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Regularity for minimizers of non-quadratic functionals.
The case 1 < p< 2.

E. Acerbi & N. Fusco

Introduction

Let f be a function defined on Rn×RN×RnN , and set

I(u,A) =

∫

A

f
(

x, u(x),Du(x)
)

dx :

we say that u is a local minimizer for I if

I(u, spt ϕ) ≤ I(u + ϕ, spt ϕ) for all ϕ ∈ C1
0 (Rn;RN ).

In a fundamental paper, appeared in 1977, K. Uhlenbeck [10] proved everywhere C1,α regularity for
local minimizers u ∈ W 1,p(Ω;RN ) of

∫

Ω

|Du(x)|p dx,

with p ≥ 2, and more in general for local minimizers of

∫

Ω

g
(

|Du(x)|2
)

dx

when g(t2) behaves like tp. This result has been generalized in two different ways: in [2],[4] depen-
dence of the integrand on (x, u) is allowed, and in [1],[7],[8],[9] the case 1 < p < 2 is studied. Under
this assumption, regularity is proved in [7],[9] only for N = 1, which in the smooth case corresponds
to a partial differential equation instead of a system, and in [1],[8] only for quasilinear systems.

In this paper we give a regularity theorem in the nonlinear case with N > 1, 1 < p < 2 and
dependence also on the variables (x, u).

This work has been supported by the Italian Ministry of Education
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We consider first the case independent of (x, u): let 1 < p < 2, and f : RnN → R satisfy for a
suitable µ ≥ 0 the following assumptions:

c1

(

µ2 + |ξ|2
)p/2 ≤ f(ξ) ≤ c

(

µ2 + |ξ|2
)p/2

; (H1)

f(ξ) = g
(

|ξ|2
)

, with g ∈ C2(R) if µ > 0 or g ∈ C2(R \ {0}) if µ = 0; (H2)

|D2f(ξ)| ≤ c
(

µ2 + |ξ|2
)(p−2)/2

; (H3)

〈D2f(ξ)η , η〉 ≥
(

µ2 + |ξ|2
)(p−2)/2 |η|2, (H4)

and also, for some α ∈ (0, 2 − p],

|D2f(ξ)−D2f(η)| ≤ c
(

µ2 + |ξ|2
)(p−2)/2 (

µ2 + |η|2
)(p−2)/2 (

µ2 + |ξ|2 + |η|2
)(2−p−α)/2 |ξ − η|α. (H5)

Then we have everywhere regularity:

Theorem 1.1 . Let u ∈ W 1,p
loc (Ω;RN ) be a local minimizer of

∫

f
(

Dv(x)
)

dx, with f satisfying

(H1), . . . ,(H5). Then Du is locally λ-Hölder continuous for some λ > 0.

For the case with (x, u) we need the following assumptions:

for every fixed (x0, u0) the function f(x0, u0, ξ) satisfies

(H1), . . . ,(H5) with µ, c1, c, α independent of (x0, u0);
(H6)

|f(x, u, ξ) − f(y, v, ξ)| ≤
(

µ2 + |ξ|2
)p/2

ω
(

|u|, |x − y| + |u − v|), where

ω(s, t) = K(s) · min{tγ , L} for some L > 0 and γ ∈ (0, 1], and K is increasing.
(H7)

Then, denoting by Hk the k-dimensional Hausdorff measure, we have a partial regularity result:

Theorem 1.2 . Let u ∈ W 1,p
loc (Ω;RN ) be a local minimizer of

∫

f
(

x, v(x),Dv(x)
)

dx, with f satis-

fying (H6),(H7).Then there is an open set Ω0 ⊂ Ω such that Hn−q(Ω \ Ω0) = 0 for some q > p, and

Du is locally λ-Hölder continuous in Ω0 for some λ > 0.

Our proofs follow the argument used in [4],[10] for the case p ≥ 2, and rely heavily on the
special structure (H2) of f . In our case there are some new difficulties, as for example in proving
Proposition 2.6 where the simple device of adding ε

∫

|Du|2 dx to the functional would not affect its
lack of ellipticity at Du = 0.

The difference with the case p ≥ 2 does not lie only in the technical problems involved, but
also in some regularity properties of the minimizer u which come as a by-product of our estimates:
precisely the function u, which is a priori only in W 1,p, comes out not only to be in C1,λ, but also
to have second derivatives in L2.

Finally, we remark that it is not difficult to obtain the analogous of Theorems 1.1 and 1.2 when
f has the form

f(x, u, ξ) = g
(

x, u, aαβ(x, u) bij(x, u) ξi
α ξj

β

)

with a, b uniformly elliptic, bounded, symmetric and γ-Hölder continuous (see [2],[4]).
While writing this paper, we were told that also C. Hamburger [6] was working on the same

subject, but using very different techniques.
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Proof of Theorem I.1

To simplify the notation, the letter c will denote any constant, which may vary throughout the
paper, and if no confusion is possible we omit the indication of Ω and Rk when writing W m,p(Ω;Rk).
If u ∈ Lp, for any BR(x0) we set

ux0,R =
1

meas BR

∫

BR(x0)

u(x) dx = −
∫

BR(x0)

u(x) dx.

We will often omit the centre of the ball, thus writing only uR and −
∫

BR
.

First we give some basic inequalities:

Lemma 2.1 . For every γ ∈ (−1/2, 0) and µ ≥ 0 we have

1 ≤
∫ 1

0

(

µ2 + |η + s(ξ − η)|2
)γ

ds
(

µ2 + |ξ|2 + |η|2
)γ ≤ 8

2γ + 1

for all ξ, η in Rk, not both zero if µ = 0.

Proof . The left inequality follows from the convexity of s 7→ |η + s(ξ − η)|2, since γ < 0. In order
to prove the second inequality, we may assume

|ξ| ≤ |η|, ξ 6= η.

Denote by ξ0 the point with least norm of the line through η and ξ, and set

s0 =
|ξ0 − η|
|ξ − η| ;

in addition, for every λ ∈ Rk and s ∈ [0, 1] set

ϕλ(s) =
(

µ2 + |η + s(λ − η)|2
)γ

.

We remark that s0 ≥ 1/2; in the case s0 ≥ 1 we have ϕξ(s) ≤ ϕξ0
(s) for all s, so that

∫ 1

0
ϕξ(s) ds ≤

∫ 1

0
ϕξ0

(s) ds. (2.1)

In the case s0 < 1

∫ 1

0
ϕξ(s) ds ≤ 2

∫ s0

0
ϕξ(s) ds = 2s0

∫ 1

0
ϕξ0

(s) ds ≤ 2
∫ 1

0
ϕξ0

(s) ds. (2.2)

Remarking that ϕξ0
(s) ≤ ϕ0(s), from (2.1),(2.2) follows

∫ 1

0

(

µ2 + |η + s(ξ − η)|2
)γ

ds ≤ 2
∫ 1

0

(

µ2 + s2|η|2
)γ

ds

≤ 21−γ
∫ 1

0

(

µ2 + s2(|ξ|2 + |η|2)
)γ

ds ≤ 4
∫ 1

0

(

µ + s
(

|ξ|2 + |η|2
)1/2)2γ

ds.
(2.3)

Now if 0 ≤ b ≤ a
∫ 1

0
(a + sb)2γ ds ≤ a2γ ≤ 2(a2 + b2)γ

and if b > a ≥ 0

∫ 1

0
(a + sb)2γ ds ≤ (a + b)2γ+1

(2γ + 1)b
≤ 2

2γ + 1
(a + b)2γ ≤ 2

2γ + 1
(a2 + b2)γ ,

so the result follows from (2.3).
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Lemma 2.2 . For every γ ∈ (−1/2, 0) and µ ≥ 0 we have

(2γ + 1)|ξ − η| ≤
∣

∣

(

µ2 + |ξ|2
)γ

ξ −
(

µ2 + |η|2
)γ

η
∣

∣

(

µ2 + |ξ|2 + |η|2
)γ ≤ c(k)

2γ + 1
|ξ − η|

for every ξ, η in Rk.

Proof . Set

F (ζ) =
1

2(γ + 1)

(

µ2 + |ζ|2
)γ+1

,

so that

DF (ζ) =
(

µ2 + |ζ|2
)γ

ζ, D2F (ζ) =
(

µ2 + |ζ|2
)γ

(

I +
2γ

µ2 + |ζ|2 ζ⊗ζ
)

;

in particular we have
〈D2F (ζ)λ, λ〉 ≥ (2γ + 1)

(

µ2 + |ζ|2
)γ |λ|2 (2.4)

|D2F (ζ)| ≤
√

k + 1
(

µ2 + |ζ|2
)γ

. (2.5)

Then by (2.4) and Lemma 2.1

〈DF (ξ) − DF (η), ξ − η〉 =
〈

∫ 1

0
D2F

(

η + s(ξ − η)
)

ds (ξ − η), (ξ − η)
〉

≥ (2γ + 1)
(

µ2 + |ξ|2 + |η|2
)γ |ξ − η|2,

and the left inequality follows immediately. By (2.5) and Lemma 2.1

|DF (ξ) − DF (η)| ≤
∫ 1

0

∣

∣D2F
(

η + s(ξ − η)
)
∣

∣ ds |ξ − η|

≤ 8
√

k + 1

2γ + 1

(

µ2 + |ξ|2 + |η|2
)γ

,

which concludes the proof.

In what follows, u ∈ W 1,p
loc is a local minimizer of

∫

f(Du) dx, with µ ≥ 0 fixed (it is not
restrictive to take µ ≤ 1), 1 < p < 2, and f satisfies some of the assumptions (H1), . . . ,(H5). We set

H(ξ) =
(

µ2 + |ξ|2
)p/2

V (ξ) =
(

µ2 + |ξ|2
)(p−2)/4

ξ

Φ(x0, R) = −
∫

BR(x0)

∣

∣V (Du) −
(

V (Du)
)

x0,R

∣

∣

2
dx.

First we give a higher integrability result for H(Du):

Proposition 2.3 . Let f satisfy (H1). There are two constants c > 0 and q > 1, both independent

of µ, such that
(

−
∫

BR/2

Hq(Du) dx
)1/q

≤ c −
∫

BR

H(Du) dx

for every BR ⊂⊂ Ω.

The proof is essentially the same as Theorem 3.1 of [3], section V.
From now on we specialize to the case µ > 0, to obtain the estimates which will allow us to deal

with the general case.
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Proposition 2.4 . Let f be a function of class C2 satisfying (H1),(H4). Then

u ∈ W 2,p
loc , V (Du) ∈ W 1,2

loc .

Moreover
∫

BR/2

∣

∣D
(

V (Du)
)∣

∣

2
dx ≤ c

R2

∫

BR

H(Du) dx (2.6)

∫

BR/2

(

µ2 + |Du|2
)(p−2)/2 |D2u|2 dx ≤ c

R2

∫

BR

H(Du) dx (2.7)

∫

BR/2

|D2u|p dx ≤ c

Rp

∫

BR

H(Du) dx. (2.8)

for a suitable c independent of µ.

Proof . Since f is a convex function of class C1, by (H1) w e have also

|Df(ξ)| ≤ c
(

µ2 + |ξ|2
)(p−1)/2

. (2.9)

Let es be a coordinate direction in Rn; for every function g we define

∆hg(x) =
1

h
[g(x + hes) − g(x)].

For every ϕ ∈ W 1,p with compact support in Ω we have
∫

fξi
α
(Du)Dαϕi dx = 0,

so that for h small
∫

[

fξi
α

(

Du(x + hes)
)

− fξi
α

(

Du(x)
)]

Dαϕi dx = 0.

Choosing ϕi = 1
hη2 ∆hui, with η ∈ C2

0 (BR), 0 ≤ η ≤ 1, η ≡ 1 on BR/2, |Dη| ≤ c/R and |D2η| ≤
c/R2, we obtain

∫

∆h

(

fξi
α
(Du)

)

Dα∆hui η2 dx = −2

∫

∆h

(

fξi
α
(Du)

)

∆hui η Dαη dx. (2.10)

But

∆h

(

fξi
α
(Du)

)

=

∫ 1

0

fξi
α ξj

β

(

Du + thD(∆hu)
)

dt Dβ(∆huj)

and also

∆h

(

fξi
α
(Du)

)

=

∫ 1

0

d

dxs

[

fξi
α

(

Du(x + thes)
)]

dt;

then (2.10), using (H4),(2.9), implies
∫

(

µ2 + |Du(x)|2 + |Du(x + hes)|2
)(p−2)/2 |D∆hu|2 η2 dx

≤ 2

∫ ∫ 1

0

fξi
α

(

Du(x + thes)
)

dt
d

dxs
(∆hui η Dαη) dx

≤ c

∫ ∫ 1

0

(

µ2 + |Du(x + thes)|2
)(p−1)/2

dt
(

|D∆hu||Dη|η + |∆hu|(η|D2η| + |Dη|2)
)

dx

≤ c

R

∫ ∫ 1

0

(

µ2 + |Du(x + thes)|2
)(p−1)/2

dt |D∆hu|η dx

+
c

R2

∫

BR

∫ 1

0

(

µ2 + |Du(x + thes)|2
)(p−1)/2

dt |∆hu| dx.
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Applying Young inequality in the second-last line, one easily reduces to

∫

(

µ2 + |Du(x)|2 + |Du(x + hes)|2
)(p−2)/2 |D∆hu|2 η2 dx

≤ c

R2

∫

BR

∫ 1

0

(

µ2 + |Du(x + thes)|2
)p−1

dt (µ2 + |Du(x)|2 + |Du(x + hes)|2
)(2−p)/2

dx

+
c

R2

∫

BR

∫ 1

0

(

µ2 + |Du(x + thes)|2
)(p−1)/2

dt |∆hu| dx.

(2.11)
Now by Lemma 2.2

∫

BR/2

∣

∣∆h

(

V (Du)
)∣

∣

2
dx ≤

∫

(

µ2 + |Du(x)|2 + |Du(x + hes)|2
)(p−2)/2 |D∆hu|2 η2 dx; (2.12)

joining (2.11),(2.12) and taking the limit in h we get that V (Du) ∈ W 1,2
loc , together with (2.6). Also,

by Lemma 2.2

∫

BR/2

|∆hDu|p dx ≤ c

∫

BR/2

∣

∣∆h

(

V (Du)
)
∣

∣

p(
µ2 + |Du(x)|2 + |Du(x + hes)|2

)p(2−p)/4
dx

≤ c

(
∫

BR/2

∣

∣∆h

(

V (Du)
)
∣

∣

2
dx

)p/2 (
∫

BR

H(Du) dx

)(2−p)/2

,

and this implies u ∈ W 2,p
loc , together with (2.8). To conclude the proof it is now enough to revert to

(2.11): taking the limit in h yields (2.7).

For every N > 0 we set

hN (x) = µ2 +
(

min{|Du|, N}
)2

.

We have

Lemma 2.5 . Let f be a function of class C2 satisfying (H1),(H4). Then for every q > 0

hq
N ∈ W 1,2

loc , |Dhq
N | ≤ q c(N) |D2u| 1{|Du|≤N}

and

hq
N Du ∈ W 1,2

loc , D(hq
N Du) = Dhq

N Du + hq
N D2u.

Moreover

H(Du) ∈ W 1,s
loc , where s = 2n

2n−p > 1.

If in addition f satisfies (H3) we have also

fξi
α
(Du) ∈ W 1,2

loc , D
(

fξi
α
(Du)

)

= fξi
α ξj

β
(Du)D(Dβuj).

Proof . A consequence of Proposition 2.4 is that Du ∈ W 1,p
loc , and

D2u 1{|Du|≤N} ∈ L2
loc;

therefore the properties of hq
N and hq

N Du are immediate, and the regularity of H is obtained by

letting N → ∞ in h
p/2
N , recalling (2.7). Then, approximating Du in W 1,p

loc with smooth functions,
and using (2.7) and (H3), it is easy to prove also the assertions on fξi

α
(Du).
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Now we use the special form (H2) of the integrand: set

Aαβ(x) =
[

g′
(

|Du|2
)

δαβ + 2g′′
(

|Du|2
)

Dαum Dβum
](

µ2 + |Du|2
)(2−p)/2

.

We remark that if (H1), . . . ,(H4) hold then A is a uniformly elliptic matrix with bounded coefficients,
and the ellipticity constant, the coefficients and the ratio of the greatest to the least eigenvalue are
bounded independent of µ.

From now on, (H1), . . . ,(H4) are always assumed.

Proposition 2.6 . There is a positive c, independent of µ, such that
∫

Aαβ Dα

(

H(Du)
)

Dβη dx ≤ −c

∫

∣

∣D
(

V (Du)
)∣

∣

2
η dx

for all η ∈ C1
0 (Ω) with η ≥ 0.

Proof . In the Euler equation
∫

fξi
α
(Du)Dαϕi dx = 0

we are allowed by Lemma 2.5 to take ϕ = Ds(ηhq
N Dsu); then we have

∫

Ds

(

fξi
α
(Du)

)

hq
N Dsu

i Dαη dx = −
∫

Ds

(

fξi
α
(Du)

)

η Dα(hq
N Dsu

i) dx.

Using (H2), the left-hand side may be written

2

p

∫

Aαs Ds

(

H(Du)
)

Dαη hq
N dx;

at the right-hand side we have

−
∫

Ds

(

fξi
α
(Du)

)

(η Dsu
i Dαhq

N + ηhq
N Dαsu

i) dx

≤ q c(N, η)

∫

{|Du|≤N}

|D2u|2 dx − c

∫

∣

∣D
(

V (Du)
)
∣

∣

2
ηhq

N dx.

Letting q → 0 we have hq
N → 1{|Du|≤N} in L∞, so that finally

∫

{|Du|≤N}

Aαs Ds

(

H(Du)
)

Dαη dx ≤ −c

∫

{|Du|≤N}

∣

∣D
(

V (Du)
)∣

∣

2
η dx, (2.13)

and the result follows as N → ∞.

Proposition 2.7 . There is a c independent of µ such that

sup
BR/2

H(Du) ≤ c −
∫

BR

H(Du) dx (2.14)

for every BR ⊂⊂ Ω. Moreover

u ∈ W 2,2
loc , H(Du) ∈ W 1,2

loc .

Proof . Fix N > 0; we remark that by (2.13) and Lemma 2.5 the function h
p/2
N is a W 1,2

loc

subsolution of the elliptic operator −Dα(Aαβ Dβ); then by Theorem 8.17 of [5] we have for a suitable
c independent of µ

sup
BR/4

h
p/2
N ≤ c

(

−
∫

BR/2

h
pq/2
N dx

)1/q

,

where q is the exponent of Proposition 2.3. Taking the limit in N and using 2.3 we obtain (2.14);
the regularity of u and H(Du) follows then from (2.7).
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The proof of [4], Proposition 3.1 works also in our case, so we have

Proposition 2.8 . There is a c independent of µ such that

Φ(x0, R/2) ≤ c [sup
BR

H(Du) − sup
BR/2

H(Du)]

for every BR ⊂⊂ Ω.

Lemma 2.9 . Let BR(x0) ⊂⊂ Ω, and assume

sup
BR

|Du|2 ≤ k (µ2 + |ξ|2)

for some k, ξ. There are two positive constants c, δ, both dependent on k but not on µ and ξ, such

that

−
∫

BR/2

|Du − ξ|2+2δ dx ≤ c

(

−
∫

BR

|Du − ξ|2 dx

)1+δ

.

Proof . Let B̺(y0) ⊂ BR(x0) and set

w(x) = u(x) − uy0,̺ − ξ(x − y0).

Since for every ϕ ∈ C1
0

∫

fξi
α
(Du)Dαϕi dx =

∫

[fξi
α
(Du) − fξi

α
(ξ)]Dαϕi dx = 0,

we have
∫ ∫ 1

0

fξi
α ξj

β
(ξ + s Dw) ds Dβwj Dαϕi dx = 0. (2.15)

Fix η ∈ C1
0 (B̺) with 0 ≤ η ≤ 1, η ≡ 1 in B̺/2 and |Dη| ≤ c/̺, and take ϕ = wη2: then by (H3),(H4)

and Young inequality we get from (2.15)

∫ ∫ 1

0

(

µ2 + |ξ + sDw|2
)(p−2)/2

ds |Dw|2 η2 dx

≤ c

∫ ∫ 1

0

(

µ2 + |ξ + sDw|2
)(p−2)/2

ds w2 |Dη|2 dx;

(2.16)

by Lemma 2.1 and our assumption on sup |Du|

c(k)
(

µ2 + |ξ|2
)(p−2)/2 ≤

∫ 1

0

(

µ2 + |ξ + sDw|2
)(p−2)/2

ds ≤ c
(

µ2 + |ξ|2
)(p−2)/2

,

so (2.16) becomes

∫

B̺/2

|Du − ξ|2 dx ≤ c

̺2

∫

B̺

|u − uy0,̺ − ξ(x − y0)|2 dx,

and the result follows by Sobolev-Poincaré inequality and Gehring lemma.

From now on we use also assumption (H5). It is not restrictive to take the exponent δ in Lemma
2.9 to be less than the exponent α of (H5).
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Lemma 2.10 . There is a c, independent of µ, such that for every τ ∈ (0, 1) there exists ε > 0,
dependent on τ but not on µ, such that

Φ(x0, R) ≤ ε sup
BR/2

H(Du) ⇒ Φ(x0, τR) ≤ cτ2 Φ(x0, R)

for every BR ⊂⊂ Ω.

Proof . We only need to prove the assertion for τ small, therefore we fix τ < 1/8; we will select ε
later. Take ξ such that

V (ξ) =
(

V (Du)
)

x0,R
.

By Proposition 2.7

sup
BR/2

H(Du) ≤ c −
∫

BR

H(Du) dx ≤ c −
∫

BR

(

µp + |V (Du)|2
)

dx ≤ c
(

µp + Φ(x0, R) + |V (ξ)|2
)

, (2.17)

so that if ε < 1/2c we deduce

Φ(x0, R) ≤ 2cε
(

µp + |V (ξ)|2
)

≤ cε
(

µ2 + |ξ|2
)p/2

; (2.18)

therefore, going back to (2.17),

sup
BR/2

|Du|p ≤ sup
BR/2

H(Du) ≤ c
(

µ2 + |ξ|2
)p/2

. (2.19)

Choose w as in Lemma 2.9, and let v ∈ W 1,2(BR/4) be the solution of

{
∫

BR/4

fξi
α ξj

β
(ξ)Dβvj Dαϕi dx = 0 for all ϕ ∈ W 1,2

0 (BR/4).

v ∈ w + W 1,2
0 (BR/4)

We have

−
∫

BτR

|Dv − (Dv)τR|2 dx ≤ cτ2 −
∫

BR/4

|Dv − (Dv)R/4|2 dx, (2.20)

where the constant c depends only on the ratio of the eigenvalues of D2f(ξ), and therefore is
independent of µ. By (2.15) we have for all ϕ ∈ W 1,2

0 (BR/4)

−
∫

BR/4

fξi
α ξj

β
(ξ)(Dβvj − Dβwj)Dαϕi dx

= −
∫

BR/4

∫ 1

0

[fξi
α ξj

β
(ξ + sDw) − fξi

α ξj
β
(ξ)] ds Dβwj Dαϕi dx;

(2.21)

recalling that α < 2 − p we obtain by (2.19) and Lemma 2.1

∫ 1

0

|fξi
α ξj

β
(ξ + sDw) − fξi

α ξj
β
(ξ)| ds

≤
(

µ2 + |ξ|2
)(p−2)/2

∫ 1

0

(

µ2 + |ξ + sDw|2
)(p−2)/2 (

µ2 + |ξ|2 + |ξ + sDw|2
)(2−p−α)/2 |sDw|α ds

≤ c
(

µ2 + |ξ|2
)−α/2 |Dw|α

∫ 1

0

(

µ2 + |ξ + sDw|2
)(p−2)/2

ds

≤ c
(

µ2 + |ξ|2
)(p−2−α)/2 |Dw|α.
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Choose ϕ = v − w in (2.21): using (H4) we deduce

−
∫

BR/4

|Dv − Dw|2 dx ≤ c
(

µ2 + |ξ|2
)−α/2 −

∫

BR/4

|Dw|1+α |Dv − Dw| dx,

and using again (2.19)

−
∫

BR/4

|Dv − Dw|2 dx ≤ c
(

µ2 + |ξ|2
)−α −

∫

BR/4

|Dw|2+2α dx

≤ c
(

µ2 + |ξ|2
)−α −

∫

BR/4

|Dw|2+2δ |Dw|2α−2δ dx

≤ c
(

µ2 + |ξ|2
)−δ −

∫

BR/4

|Dw|2+2δ dx.

By (2.19) we may apply Lemma 2.9, thus obtaining

−
∫

BR/4

|Dv − Dw|2 dx ≤ c
(

µ2 + |ξ|2
)−δ

(

−
∫

BR/2

|Du − ξ|2 dx

)1+δ

. (2.22)

Now, using Lemma 2.2,

Φ(x0, τR) ≤ −
∫

BτR

∣

∣V (Du) − V
(

(Du)τR

)
∣

∣

2
dx

≤ c −
∫

BτR

(

µ2 + |Du|2 + |(Du)τR|2
)(p−2)/2 |Du − (Du)τR|2 dx

≤ c
(

µ2 + |(Du)τR|2
)(p−2)/2 −

∫

BτR

|Dw − (Dw)τR|2 dx.

(2.23)

From (2.20) we get

−
∫

BτR

|Dw − (Dw)τR|2 dx ≤ 2 −
∫

BτR

[

|Dv − (Dv)τR|2 + |Dv − Dw|2
]

dx

≤ c

(

τ2 −
∫

BR/4

|Dv − (Dv)R/4|2 dx + τ−n −
∫

BR/4

|Dv − Dw|2 dx

)

≤ c

(

τ2 −
∫

BR/4

|Dw − (Dw)R/4|2 dx + τ−n −
∫

BR/4

|Dv − Dw|2 dx

)

≤ cτ2 −
∫

BR/2

|Du − ξ|2 dx + cτ−n
(

µ2 + |ξ|2
)−δ

(

−
∫

BR/2

|Du − ξ|2 dx

)1+δ

,

(2.24)
where we used (2.22). But by Lemma 2.2

−
∫

BR/2

|Du − ξ|2 dx ≤ c −
∫

BR/2

(

µ2 + |ξ|2 + |Du|2
)(2−p)/2 |V (Du) − V (ξ)|2 dx

≤ c
(

µ2 + |ξ|2
)(2−p)/2

Φ(x0, R),

(2.25)
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using again (2.19). Then from (2.23),(2.24) we deduce

Φ(x0, τR) ≤ c

(

µ2 + |ξ|2
µ2 + |(Du)τR|2

)(2−p)/2
[

τ2 Φ(x0, R) + τ−n
(

µ2 + |ξ|2
)−δp/2 (

Φ(x0, R)
)1+δ]

,

and (2.18) implies

Φ(x0, τR) ≤ c

(

µ2 + |ξ|2
µ2 + |(Du)τR|2

)(2−p)/2

(τ2 + τ−n εδ)Φ(x0, R). (2.26)

We prove that the ratio appearing at the right-hand side is bounded: using (2.25) and (2.18),

|ξ|2 ≤ 2
(

|ξ − (Du)τR|2 + |(DuτR|2
)

≤ 2

(

−
∫

BτR

|Du − ξ|2 dx + |(Du)τR|2
)

≤ c

(

τ−n −
∫

BR/2

|Du − ξ|2 dx + |(Du)τR|2
)

≤ c
[

τ−n ε
(

µ2 + |ξ|2
)

+ |(Du)τR|2
]

.

If τ−n ε < 1/2c we obtain
|ξ|2 ≤ c

(

µ2 + |(Du)τR|2
)

,

therefore in (2.26) it is enough to choose ε < τ (n+2)/δ to conclude the proof.

Proposition 2.8 and Lemma 2.10 are the only two estimates needed to prove

Proposition 2.11 . There are two constants c > 0 and σ < 1, both independent of µ, such that

sup
BR/2

|Du|p ≤ c −
∫

BR

(

µp + |Du|p
)

dx

Φ(x0, ̺) ≤ c
( ̺

R

)σ

Φ(x0, R)

for every BR ⊂⊂ Ω and ̺ < R.

The proof is the same as Lemma 3.1 and Theorem 3.1 of [4]. To extend this result to the case
µ = 0 we will approximate the function f .

Lemma 2.12 . Let f satisfy (H1), . . . ,(H5) with µ = 0, and for 0 < ε < 1 set gε(t2) = g(ε2 + t2).
Then the function f ε(ξ) = gε

(

|ξ|2
)

satisfies (H1), . . . ,(H5) with µ = ε, the same α and c1 as f , and

with c independent of ε.

Proof . It is easy to derive from (H1), . . . ,(H5) the properties of g:

c1 |t|p ≤ g(t2) ≤ c |t|p; (G1)

{

1
2
|t|p−2 ≤ g′(t2) ≤ c |t|p−2

|g′′(t2)| ≤ c |t|p−4 for all t 6= 0; (G2)

g′(t2) + 2g′′(t2)t2 ≥ |t|p−2/2 for all t 6= 0; (G3)

|g′(t2)−g′(s2)|+ |g′′(t2)t2−g′′(s2)s2| ≤ c |t|p−2 |s|p−2 |t2+s2|(2−p−α)/2 |t−s|α for t, s 6= 0. (G4)

Then the properties (H1), . . . ,(H4) of f ε are immediately verified, and (H5) requires little effort.
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Proposition 2.13 . The result of Proposition 2.11 holds also in the case µ = 0.

Proof . Fix a ball B ⊂⊂ Ω, and for every ε ∈ (0, 1) let uε be the (only) minimum point of
∫

B

f ε(Dv) dx

in the space u + W 1,p
0 (B). Then

∫

B

|Duε|p dx ≤ c

∫

B

f ε(Duε) dx ≤ c

∫

B

f ε(Du) dx ≤ c

∫

B

(

1 + |Du|2
)p/2

dx;

moreover by (2.8), if BR is any ball contained in B,
∫

BR/2

|Duε|p dx ≤ c

Rp

∫

BR

(

ε2 + |Duε|2
)p/2

dx ≤ c

Rp

∫

B

(

1 + |Du|2
)p/2

dx;

therefore, at least for a subsequence,

uε → u0 weakly in W 2,p
loc (B) and weakly in u + W 1,p

0 (B).

Since Duε → Du0 a.e., it is easy to check that u0 is a minimum point of
∫

B
f(Dv) dx in u+W 1,p

0 (B),
so that u0 ≡ u because f is strictly convex due to (H4). By (2.6) we then have

(

ε2 + |Duε|2
)(p−2)/4

Duε → |Du|(p−2)/2 Du weakly in W 1,2
loc (B),

so the result follows by letting ε → 0 in Proposition 2.11.

Remark 2.14 . In the case µ > 0, from (2.7), (2.14) we deduce that for every BR ⊂⊂ Ω

−
∫

BR/2

|D2u|2 dx ≤ c

R2

(

−
∫

BR

H(Du) dx

)2/p

,

and the discussion above shows that this inequality holds also in the case µ = 0, thus implying

u ∈ W 2,2
loc .

Proof of Theorem 1.1 . Fix BR(x0) ⊂⊂ Ω and y0 ∈ BR/2(x0), then take B̺(y0) ⊂⊂ BR/2(x0):
from Propositions 2.11 and 2.13 we deduce

Φ(y0, ̺) ≤ c
( ̺

R

)σ

Φ
(

y0,
R

2

)

≤ c(R) ̺σ ,

and also
sup

B̺(y0)

|Du|p ≤ sup
BR/2(x0)

|Du|p ≤ c(R).

Then
∣

∣

(

V (Du)
)

y0,̺

∣

∣ ≤ c(R),

so if ξ is such that V (ξ) =
(

V (Du)
)

y0,̺
we have

|ξ| ≤ c(R),

and by Lemma 2.2

−
∫

B̺

|Du − (Du)̺|2 dx ≤ −
∫

B̺

|Du − ξ|2 dx ≤ c −
∫

B̺

|V (Du) − V (ξ)|2
(

µ2 + |Du|2 + |ξ|2
)(2−p)/2

dx

≤ c(R)Φ(y0, ̺) ≤ c(R) ̺σ .

This inequality allows us to apply the regularity theorem of Campanato (Theorem 1.3, section III
of [3]), which concludes the proof.
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Proof of Theorem 1.2

Deriving Theorem 1.2 from the decay estimate for Φ given in Propositions 2.11 and 2.13 is
almost routine, and we shall often refer to [3],[4], giving only the statements and some proofs which
are different from the case p ≥ 2. In this section we always assume that f satisfies (H6),(H7), and
we adopt the definitions of H, V and Φ given in section 2; it is not restrictive to assume µ ≤ 1.

As its proof depends only on (H1), again we have a higher integrability result for H:

Lemma 3.1 . Let µ ≥ 0. Then for every BR ⊂⊂ Ω
(

−
∫

BR/2

Hq(Du) dx

)1/q

≤ c −
∫

BR

H(Du) dx,

with q > 1 and c > 0 both independent of µ, R.

If a function happens to be a global minimizer whose boundary value has some extra regularity,
then the local result of Lemma 3.1 becomes global:

Remark 3.2 . Assume f satisfies (H1) and B is a ball; if v is a minimizer of
∫

f(Dw) dx in the

class u + W 1,p
0 (B), with u ∈ W 1,p+ε(B) for some ε > 0, then H(Dv) ∈ Lq(B) for some q > 1, and

(

−
∫

B

Hq(Dv) dx

)1/q

≤ c

(

−
∫

B

H(p+ε)/p(Du) dx

)p/(p+ε)

.

For the proof, see [3], page 152.
In order to use the estimates of section 2 we compare u with the solution of a problem indepen-

dent of (x, u):

Lemma 3.3 . There are two positive constants c, β, both independent of µ ≥ 0, such that if

BR(x0) ⊂⊂ Ω and v is the minimum point of
∫

BR/2

f
(

x0, (u)x0,R,Dw
)

dx

in the space u + W 1,p
0 (BR/2), then

−
∫

BR/2

|V (Du) − V (Dv)|2 dx ≤ cK(|ux0,R|) −
∫

BR

H(Du) dx

(

Rp −
∫

BR

(

1 + |Du|p
)

dx

)β

.

Proof . We may assume that the exponents q in Lemma 3.1 and Remark 3.2 are the same, and
that qγ > p(q−1), where γ appears in (H7). To deal simultaneously with the cases µ = 0 and µ > 0,
set

g0(t) = g(x0, ux0,R, t)

and define for all ε ≥ 0
f ε(ξ) = g0

(

ε2 + |ξ|2
)

(compare Lemma 2.12). We may write
∫

BR/2

[f ε(Du) − f ε(Dv)] dx

=

∫

BR/2

f ε
ξi

α
(Dv)(Dαui − Dαvi) dx

+

∫

BR/2

∫ 1

0

(1 − s) f ε
ξi

α ξj
β

(

Dv + s(Du − Dv)
)

ds (Dαui − Dαvi)(Dβuj − Dβvj) dx

= Iε
1 + Iε

2 ;

(3.1)
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since (2.8) holds for f ε, we have easily

lim
ε

Iε
1 =

∫

BR/2

f0
ξi

α
(Dv)(Dαui − Dαvi) dx = 0

by the minimality of v, whereas (H4) and Lemmas 2.1 and 2.2 imply

Iε
2 ≥ c

∫

BR/2

∣

∣

(

ε2 + µ2 + |Du|2
)(p−2)/4

Du −
(

ε2 + µ2 + |Dv|2
)(p−2)/4

Dv
∣

∣

2
dx,

and by Fatou’s lemma

lim inf
ε

Iε
2 ≥ c

∫

BR/2

|V (Du) − V (Dv)|2 dx;

letting ε → 0 in (3.1) we have by (H1)

−
∫

BR/2

[f0(Du) − f0(Dv)] dx ≥ c −
∫

BR/2

|V (Du) − V (Dv)|2 dx. (3.2)

On the other hand, the left-hand side of (3.2) may be written

S1 + S2 + S3 = −
∫

BR/2

[f(x0, ux0,R,Du) − f(x, u,Du)] dx

+ −
∫

BR/2

[f(x, u,Du) − f(x, v,Dv)] dx

+ −
∫

BR/2

[f(x, v,Dv) − f(x0, ux0,R,Dv)] dx.

Here,
S2 ≤ 0 (3.3)

by the minimality of u; by (H7) and Lemma 3.1

S1 ≤ cK(|ux0,R|0 −
∫

BR/2

H(Du)
(

min{L,R + |u − ux0,R|}
)γ

dx

≤ c(L)K(|uR|) −
∫

BR

H(Du) dx

(

−
∫

BR

(

Rp + |u − uR|p
)

dx

)(q−1)/q

≤ cK(|uR|) −
∫

BR

H(Du) dx

(

Rp −
∫

BR

(

1 + |Du|p
)

dx

)(q−1)/q

.

Analogously by (H7) and Remark 3.2

S3 ≤ cK(|uR|) −
∫

BR

H(Du) dx

(

−
∫

BR/2

(

Rp + |v − u|p + |u − uR|p
)

dx

)(q−1)/q

≤ cK(|uR|) −
∫

BR

H(Du) dx

(

Rp −
∫

BR

(

1 + |Du|p
)

dx

)(q−1)/q

,

and the result follows by (3.2),(3.3),(3.4).
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Proposition 3.4 . There exists an open set Ω0 ⊂ Ω such that u ∈ C0,λ(Ω0) for every λ < 1, and

Hausdorff measure Hn−p−ε(Ω \ Ω0) = 0 for some ε > 0.

Proof . For every B̺(x0) ⊂⊂ Ω we set

ϕ(x0, ̺) = ̺p −
∫

B̺(x0)

H(Du) dx;

fix a particular BR(x0), and let v be the function defined in the statement of Lemma 3.3. If
0 < τ < 1/4 we have

ϕ(x0, τR) ≤ c (τR)p −
∫

BτR

(

H(Dv) + |Du − Dv|p
)

dx; (3.5)

by Propositions 2.11 and 2.13

−
∫

BτR

H(Dv) dx ≤ sup
BR/4

H(Dv) ≤ c −
∫

BR/2

H(Dv) dx ≤ cR−p ϕ(x0, R). (3.6)

As for the second term in the integral in (3.5), by Lemmas 2.2 and 3.3

−
∫

BτR

|Du − Dv|p dx ≤ τ−n −
∫

BR/2

|Du − Dv|p dx

≤ cτ−n −
∫

BR/2

(

|V (Du) − V (Dv)|
(

µ2 + |Du|2 + |Dv|2
)(2−p)/2

)p

dx

≤ c τ−n

[

K(|uR|) −
∫

BR

H(Du) dx

(

Rp −
∫

BR

(

1 + |Du|p
)

dx

)β]p/2

·

·
(

−
∫

BR/2

(

µ2 + |Du|2 + |Dv|2
)p/2

dx

)(2−p)/2

≤ c τ−n
(

K(|uR|)
)p/2 −

∫

BR

H(Du) dx

(

Rp −
∫

BR

(

1 + |Du|p
)

dx

)pβ/2

.

By (3.5),(3.6) it then follows

ϕ(x0, τR) ≤ c τp ϕ(x0, R)
(

1 + τ−n
(

K(|uR|)
)p/2[

Rp + ϕ(x0, R)
]pβ/2

)

.

The result follows from this inequality as in [3], pp.170–174.

Remark 3.5 . As in the case p ≥ 2, one may prove that

Ω \ Ω0 ⊂ {x: sup
R

|ux,R| = +∞} ∪ {x: lim inf
R→0

Rp −
∫

BR(x)

|Du|p dy > 0};

in addition, for every M there are ε0, R0 such that

Ω0 ⊃ {x: sup
R<R0

|ux,R| ≤ M} ∩ {x: inf
R<R0

Rp −
∫

BR(x)

|Du|p dy ≤ ε0}.

Proof of Theorem 1.2 . See the proof of Theorem 4.3 in [4].



E. Acerbi & N. Fusco Regularity in the less-than-quadratic case 16

References

[Di] Benedetto, E.: C1+α local regularity of weak solutions of degenerate elliptic equations. Non-
linear Anal. 7 (1983), 827–850.

[2] Fusco, N. & J. Hutchinson: Partial regularity for minimisers of certain functionals having non

quadratic growth. Ann. Mat. Pura Appl., to appear.

[3] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.

Princeton Univ. Press, Princeton, 1983.

[4] Giaquinta, M. & G. Modica: Remarks on the regularity of the minimizers of certain degenerate

functionals. Manuscripta Math. 57 (1986), 55–99.

[5] Gilbarg, D. & N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. 2nd

edition. Springer, Berlin, 1984.

[6] Hamburger, C.: On the regularity of closed forms minimizing variational integrals. Paper in
preparation.

[7] Manfredi, J. S.: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic

equations. Preprint, Purdue University, West Lafayette, 1986.

[8] Tolksdorff, P.: Everywhere-regularity for some quasilinear systems with a lack of ellipticity. Ann.
Mat. Pura Appl. 134 (1983), 241–266.

[9] Tolksdorff, P.: Regularity for a more general class of nonlinear elliptic equations. J. Differential
Equations 51 (1984), 126–150.

[10] Uhlenbeck, K.: Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977),
219–240.

Emilio Acerbi
Scuola Normale Superiore

PISA

Nicola Fusco
Istituto di Matematica dell’Universitá
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