|A|

)p−2

CαDαwDαϕ] dz = 0,

which is a system with constant coefficients, elliptic by (2.5), and whose eigenvalues
depend only on M and the growth conditions (2.4). Then, w satisfies for any τ < 1

(3.8) −

∫

Bτ

|Dw − (Dw)τ |
2 dz ≤ ĉ(M)τ2.

Now

(3.9)

λ−p
h U(xh, τrh) = −

∫

Bτ

[( |Ãh|

λh

)p−2

|Dvh − (Dvh)τ |
2

+ |Dvh − (Dvh)τ |
p

+
∑

α

λpα−p
h |Dαvh − (Dαvh)τ |

pα

]

dz.

We have
( |Ãh|

λh

)p−2

≤ c
[( |Ah|

λh

)p−2

+
( |Ãh − Ah|

λh

)p−2]

≤ c
( |Ah|

λh

)p−2

+ c
(

−

∫

Bτ

|Dvh|
p dz

)(p−2)/p

,

therefore

−

∫

Bτ

( |Ãh|

λh

)p−2

|Dvh − (Dvh)τ |
2 dz ≤ c−

∫

Bτ

|Dwh − (Dwh)τ |
2 dz + c−

∫

Bτ

|Dvh|
p dz,

since

−

∫

Bτ

|Dvh − (Dvh)τ |
2 dz ≤ −

∫

Bτ

|Dvh|
2 dz ≤

(

−

∫

Bτ

|Dvh|
p dz

)2/p

.

Thus, we have obtained

(3.10) λ−p
h U(xh, τrh) ≤ ĉ(p)−

∫

Bτ

[

|Dwh − (Dwh)τ |
2 + |Dvh|

p +
∑

α

λpα−p
h |Dαvh|

pα

]

dz;
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we shall later prove that

(3.11)











wh → w in W 1,2
loc

vh → 0 in W 1,p
loc

λ
(pα−p)/pα

h Dαvh → 0 in Lpα

loc,

so that, taking the limit in (3.10), by (3.8) we get the contradiction, provided we chose
C(M) > ĉ(p)ĉ(M).

Second case : assume limh(|Ah|/λh) = l ∈ [0,+∞).

In this case Ah/λh → lĀ for some Ā with |Ā| = 1, thus, dividing (3.4) by λp−1
h , we get

(3.12)

∫

B1

[Df(Ah + λhDvh)

λp−1
h

dϕ+
{

∑

α

λpα−p
h

Dfα(Aα
h + λhDαvh)

λpα−1
h

Dαϕ
}]

dz = 0.

By (2.3),(2.4), and since pα > p, the integral of the quantity in curly brackets tends to
zero as h→ ∞; we shall later prove that

(3.13) vh → v in W 1,p
loc

(3.14) λ
(pα−p)/pα

h Dαvh → 0 in Lpα

loc;

since by (2.4)
|Df(ξ) −Df(η)| ≤ c(|ξ|p−2 + |η|p−2)|ξ − η|,

using only (3.13) we remark that

lim
h→∞

∫

B1

Df(Ah + λhDvh) −Df(λhlĀ+ λhDv)

λp−1
h

Dϕdz = 0,

thus by (2.7) we get from (3.12)

(3.15)

∫

B1

|lĀ+Dv|p−2(lĀ+Dv)Dϕdz = 0,

and if we set v̂(z) = v(z) + lĀz then v̂ is a solution of

∫

B1

|Dv̂|p−2Dv̂Dϕdz = 0.

By Lemma 3.1 we have the following estimate:

(3.16)

−

∫

Bτ

[

|(Dv̂)τ |
p−2|Dv̂ − (Dv̂)τ |

2 + |Dv̂ − (Dv̂)τ |
p
]

dz

≤ ĉτµ −

∫

B1

[

lp−2|Dv|2 + |Dv|p
]

dz

≤ ĉτµ,
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since by (3.3) and (3.2) the last integral is less than 1; the constant ĉ is independent of
l. Remarking that

Ãh

λh
=
Ah

λh
+ (Dvh)τ ,

and using (3.13),(3.14), we may take the limit as h → ∞ in (3.9), and by (3.16) we
have

lim sup
h

λ−p
h U(xh, τrh) = −

∫

Bτ

[

|lĀ+ (Dv)τ |
p−2|Dv − (Dv)τ |

2 + |Dv − (Dv)τ |
p
]

dz

≤ ĉτµ,

which gives the contradiction if we chose C(M) > ĉ.

Preliminary estimates : these will be used when proving the strong convergences.

Set for brevity

fh = fAh,λh
,

and for any s < 1 set Fs
h(ϕ) =

∫

Bs
fh(Dϕ) dz. Let ψ be any function of class C1 on

B1, take 0 < t < s, and take a cut-off function ζ between Bt and Bs: the function

ϕh = ζψ + (1 − ζ)vh

agrees with vh on B1 \Bs. We remark that vh is also a minimizer of Fs
h, thus we have

Fs
h(vh) − Fs

h(ψ) ≤ Fs
h(ϕh) − Fs

h(ψ)

≤

∫

Bs\Bt

fh(Dϕh) dz

≤ c

∫

Bs\Bt

[fh(Dψ) + fh(Dvh)] dz

+ c

∫

Bs\Bt

fh

(

(ψ − vh)⊗Dζ
)

dz.

Fix 0 < r < 1 and K > 0: we may find t,s arbitrarily close together, and satisfying
r ≤ t < s ≤ 1, such that for infinitely many values of h (without loss of generality we
assume it happens for every h)

∫

Bs\Bt

[fh(Dψ) + fh(Dvh)] dz ≤
1

K

∫

B1

[fh(Dψ) + fh(Dvh)] dz.

For any such t,s we have

Fs
h(vh) − Fs

h(ψ) ≤
c

K

∫

B1

[fh(Dψ) + fh(Dvh)] dz

+ c

∫

Bs\Bt

fh

(

(ψ − vh)⊗Dζ
)

dz.
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On the other hand, using Lemma 3.3 and Lemma 2.2

Fs
h(vh) − Fs

h(ψ)

=

∫

Bs

Dfh(Dψ)(Dvh −Dψ) dz

+

∫

Bs

∫ 1

0

(1 − θ)D2fh

(

Dψ + θ(Dvh −Dψ)
)

(Dvh −Dψ)(Dvh −Dψ) dθ dz

≥

∫

Bs

Dfh(Dψ)(Dvh −Dψ) dz

+ c

∫

Bs

[

λ2
h|Ah + λhDψ|

p−2|Dvh −Dψ|2

+ λp
h|Dvh −Dψ|p

+
∑

α

λpα

h |Dαvh −Dαψ|
pα

]

dz,

where we dropped a useless (but positive) term from the last integral. Therefore we
have for any 0 < r < 1 and K > 0 that there exist r ≤ t < sK ≤ 1 such that for any
t < s ≤ sK

(3.17)

∫

Br

[

λ2−p
h |Ah + λhDψ|

p−2|Dvh −Dψ|2

+ |Dvh −Dψ|p

+
∑

α

λpα−p
h |Dαvh −Dαψ|

pα

]

dz

≤
c

K

∫

B1

λ−p
h [fh(Dψ) + fh(Dvh)] dz

+ c

∫

Bs\Bt

λ−p
h fh

(

(ψ − vh)⊗Dζ
)

dz

+ c

∫

Bs

λ−p
h Dfh(Dψ)(Dψ −Dvh) dz,

where c depends only on p, pα and the dimensions involved, and where we divided by
λp

h for future convenience.

Strong convergence in the first case

Since in this case w satisfies an elliptic system with constant coefficients, it is of class
C1 in B1; we take

ψ =
( λh

|Ah|

)(p−2)/2

w

in estimate (3.17), although we stick to the shorter form ψ in some places: at the
left-hand side we have

∫

Br

[
∣

∣

∣

Ah

|Ah|
+

{( λh

|Ah|

)p/2

Dw
}

∣

∣

∣

p−2

|Dwh −Dw|2

+
∣

∣

∣
Dvh −

{( λh

|Ah|

)(p−2)/2

Dw
}

∣

∣

∣

p

+
∑

α

∣

∣

∣
λ

(pα−p)/pα

h Dαvh −
{

λ
(pα−p)/pα

h

( λh

|Ah|

)(p−2)/2

Dαw
}

∣

∣

∣

pα
]

dz.
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As h → ∞, the quantities in curly brackets tend to zero, hence the limsup of the
left-hand side of (3.17) is the same as

lim sup
h

∫

Br

[

|Dwh −Dw|2 + |Dvh|
p +

∑

α

|λ
(pα−p)/pα

h Dαvh|
pα

]

dz.

Thus, the convergences (3.11) will be proved if we show that the three terms R1,R2,R3

in the right-hand side of (3.17) tend to zero. We have

R3 = cλ−p
h

∫

Bs

Dfh(Dψ)(Dψ −Dvh) dz

= c

∫

Bs

{

λ−p
h

( λh

|Ah|

)p−2
∫ 1

0

D2fh(θDψ) dθ
}

Dw(Dw −Dwh) dz,

but (Dwh −Dw) ⇀ 0 weakly in L2, whereas using (3.1), the same argument employed
to obtain (3.7) shows that the quantity in curly brackets converges strongly in L∞ to

Cij
αβ +

∑

γ

|Aγ |
pγ−p

( |Aγ|

|A|

)p−2

Cij
γ δαγ δβγ ,

thus R3 goes to zero as h → ∞. Now we deal with R1: by Lemma 3.3, using (3.2),
some computations yield

R1 =
c

K
λ−p

h

∫

B1

[fh(Dψ) + fh(Dvh)] dz ≤
c

K
.

There remains only

R2 = cλ−p
h

∫

Bs\Bt

fh

(

(ψ − vh)⊗Dζ
)

dz,

which by Lemma 3.3 is bounded by

c

∫

B1

{ |wh − w|2

(s− t)2
+

|vh|
p + ωh

(s− t)p
+

∑

α

ωh

(s− t)pα

}

dz +
∑

α

c

(s− t)pα

∫

Bs

λpα−p
h |vh|

pα dz.

The first integral vanishes as h→ ∞ by (3.3) and (3.6); the main difficulty in the first
case is to show that the second integral vanishes too: indeed even to show that it is
finite we need Lemma 2.1, since we just have Dαvh ∈ Lpα ; moreover, we know only
that

λ
(pα−p)/pα

h Dαvh is bounded in Lpα .

Cover Bs with a finite number of cubes well contained in B1 and with edges parallel to
the coordinate axes, and let Q be any of them: we will show that

∫

Q

λpα−p
h |vh|

pα dz → 0,
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thus concluding the proof of (3.11). We recall that, by our choice of the meaning of
p̄∗, Lemma 2.1 implies vh ∈ Lp̄∗

(Q); by the assumption pα < p̄∗, this in turn implies
vh ∈ Lpα , and we interpolate between pα and p̄∗, setting

1

pα
=
θ

p
+

1 − θ

p̄∗
,

so that

θ =
p(p̄∗ − pα)

pα(p̄∗ − p)
, 1 − θ =

p̄∗(pα − p)

pα(p̄∗ − p)
.

Now
∫

Q

|vh|
pα dz ≤

(

∫

B1

|vh|
p dz

)θpα/p

·
(

∫

Q

|vh|
p̄∗

dz
)(1−θ)pα/p̄∗

= ωh

(

∫

Q

|vh|
p̄∗

dz
)(1−θ)pα/p̄∗

.

Let pm = max{pα} < p̄∗: by Lemma 2.1 and using (3.6)

(

∫

Q

|vh|
p̄∗

dz
)1/p̄∗

≤ c(‖vh‖p +
∑

α

‖Dαvh‖pα
)

≤ c(ωh + λ
p

pm
−1

h

∑

α

‖λ
1− p

pα

h Dαvh‖pα
) ≤ cλ

p

pm
−1

h ,

hence

λpα−p
h

∫

Q

|vh|
pα dz ≤ c ωθ

h λ
pα−p+(1−θ)pα(p−pm)/pm

h .

One immediately sees that the exponent of λh is

p(p̄∗ − pm)(pα − p)

pm(p̄∗ − p)
> 0,

since pα > p, thus

lim
h
λpα−p

h

∫

Q

|vh|
pα dz = 0.

Letting h→ ∞ we have

lim sup
h

[R1 +R2 +R3] ≤ c/K,

and letting K → ∞ we obtain (3.11).

Strong convergence in the second case.

In this case the good choice in (3.17) would be ψ = v, but this cannot be made since it
is not guaranteed that v ∈ C1: indeed, it will be so once we prove that it solves (3.15),
but this will be possible only after the proof of the strong convergence (3.13). So, we
shall take instead of v an approximating function V of class C1, then we shall let V
approach v.

As h→ ∞ the limsup of the left-hand side of (3.17) is larger than

cp lim sup
h

∫

Br

[

|Dvh −Dv|p +
∑

α

λpα−p
h |Dαvh|

pα

]

dz −

∫

Br

|DV −Dv|p dz.
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As for the three terms R1,R2,R3 at the right-hand side of (3.17), we deal with R3 using
the same argument employed to obtain (3.15), and we have

lim
h
R3 = lim

h

∫

Bs

[Df(Ah + λhDV ) −Df(Ah)]

λp−1
h

(DV −Dvh) dz

= L

∫

Bs

[|lĀ+DV |p−2(lĀ+DV ) − lp−1Ā](DV −Dv) dz.

Also, by Lemma 3.3 and by (3.2) we have

R1 ≤
c

K

(

1 +

∫

Bs

|DV |p dz + ωh

∑

α

∫

Bs

|DαV |pα dz
)

;

again as in the first case

R2 ≤ c

∫

B1

{ |V − vh|
2

(s− t)2
+

|V − vh|
p

(s− t)p
+

∑

α

λpα−p
h |V |pα

(s− t)pα

}

dz

+ c
∑

α

(s− t)−pα

∫

Bs

λpα−p
h |vh|

pα dz.

We may deal with the second integral using the same interpolation argument as in the
first case, while in the first integral we may use (3.3), thus obtaining

lim sup
h

R2 ≤
c

(s− t)p
(‖V − v‖2

2 + ‖V − v‖p
p),

and thus in (3.17) we may let h → ∞, then V → v in W 1,p, then K → ∞ to obtain
(3.13) and (3.14).

Remarks for the case p = 2

In the case p = 2, the first term in the definition of U may be dropped, and there is no
distinction between vh and wh. Using (2.6), by (3.3) one gets as h→ ∞

∫

B1

[

C DvDϕ+
∑

α

|Aα|pα−2Cα DαvDαϕ
]

dz = 0,

and (3.8) follows for v. Then one has

(3.10′) λ−2
h U(xh, τrh) ≤ c−

∫

Bτ

[

|Dvh − (Dvh)τ |
2 +

∑

α

λpα−2
h |Dαvh|

pα

]

dz

and one must prove

(3.11′) vh → v in W 1,2
loc , λ

(pα−2)/pα

h Dαvh → 0 in Lpα

loc.

The preliminary estimates yield (3.17) with the left-hand side reduced to
∫

Br

[

|Dvh −Dψ|2 +
∑

α

λpα−2
h |Dαvh −Dαψ|

pα

]

dz,

and one chooses ψ = v; it is very easy to see that R3 → 0 and R1 ≤ c/K; also, R2 is
bounded by

c

∫

B1

{ |vh − v|2

(s− t)2
+

∑

α

ωh

(s− t)pα

}

dz +
∑

α

c

(s− t)pα

∫

Bs

λpα−2
h |vh|

pα dz,

and the rest of the proof is unchanged.
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The rest of the proof of Theorem 2.3 is standard (see e.g. [2], Proposition 2.7 and
Proof of theorem 2.1). In particular, one sees that the Hölder exponent γ is at least
equal to µ/p, and that the set of regular points can be characterized as

(3.18) Ω0 = {x ∈ Ω : lim sup
r→0

|(Du)x,r| < +∞, lim
r→0

U(x, r) = 0}.
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4 . Further results

This section contains some remarks and extensions of the main result.
In the case p > 2, the leading term |Du|p lacks ellipticity in zero; if this problem

is removed, one expects that the regularity result still holds, moreover, the condition
pα > p is no longer necessary: indeed, let p,pα > 2 for α = 1, . . . , k, let fα be as in
Section 2, and consider the functional

(4.1)

∫

Ω

[

(1 + |Du|2)p/2 +
k

∑

α=1

fα(Dαu)
]

dx.

Set

qα =

{

max{p, pα} if α ≤ k
p otherwise,

and define q̄∗ from {qα} as we did for p̄∗ from {pα}; then we have:

Proposition 4.1 . If u ∈ W 1,(qα)(Ω) is a local minimizer of (4.1) and

qα < q̄∗ for all α

then there is an open set Ω0, with meas (Ω \ Ω0) = 0, such that u ∈ C1,γ(Ω0) for all
γ < 1.

Proof . It is enough to follow the general lines of the proof of Lemma 3.2, with some
remarks.

The function U reduces to

U(x0, r) = −

∫

Br(x0)

[

|Du− (Du)r|
2 +

n
∑

α=1

|Dαu− (Dαu)r|
qα

]

dx;

in the statement of the main lemma one has µ = 2, which will give Hölder continuity
for all γ < 1 instead of some γ. One sets U(xh, rh) = λ2

h, and not λp
h, and instead of

(3.2) one has

−

∫

B1

[

|Dvh|
2 +

∑

α

λqα−2
h |Dαvh|

qα

]

dz = 1,

so that






Ah → A
vh ⇀ v weakly in W 1,2

λ
(qα−2)/qα

h Dvh ⇀ 0 weakly in Lqα ;

once we prove that the weak convergences are actually strong, by interpolation we also
get

λp−2
h |Dvh|

p +

k
∑

α=1

λpα−2
h |Dαvh|

pα → 0 in L1,

thus from the Euler equation one gets (3.7), where C may be written explicitly as

C = p(1 + |A|2)(p−2)/2
(

I + (p− 2)
A⊗A

|A|2

)
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and is elliptic, with least eigenvalue greater than p and largest eigenvalue dependent on
M . Therefore, v is of class C1 and satisfies (3.8). Once the weak convergences above
are proved to be strong, the lemma (and hence Proposition 4.1) follows as in Lemma
3.2 – obviously, there is no need of a “second case”.

The preliminary estimates are as before, except that one knows that ψ will be just
v, and (3.17) can be reduced to

∫

Br

[

|Dvh −Dv|2 +
∑

α

λqα−2
h |Dαvh −Dαv|

qα

]

dz

≤
c

K

∫

B1

λ−2
h [fh(Dv) + fh(Dvh)] dz

+ c

∫

Bs\Bt

λ−2
h fh

(

(v − vh)⊗Dζ
)

dz

+ c

∫

Bs

λ−2
h Dfh(Dv)(Dv −Dvh) dz.

This estimate will give us the strong convergences once we prove that the terms
R1,R2,R3 at the right-hand side vanish; R1 and R3 are dealt with as before, and R2 is
bounded by

c

∫

B1

[ |vh − v|2

(s− t)2
+
ωh + λp−2

h |vh|
p

(s− t)p
+

k
∑

α=1

ωh + λpα−2
h |vh|

pα

(s− t)pα

]

dz.

From the definition of qα, for all ε there is Cε such that the integral above is bounded
by

ε+ Cε

∫

B1

[ |vh − v|2

(s− t)2
+

∑

α

ωh

(s− t)qα
+

∑

α

λqα−2
h |vh|

qα

(s− t)qα

]

dz.

Interpolating between 2 and q̄∗ we get
∫

Q

|vh|
qα dz ≤

(

∫

B1

|vh|
2 dz

)θqα/2

·
(

∫

Q

|vh|
q̄∗

dz
)(1−θ)qα/q̄∗

;

we estimate the last integral using Lemma 2.1 and we have

λqα−2
h

∫

Q

|vh|
qα dz ≤ c λ

2(qα−2)(q̄∗−qm)/[(q̄∗−2)qm]
h ,

and the exponent is positive because 2 < qα ≤ qm = max{qα} < q̄∗. After the main
lemma is proved, the conclusion is as before – in particular, the regular set Ω0 is still
given by (3.18).

Remark 4.2 . A similar result holds if the leading term (1 + |Du|2)p/2 is replaced by
a function of the same type (growth of order p at infinity, ellipticity constant bounded
away from zero).

Remark 4.3 . If in Theorem 2.3 we assume p = 2 and

(4.2)

{ pα > 2 for all α if n = 2
2 · 2∗

2 + 2∗ − max{pβ}
< pα < 2∗ for all α if n ≥ 3,

then by [10] one has u ∈ W 2,2
loc (Ω), thus as in [6] Chapter 4 we may prove that the

Hausdorff dimension of the singular set Ω \ Ω0 is at most n− 2. A similar result holds
in the setting of Proposition 4.1, where no explicit condition on p is needed, and the
numbers qα satisfy (4.2).
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