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Local Regularity for Minimizers
of non Convex Integrals

E. AceErBI & N. Fusco

1. Introduction

In this paper we study the regularity of minimizers of the functional

I(u)z/ﬁf(a:,u(a:),Du(a:)) dzx, (1.1)

where Q@ € R" is open, u: @ — RY, and f: Qx RY xR™ S Ris a
continuous function satisfying

[f (@, 8,6) < L(1+ [£]7)

with p > 2. This problem has been studied under various ellipticity as-
sumptions on f; for the case when f is uniformly strictly convex in &,
ie.,

féé(x07807£0)n77 Z 7|77‘2 (12)

for all (xo, so,&0), see e.g. [10], and a comprehensive account in [§].
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If convexity is replaced by uniform strict quasiconvexity, i.e., there is
some 7y > 0 such that

/ f(ﬂfo, 0,80 + Dgo(y)) dy
spt (1.3)
> / [fle050.60) +1(1De(w) +1De(w)]")] dy

for all ¢ € C} and all (zg, so, &), partial regularity of minimizers has
been studied in [5],[6] in the case independent of (x,u), in [7],[11] in the
case with (z,u), but with second derivatives with respect to £ bounded by
|£[P~2, and in the general case in [2], see also [9].

These papers are motivated by the fact that in the vector-valued case
(N > 1) quasiconvexity, i.e., condition (1.3) with v = 0, is essentially
equivalent to the semicontinuity of (1.1): see e.g. [15],[14],[1].

Of course the uniform ellipticity conditions (1.2) or (1.3) are not nec-
essary in order for the functional (1.1) to have a minimizer (this happens
for example if f(£) = |£|P with p # 2; however, this particular functional
may be treated in a special way as far as regularity is concerned, see e.g.
16]).

A new kind of result has been recently proved in [3] which is useful for
studying regularity in cases of degenerate ellipticity, by showing that Du
is Holder continuous near points where it is “close” to a value &y where f
is uniformly strictly convex. Precisely, in the case independent of (x,u),
if f is convex and with growth p > 1, and v is a minimizer of I, then if

lim |Du — &|P dx =0
r—0 B'r(‘ro)

for some zg such that (1.2) holds, and f is of class C? in a neighbour-
hood of zy, then Du is Holder continuous of any exponent o < 1 in a
neighbourhood of xy. A similar result is given when f depends also on
(x,u).

In the same spirit, we prove the following result (Theorem 2.1):
Let p > 2, and let f : R™ — R be a locally Lipschitz continuous function
satisfying

FOI<LA+[EP), DI <LA+EP.
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Fix & € R™ such that f € C? in a neighbourhood of &, and
/ f (& + Dyp(y)) dy
spt ¢
> / [F(&) + v (IDp()” + [Dp(y)P)] dy  for all p € Cy.
spt ¢
Then if u is a minimizer of [ f(Dv)dx and

lim |Du — &y|P dx = 0,
r—0 Br(l’())

there is a neighbourhood of xy in which the function u is of class C1*“ for
all v < 1.

An extension to the case with (z,u) is also provided (Theorem 3.1).

We remark that in the above theorem we do not require a global qua-
siconvexity assumption. On the other hand the theorem covers only the
case p > 2; however, it is not clear whether a function which is genuinely
quasiconvex at some point £y and has growth p < 2 may exist.

These result allow us to generalize the former partial regularity re-
sults of [5],[6],[2]: the strict quasiconvexity need no longer be uniform
(Corollaries 4.1 and 4.2).

The last part of the paper is devoted to the study of the set of regular
points in the scalar case N = 1; as an example, an application to an energy
functional of interest in nonlinear elasticity is also provided.
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2. The case independent of (x,u)

Let © be a bounded open subset of R™, fix p > 2 and let f : R™Y — R
satisfy:

f is locally Lipschitz continuous (2.1)

| f < L1+ [¢]7) (2.2)

IDf(E)] < L1+ [¢[P7H). (2.3)

We say that & € R™ is a regular point for f if there exist o > 0, v > 0

such that f € C?(B,(&)) and
/ e+ Delw) do
> / (@) +1(1Dp(a) +1De@)P)] do

for every p € CA(R™;RY).
Set for every u € WhP(Q; RY)

we say that u is a minimizer of [ if
I(u) < I(u+¢) for every ¢ € Wy P(;RY).

Then we have:

Theorem 2.1 . Let f satisfy (2.1),(2.2),(2.3), and let u € W?(Q; RY)
be a minimizer of I. If for some zy € () and some regular point &,

lim |Du(z) — &P de =0
7"—>0 BT(IO)

then in a neighbourhood of xy the function u is of class C for all o < 1.

In the sequel we denote by the same letter ¢ any positive constant,
which may vary from line to line; if ¢ is any vector-valued function, we
denote by (), or simply by (¢), the mean value of ¢ on B, (z(). Finally,
we set

gp(t) = [t + [¢]P.

We shall use the following lemmas:
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Lemma 2.2 . Let f satisfy (2.1),(2.2),(2.3) and let &, be a regular point
for f, i.e.,

/t f(& + De(y)) dy

> / [£(&0) + 790 (De(y))] dy  for all p € C5(R™;RY)
spt ¢
and f € C?(Bay(&)). There exists o > 0 such that for every & € By(&)

/ e+ Do) dy

2 / [f(f)-i—%gp(D(p(y))} dy for all p € CL(R™;R"Y).
spt ¢

(2.4)

PROOF . Set w, = sup{|D?f (&) — D2f(n)| : &,m € Bs(%), 1€ — 1| < o},
and fix ¢ such that | — &| < 0 < 0/2. Then

/Q €+ Dg) — £(©))dy
- /Q (€ + D) — f(&0)] dy (2.5)

T / (G(Dy) — G(0) — DG(0)Dy] dy,
Q

where we set
G(n) = f(E+n) — f(&o+n)-

The first integral which appears at the right hand side of (2.5) is greater
than [, vg,(D¢) dy. As for the second, we can set

So ={y e Q:|Do(y)| <0/2}, Ly ={y€Q:|Dp(y)| >0c/2};

remarking that G(Dy) — G(0) — DG(0)Dyp = %DQG(ﬁDgp)Dnggp with
0 < ¥ < 1, and that £ + Dy(y) € B,(&) for y € S,, we have

1€+ D) = p©)1ay
> [aoay -5 [ (Dg)dy (2.6)

+/ [G(Dy) — G(0) — DG(0) D] dy.
Lo
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Set
H(n,y) = f(n+ De(y)) — f(n) — Df(n)Dp(y),

and
M, = sup{|D?f(n)| : n € Bs(&0)};

we remark that the last integral may be written [, [H(&,y)—H (£0,y)] dy,
therefore its absolute value is bounded by

| 16 &liD ()l dy

< 16— & / IDf(r+ D) — Df(r)| + My| Dol dy
< e(o |&ol, D)IE — & / (1+ D] + [DglP~1) dy

< EQ/LU gp(Dy) dy.

If we choose o such that %wg +co < %7, the result follows from (2.6). m

Lemma 2.3 . Let f satisfy (2.1),(2.2),(2.3) and assume f € C? (Ba(fo))-
Set for all A > 0 and &,n € R™Y

fea(n) = A72[f(E+ ) — £(&) = ADF(&)n).
There exists ¢ > 0 such that for every § € B, ;3(£o)
[feaml < c(nl? +X72nfP), D feam)] < elnl+X72n/P~t).
PROOF . Set K = max{|D?f(n)|: |n — &| < 20/3}; then
1 1
(An| <o/3 = [feax(n)] = §|D2f(§+19An>m?| < §Klnl2;
Ml >0/3 = |feam] < A7%e(a)(1+ Mgl + [AnlP) < e(a) AP 72[n|?,

and the first inequality is proven. The second is analogous. m

The following result may be easily derived from [8], p. 161.
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Lemma 2.4 . Let f:[5,7] — [0,+00) be a bounded function satisfying

A B

f(t)gﬁf(s)—f—(S_t)2+(8_t)p+D

for some 0 < ¥ < 1 and all % <t < s < r. Then there exists a constant
c(¥, p) such that
r A

B
15 <e(z+5+0)
The following lemma may be found in [2], Lemma II.4; since we will
later refer to the proof, we include it for the readers’ convenience.

Lemma 2.5 . Let g : R™Y — R be a locally Lipschitz continuous function
satisfying

9O < er(|€F + AP 2[eP),  [Dg(€)] < ea(jg] + NP2 [g[P),

/g(D(p) dr > 7/[|D<p|2 + AP=2|Dy|Pldz  for all p € CF(R™;RY)

for suitable constants ci, A and v. Fix v > 0 and let u € W'?(Q;RY)
satisfy

/ g(Du) dx < / [9(Du + D) + v|Dg|]dz  for all o € WyP(Q;RY).
Q Q

Then there exists co > 0, depending only on ¢y, vy, such that for every
B, CQ

][ (|Dul|? + XP~2|Du|P) dx
B'r/2

_ 2 _ p
< Cz][ <u2 + Ju = (), |” + Ap‘27|u (;L)’"| ) de.
BT

r2 r

ProOF . Fix B, C Q, let 5§ <t < s < r and take a cut-off function
¢ € C}(Bs) such that 0 < ¢ <1,(=1on By and |D(| < % If we set

o1 =[u—(u)]¢,  @2=[u—(u)y](1-0),
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then Dy, + Dys = Du, and

7/ [|D@1]? + AP72| D [P] de
B (2.7)
S/ g(le)dwz/ 9(Du — Dyp3) da.
B B

s

In addition, by the minimality of u,

/BS g(Du) dz

| su-Dpyaztv [ Da]da
B B,

IA

2
§/ g(Dps) dx + 1/ | D1 |? da + Y meas (B)).
B \B; 2 Jg, 2y

Then
/ 9(Du — D) dx
B,
— [ gDwds+ [ (g(Du-Des) - g(Du)) o
Bs B
2
<[ gwedn+] [ DeiPdet Lmeas(5) O
B:\B; 2 /B, 2y
+ c/ [|1Du| + | Do
Bo\B:
+ AP DulP ! + [ Do) | Dip da.
By (2.7),(2.8) and the assumptions on g it then follows
/ [[Dul? + X\P~2| Du|P] dx
By
< [ UDarP + 3 -2Dpi ) da

s

< e(v,e1) { T / IDul® + | Dea?
B\ B
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#2072 (Dul? + |Dgal?)] de]
< 6[V27°” + / [[Dul?* + A\P~2|Du|P] dx
B.\B;
+/ <|U_<U)r2‘2 +/\p—2‘u_(u)r|p)dx}
BB, \ (5—1) (s—t)p
We fill the hole by adding to both sides the term
6/ [[Du|? + X\P~2| Dul|P] dx;
By
then we divide by ¢ + 1, thus obtaining
/ [[Dul? + X\P~2| Du|P] dx
By
< 19/ [ Dul? + AP=2| Dul?] da
Bs

s i i ]
v f, [ et e i

with 9 < 1, and the result follows by Lemma 2.4. m

In the sequel we assume that f satisfies (2.1),(2.2),(2.3), and that &
is a regular point for f, so that (2.4) holds in B,(&p) and we may assume
that f € C?(Buap). If u is a minimizer of I(u) = [, f(Du)dz, for every
B, (zo) C Q we define

U(xo,r) :]{B ( )gp (Du — (Du),) dz.

The main ingredient to prove Theorem 2.1 is the following decay estimate:

Proposition 2.6 . There is a constant C, depending only on &y, such
that for every T < 1/4 there exists (1) such that if u is a minimizer of
I(u) and

|(Du)wo,r - §0| < 0, |(Du>m0,7r - §0| < 0, U(QZ(),’I“) <e€
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then
Ul(xg, 1) < OTQU(.CC(), r).

PRrooOF . Fix 7; we shall determine C later. Reasoning by contradiction,
we assume that there is a sequence of balls B, () C Q satisfying

|(Du>mh,rh - §0| <o, |(Du>mh,7rh - §0| < 0, U(l’h,’l“h) - )\i - 07

and
Uz, mry) > OT2A7. (2.9)

Set Ap = (D)), rps @ = (W) 1y s Ay, = (Du) g, vy, and

u(xp +rpz) —ap — rpApz

vp(2) = N ,
so that
(vn)o1 =0, ][ /\gzgp()\hDvh) dz :][ (|Dvh|2+)\ﬁ_2|Dvh|p) dz = 1.
B1 Bl

Then we may assume
vy — v weakly in WH2(By; RY),

Ay 2Py, =0 weakly in WP (B RY)
and also A, — A. Set L, = {z € By : \p|Dop(2)| > o}, Sh = B1\ Lp;
then

meas Lj, < A7 o2, / |Dup,|P~Ldz < NP 2/P. (2.10)
Ly

Now fix ¢ € C}(B1; RY): by the minimality of u
/ [f( A Do, + Ap +tDg) — f(AnDup, + Ap)]dz > 0.
By

Dividing by t > 0 we have

1

t / [f(AnDvp + Ap +tDp) — f(AnDop + Ap)] dz
tJs,

o [ fOuDvn+ Ay +tDg) = fAnDun + Ap)
B t
Ly,

> —¢, / (14 X, Doy P) d
h

2
> —Cp,0 Ap
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by (2.10). If ¢ is smaller than o/[|¢||ct, in the first integral above the
argument of f is always in B3, (o), and the integrand is bounded, therefore

as t — 0 we have

Df(A,Dvy, + Ap)Dpdz > —cA2.
Sh

Again by (2.10)

Ai [DF (A Duvn + An) — Df(Ay)] Dy dz
h Sh

1
> —cA\p + — Df(Ap)Dpdz > —cAp.
)\h Lh

This may be written also as

1
/ / D?f(A, + sApDup)1g, Dvp,Dpdsdz > —cAp,
B1 Jo
and remarking that A\ Dvy, — 0 a.e. we have as h — oo

D?*f(A)DvDydz > 0,
By

(2.11)

which yields fBl D?f(A)DvDydz = 0 for every ¢ € C4(By;RY). Then
v solves a linear system with constant coefficients; remarking that (2.4)
implies D? f(A)AiAjnans > ZIA?[n|?, by the standard regularity theory

we have for every 7 < 1/4

][ |Dv — (Dv)a,|? < cr?.
B2T

Set

and remark that

A, — Ay,

= (Duvy), (wp)s = (vp)s forall s < 1,

(2.12)
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and wj; minimizes fBl fAh,Ah(D¢> dz; therefore Lemma 2.5 holds with
v =0, and

U(xp,TrH) :][ gp(Du) dx

BT'rh (mh)

:][ 9p [)\h (Dvh — (Dvh)T)} dz

< 6][ 9p (Ah—wh — Wh)QT) dz
Ba, T (2.13)

TP

By the Sobolev-Poincaré inequality and (2.12)

h—o0

lim I} — 7—2][ v — (0)ar — (Dv)e2|? d
B2T
< c][ |Dv — (Dv),|? dz
B2T

<ec Dv — (Dv)a,|?dz + ¢|(Dv), — (Dv)2,|?
]{321 (Dv)ar] (Do = Do

<er?+ c][ |Dv — (Dv)a,|? dz
B

T

<er? + c][ |Dv — (Dv)ar|? dz
B2T

<er?,
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whereas if g + 11;19 = % we have

pd/2
I} < \P2 <][ 72 v — (vp)2r — (Dvp)r2)? dz) :
B2T
i i p(1=9)/p”
- <][ 7 o — (0 )ar — (Dup)sz]? dz)
B2T

orayr(f

1—9
|Dvp, — (Dop,) . |P dz)
B2T

< erP? \Pm2? [][ NP2 D |P dz + ][ AP=2| Dy, |P dz]
B2T

.

<e AT,

so that
lim I? = 0. (2.15)

h—o0
By (2.13),(2.14),(2.15) we get
lim sup )\;QU(ajh,Trh) < éér?,

h—o0

which contradicts (2.9) if we chose C' > é¢.

The fact (which we do not need in the sequel) that C' does not depend
on the particular minimizer u, could have been proven by taking a different
minimizer uy, in each B,, (zp). m

Proposition 2.7 . Let & be a regular point for f, and take o < 1; if
C is as in Proposition 2.6, fix 7 < 1/4 such that Ct? < 72%. Let u be a
minimizer of I and assume that for some B,.(xg) C £

|(Du)wo,7" - §0| < 9/27 |(Du)wo,7r - §0| < 9/27 U(QZQ, T) < 6(7->7
where §(7) < min{e(r), 0*72"(1 — 7*)2/4}. Then for every k
|(Du) z ri+1, — o] < 0, Ul(xg, 7Fr) < 727U (20, 7). (2.16)

PROOF . The result is true for k = 0; we proceed by induction, assuming
(2.16) holds for 0 < k < m — 1. Then U(zo, 7™ 'r) < &(7), and by
Proposition 2.6 we have

Ulzo, 7™r) < CT2U (20, 7™ 1r) < 72972000 (4, 1) = 72U (20, 7).
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Now,

(D) pinsay = &of < [(Du)y é’oHZI (D) pisry = (Du) sy
k=0

< g Z][ |Du — (Du) 1, | dx
B_k+1,
1/2
< Q+7_”Z[][ |Du — (Du) sk, |* dx
2 k=0 L/ Bk,
S Z .’130,7' T 1/2
Q - 1/2
S 5 Z Zl'f(),
k=0
0 1 1/2
-4+ —— 1)
< S+ DO <o

thus concluding the proof. m

PROOF OF THEOREM 2.1 . Suppose & is a regular point and
lim |Du — &y |P dx = 0
7"—>0 B'r‘(mO)

fix a particular & < 1: for a suitable r > 0 the assumptions of Proposition
2.7 are verified uniformly in a neighbourhood of zy, i.e.,

|(Du>m,r - §0| < 0, |(Du>m,7r - §0| < 0, U(l’,?‘) <e
for all x € Bs(zp). Then (2.16) implies

24
U(z,0) < C(%) U(x,r) for all z € By(xp),

and u € CV%(B,(x0)) by a standard argument — see e.g. [8], Chapter 3.

Since Du is now continuous, by Lemma 2.2 we may suppose that s is
so small that Du(z) is a regular point for f for all x € Bs(x); moreover,
clearly

lirr(l) |Du(y) — Du(z)|Pdy =0 for all x € Bs(xp).

=Y B, (z)
Now fix any a < 1: the same argument employed above shows that
u € CH® in a neighbourhood of z for all x € Bg(zg), therefore u €
Ch(Bs(w)) foralla < 1. m
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3 . The case with (z,u)

Let ©Q be a bounded open subset of R", fix p > 2 and assume that
f:OxRY x R™N — R satisfies:

f(x,s,€) is locally Lipschitz continuous with respect to &; (3.1)
|f(z,5,8)| < L1+ [€]P); (3:2)
|fe(w,5,6)| < L1+ [£P7); (3:3)
[f(x,5,8) = fy, £, )] < LA+ [§") w(lz — y[P + |s — 1), (3.4)
where w(t) <t%, 0 < § < 1/p, and w is bounded, concave and increasing;
f(@,8,8) = ¥(§) (3.5)

for a suitable continuous function v satisfying

/Qw(Dw(y)) dy > /Q[Qb(o) + u|De(y)[P)dy  for all ¢ € C5(%RY),
with g > 0; finally, we assume that

either f > 0 or f is quasiconvex. (3.6)

We remark that if f is quasiconvex then (3.3) is implied by (3.2); assump-
tion (3.5) was introduced in [12].

We say that (xg, o, &o) is a regular point for f if there exist o > 0,
v > 0 such that for every x € B,(zp) and s € B,(sp) the function f(z,s, )
is of class C? in B, (&), and

/ f(z,5,6+ Doly)) dy
spt ¢

> / @58+ (D) + Do) dy

for every & € By(x0), s € By(s0), &€ € Bo(&) and ¢ € CA(R™;RY).
Set for every u € WhP(Q; RY)

I(u):/ﬂf(as,u(a:),Du(az)) dzx;

then we have:
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Theorem 3.1 . Let f satisfy (3.1),...,(3.6) and let u € WP (Q; RY) be
a minimizer of I. Then there exists a € (0,1) such that if for some regular
point (zg, so,&o) of f we have

lim [lu(z) — solP + |Du(z) — &|P]dz =0
r—0 B, (z0)

then u is of class C in a neighbourhood of x.
In the proof we shall use the following results:

Lemma 3.2 . Let (X, d) be a metric space, and J : X — [0, +0o0| a lower
semicontinuous functional not identically +oo. If

J(u) < a—+inf J,
there is a v € X such that
d(u,v) <1

and
J() < J(w) 4+ ad(v,w) for all w € X.

The result above may be found in [4], the next one in [8], p. 122.

Lemma 3.3 . Let QQ be a cube in R", and suppose that for every ball
B, (xo) C @ such that 2r < min{rg, dist (z¢, 0Q)}

q
][ quw§a<][ gd:r:) +][ fldx
B'r/2 B'I“ B"'

with f € L*(Q), k > q. Then g € LL"“(Q) for some positive e(a, q, k) and

loc

1/(g+e) 1/q 1/(g+e)
<][ gite dx) <c [ <][ g dx) + <][ fate dx) } .
B'r/2 B'r‘ B'r

Lemma 3.4 . Let f satisfy (3.1),(3.2),(3.3),(3.5); there are gy > p and
co > 0, depending only on u, L, p, such that if u € Wl’p(Q;RN) is a
minimizer of I, then u € VVI})’QO (Q;RY) and for every B, C Q

C

1/qo0 1/p
<][ | Du|?° d:r:) < ¢y <][ (1 + |Dul?) d:r:) :
Br/2 B
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PROOF . The argument is similar to Lemma 2.5; fix B, C {2, let 5§ <1t <
s < r, take the cut-off function ¢ of 2.5, and again set

Y1 = [u - (U)T]C, P2 = [u - (U)T](l - C)’
then ¢ + @2 = u — (u), and D1 + Dys = Du. Now, by (3.5)
[ el + v(0) da
Dyy)d
< /Bs V(Depr) d

< / f(z,u, Dpq) dx
B,

:/ f(z,u, Du — D) dz.
B,

By the minimality of © we have

/f(x,u,Du)daj
Bs
S/ f(z,u— 1, Du— Dypy)dx
Bs
=Afmm+wdmwm

= / f(x, o2+ (u), Dps) dx + f(x, (u);,0)dx,
B:\ B By

so that by (3.2)

/ f(x,u, Du) d:)sgL/ | Do |P dx + cr”,
Bs Bs\Bt
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and by (3.3)

/ f(x,u, Du— Dyps) dx
B
:/ f(z,u, Du) dx
B
+ [ 1w Du= D) = f(ou, Du] da
B
g/ f(z,u, Du) dx
B,
—|—c/ (1+ |DulP~! + | Do lP~1)| Dps| dar
B\B:

gcr”—i—c/ (|[Dp2|? + |Du|?) dx
B.\B;

_ p
S CTn+C/ (‘DU‘P+ M) dzr.
B.\ B, (s —t)P

Then by (3.7) we obtain

_ p
,u/ |Dp1|P dz < c/ | Du|? dx + c/ (1 + M) dz, (3.8)
B B\ B B. (s —t)p

S

therefore

| Du|P dx < c/

|Du|P dx + c/
B\ B;

B

(14 =0 g,

B, (s —t)P

we fill the hole, and by Lemma 2.4 we obtain

— P p/p«
][ \Du\pdajgc][ <1+M) dx§c<][ (1+\Du\p*)daj) )
Br/2 B, TP B,

where p,. = np/(n + p). The conclusion then follows by Lemma 3.3. =

Lemma 3.5 . Let f satisfy (3.1),(3.2),(3.3),(3.5) and fix any (&, §). Let
B C Q be a ball, and let u € Wl’q(B;]RN) with ¢ > p. There exist qq €



LocAL REGULARITY FOR MINIMIZERS OF NON CONVEX INTEGRALS 19

(p,q) and ¢o > 0, depending only on u, L, p, q, such that if 0 <n <2 Py
and v € u+ W, (B;RY) satisfies

/ f(z,8, Dv)dx
B

< / [f (2,8, Dv + Dg) 4+ n|Dy|]dz  for all ¢ € W, ?(B;RY)
B

then v € W14 (B; RY) and

<][B | Do| da:)l/qo < COKJ[B(HWU\P) da:)l/p—i—<]€3(1—|—\Du\q)dw)l/q}.

PROOF . We begin with the interior estimate; fix any ball B,(z¢) C B,
and let ¢, s and ¢ be as in Lemma 3.4; define

pr=[v— ()¢,  p2=[v—(v)](1-0).

Following the proof of Lemma 3.4, an additional term 7 [ B, |Dp1]dz ap-
pears, and instead of (3.8) we are led to

— p
u/ | Dy [P da < c/ |Dv\pdaz—|—c/ (1+M) dr
B B.\B, B, (s —t)P

+n/ | D1 | du;
B

S

by the bounds on 7 we have

0 [ el <h [ a+ipap)
B

S s

and we may conclude, as in Lemma 3.4, that if B,(z¢) C B then

P/P+
][ | DulP da §c<][ (1+|Dv\p*)da:) | (3.9)
B'r/2 B,

Now we estimate v near the boundary: assume B,.(xq) N B # (), B,.(z9) N
(R™\ B) # 0, and fix t, s, ¢ as before; define

pr=(v—u)(, 2= (v-u)(l-C),
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so that @1 € Wol’p(BS N B). Following again the proof of Lemma 3.4 we
find

p
u /B IDgrda
< / {=(0) + f(, 3, Du— Digs)
B;NB
+ [f(:?:, $, Dv — (Du + D(pg)) — f(z,s, Dv)] } dx

+ 77/ | Dy | dz.
B.NB

The last integral is dealt with as above, and using (3.2),(3.3) we have
n / |Dv — Dul? dx
2 /BB
<c [ [+IDul + |Diaf?)da
B.NB
+C/ (IDv — DulP™" + | Do [P~ + | Du[P~H)-
B.NB
- |Du + Do dx

<ou [ (+IDUP+ D) da
Bs;NB

+ E/ |Dv — Dul? dx,
4 JB.nB

so that

/ |Dv — Du|? dx
B:NB
< c/ |Dv — Du|? dx
(Bs\Bt)mB

lu —vl?
+ c/ <1 + | DulP 4 dz.
B,NB D (s —t)p

The usual hole-filling argument and Lemma 2.4 yield

/ |Dv — Du|P dx < c/ (1-|—|Du|p)dx+cr_p/ |v — ul|? dx.
B,,»NB B,NB B,NB
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Since v — u can be extended as zero outside B, and since the measure of
Bs, \ B is greater than c¢,r"™, we may apply a modification of Sobolev-
Poincaré inequality, and we have

/ |v—u|pdx§c(/ |Dv — Du
B,.NB Bs.NB

P/ D
P dx) ,

so that

/ |Dv|? dx
Br/zﬂB

P/Dx
gc/ (1+|Du|p)da:+cr_p</ | Dv P~ daj) :
Bs,.NB B2, NB
(3.10)
Then if we set
0 outside B 0 outside B

by (3.9),(3.10) we have for any ball B, in R"

P/ P
][ Y P/ P dx§c<][ Vda:) -|—c][ Udzx,
B2 B By

with U € L9/P(R™). Aplying Lemma 3.3 the result follows. =

Lemma 3.6 . Let f satisfy (3.1),(3.2),(3.5) and fix any (&, §). If B is any
ball in R™, and u € W'?(B;RY), then the functional [ f(&, 8, Dw(z)) dx
satisties

/ f(2,8, Dw(z)) do > u/ |Dw|?P dx — c/ (1 +|Dul?)dx
B B B

for every w € u+ VVO1 P (B; RN ); moreover, if f is also quasiconvex with re-
spect to &, then the functional fB f(a?, S, Dw(a:)) dx is sequentially weakly

. . 1
semicontinuous on u + Wy P (B;R"Y).

PROOF . The semicontinuity on the Dirichlet classes follows from [14],
Theorem 5.
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Let B’ be the ball with same center as B, and twice the radius, and
let @ € (u)p+W,yP(B; RY) be an extension of u such that [ | Dl dx <

¢ [ |DulP dx; if we set for every w € u + Wy (B;RY)

. Jw inB
YZ1a@ inB\B,

then by (3.5)

| pap+ po) s

< [t s D) da
B/

g/ f(:?:,é,Dw)daerc/ (1+ |Dil?) da,
B B'\B

and the result follows. =

Lemma 3.7 . Let f satisfy (3.1), ...,(3.6). There exist two constants,
0 < 61 < B2 <1, aradiusrg < 1, and for every K > 0 a constant cy, such
that if w is a minimizer of I, r < 1o, Ba,(x0) C Q and (|Du|?)zy 2r < K
then there is a v € u + Wy™? (Br(z0); ]RN) such that

1/p
(][ |Dv — Dul? da:) < cgr
B
and

/B f (20, (W)zo,7), Dv(z)) das

< | #(@0:(00:7), Dola) + Difa)) da 1% [ Dol do

[ B’r‘

for every ¢ € C§(By(z); RN).

PrROOF . By Lemma 3.4 and the minimality of u follows the existence of
go > p and cg > 0 such that v € Wll’qO(Q; RY) and

ocC

1/qo0 1/p
<][ | Du| d:r:) < ¢ <][ (1+ |DulP) d:r:) (3.11)
B’F B2'r
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for every B, C (). Set
Ig(w) :][ f(aso, (W) zg.rs Dw(x)) dzx
Br,«(mo)

and
J(w) = {I,?(w) if w € ut+ Wy (B RY)

+oo  otherwise.
We claim that

I%(u) —inf J < &(K)rP, (3.12)
where 3 < 1 depends only on ¢, L, p, u.
FIRST CASE . We assume that in (3.6) the condition f > 0 holds.

Denote by (us) a sequence in u 4+ Wy *(B,; RY) such that

I%(uy,) —infJ < 1/h,

and consider the functional J on the space u + VVO1 ’1(BT;RN ) endowed
with the metric

dy(v,w) :][ |Dv — Dw| dzx.
B

r

Since f > 0, by Fatou’s lemma J is semicontinuous in this space; we
may then apply Lemma 3.2, so that there exists a sequence (vp) in u +
Wyl (B RY) such that

][ |Dvp, — Dup| dx <1
B

and

1
J(vp) < J(w) + E][ |Dvy, — Dw|dz  for all w € Wol’p(Br;RN). (3.13)
B,

In particular J(vy) < J(up) + 1/h, hence

lim J(vp,) = inf J (3.14)

h—oo

and .J(vy,) is finite. Therefore vj, € u + Wy ?(B,;R"Y) and by Lemma 3.6

][ |Dvh|pdx§c][ (1+ |Duf?) d. (3.15)
B,

™
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Moreover by (3.13) we may apply Lemma 3.5 for h large enough, and there
exist ¢; and q; € (p, o) such that v, € Wh9 (B,; RY) and

1/Q1
<][ | Dup, | daj)
B,
1/p
< <][ (1 + |Dvp|?) d:r:) + (][
B, B
1/p
< c(][ (1 + |DulP) daj) ,
B2'r

where we used (3.15) and (3.11). Now

1/q0
(1+ |Du|q°)dx)

r

(3.16)

I%(u) — I%(vy) §][ [f (zo, (w);, Du) — f(z,u, Du)] dz

B

+f 1000~ fGo, 0, Do)
B

176 Do) — (oo, 000, Do)
B

r

= ap, + by, +cp.
Then by (3.4)

a] g][ L1+ | Dul?) w(r® + [u — (u),]?) da

™

p/qo
<i(f asipumac)
B,
1—p/qo
. (][ wqo/(qo—p)(rp + |u— (u),|P) da:) )
BT

Since w is bounded and concave,

p/qo0
lan| < c<][ (14 |Du|?) da:) w'P/a0 (crp][ (14 |Dul?) daj)
B, B,

1+0(q0—p)/q0
< c<][ (1+ |Dul?) da:)
B21‘

<c (K)Tép(qo—p)/qo

rop(ao—p)/qo
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by (3.11). Analogously

p/q1
len| §c<][ (1+|Dvh|q1)dx) .
BT

LtTP/m (crp][ (1+ |DulP + | D(vp, — u)|P) daj)

B,

< 62<K)T5p(q1—p)/q1

by (3.15),(3.16). Since b, < 0 by the minimality of u, we deduce from the
estimates above
[ (u) = I (vn) < &(K)rP,

with 0 = dp(q1 — p)/q1, which together with (3.14) proves (3.12) in the
first case; the idea of passing to the sequence (vy) was first used in [13].

SECOND CASE . We assume that in (3.6) the quasiconvexity condition
holds.

In this case, by Lemma 3.6 the functional J is semicontinuous, and
has a minimum point @ € u + Wy ?(B,; RY) which satisfies

/ |DulP dx < c/ (1 + |Dul?) dz;
B,

™

then, by Lemma 3.5 applied with n = 0, there exist ¢; and ¢; € (p, qo)
such that @ € W9 (B,;RY) and

<][B e da:) o
<ol K]{Br(l n |Du|p>dx)1/p N (]{Br(l + | Du|%) da:)l/qo]
§c<é%ﬂ+wa®¢QUé

The inequality
I%(u) —inf J = I1%(u) — I%(a) < &(K)r”

may be proved as above, and also the second case is concluded.
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We now consider on the space u + Wol (B RY) the metric
da (v, w) = (E(K)rﬂ/z)_l][ |Dv — Dw| dz.
B,

By (3.12), applying again Lemma 3.2 we find v € u + Wol’p(BT; R™) such
that

][ |Dv — Du| da < &(K)rP/? (3.17)
B
and
Jw) < Jw+p)+ rﬂ/z][ |Dg|dz for all o € Wy'' (B,; RY).
B

This proves the last assertion of the lemma, with 85 = (/2. In addition,
by Lemma 3.6

u][ |Dv|pdq:§lf(u)+rﬁ/2][ |Dv — Du| dz
B

r

+c]{3 (1+ |Dul?) dz (3.18)

ks

< c][ (1 + |Dul?) dz

r

since r < 1. We now select g = (277~ 1;)?/# so that we may apply
Lemma 3.5 to the functional w — I%(w) + r%/2 f, |Dv — Dw|dz. Then
there exist ¢ and ¢; € (p, qo) such that

/a1 1/p
<][ \Dvrhdx) §c<][ (1+|Du|p)da:> L (3.19)
B, Bs,.

where we used also (3.18) and (3.11). Now if ¥ = —2=E~ we have

p(q1—1)
1/p
<][ |Dv — Du|? da:)
B,
9 (1-9)/q1
< <][ |Dv — Dul daj) . <][ |Dv — Du|® daj)
BT BT

< C(K)rw/2

by (3.17),(3.11) and (3.19), and the result is proved with 5, = §9/2. m
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The next result is analogous to Proposition 2.6, and after that only
the iteration remains to be made. Fix d < (31, and set

U(;,;O, 7«) — pd -|-][ 9p (Du — (Du)xw) dz.
B, (x0)
Then we have:

Proposition 3.8 . Let f satisfy (3.1), ...,(3.6) and let (xq, So,&o) be a
regular point for f. There exists a constant C' such that for every 7 < 1/4
there exists (1) such that if v is a minimizer of I satisfying

~ g o o
|Z—m0| < 7, [(W)z,r — s0| < 55 |(Du)z,r — ol <
o .
|(Du)z,7r — &o| < 3 ([Dul?)z,2r < [€0]” +1
and
U(z,r)<e
then

Ul(z,tr) < CreU (2, 7).

PRroOF . Fix 7; we shall determine C' later. Reasoning as in Proposition
2.6, assume that (3.20) holds in B,, (x}), and that

Uzp,mn) = A2 =0, (3.21)

but

U(zp, mry) > CTIN2. (3.22)
Applying Lemma 3.7 in each B,, (z) we find a sequence (up) in u +
Wy P (B, (x1); RY) satistying

1/p
<][ |Duy, — Dul? da:) <ecry! (3.23)
Brh (mh)
and

/ f(flfh, (u)xh,rh, Duh) dx
B’”h(mh)

< / f(@n, (W)ey, v Dup, + D) dx: (3.24)
B"“h (mh)

+ 7“52/ |Dp| dx
B"“h (mh)
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for every ¢ € C}. Set
Ap = (Duh)mhﬂ"hv Ah = (Duh>$h,7'7"hv ap = (uh)whﬂ"h'

From (3.21) we deduce that
rh < Ahs (3.25)

therefore in particular v, — 0; from (3.23) we then get, if h is sufficiently
large,

o ~ ag o
|Ah_§0|<§: |Ah_§0|<§7 |Cbh—80|<§-

Now gp(x +y+2) < (14€)gp(x) + ce[gp(y) + gp(2)], and by the convexity
of g,

1
)\—QJ[B 9p(Duy, — (Duy)y, ) dz
h

"h

1+e
< ( 32 >][ 9p(Du — (Du),, ) dz
n /B,
Ce
+ v 1 [9p(Dup, — Du) + g,((Dug)y,, — (Du)y, )] dx
h Th
1+e
< ( 32 >][ 9p(Du — (Du),, ) dx
n /B,
2¢,
5 ][ gp(Dup, — Du) dx
An JB,,
1+e 2o
<! s >][ 99 (Du = (Du)y, ) do + ()™
h JB h

by (3.23). Since this holds also with u;, and u interchanged, if we set

Un(zp,7) = rd -1-][ 9p (Duh - (Duh)mhvr) dx
B, (zp)

using (3.25) we deduce easily

lim U(zp,rn) — Un(xn,mh)
h—oo )\}21

= 0; (3.26)
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similarly one has

U(xp,mrn) — Un(xp, Trp)

hh—>ngo A7 =0
We now define
—ap —rpA
on(z) = up(xp +THRZ) —ap —Th hz’

ARTH

and remark that (vy)o,1 = 0, and that by (3.26)

limsup/ [|Dvp|? + X2 Doy, P dz < 1,
B

h—oo

so that we may suppose
vy — v weakly in WH2(By; RY),

A;ll_z/pvh — 0 weakly in WhP(By; RY),

and also
A, — A, (W) gy, ., — @, Ty — .

Remark that (Z,a, A) is a regular point for f. Now define

Lh:{ZEBl 2>\h|D’Uh(Z)| 20'/3}, Sh:Bl\Lh,

and use (3.24) as in Proposition 2.6 to obtain, instead of (2.11),

1
/ / fee(zn, an, Ap + sA\pDup)1g, Dup Dy ds dz
B, Jo

7,52
Z—L/ |Dp| dz — cAp,
)\h B1

whence again

fee(,a, A)DvDpdz = 0 for all ¢ € C(By; RY),

B,

(3.27)
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and for all 7 < 1/4
][ |Dv — (Dv)or|* dz < er?.
B2‘r

Define

and remark that

/; fAh)\h (mh? (u)ﬂﬁhﬂ”h ’ th) dz
1

< / fa, (a:h, (W), vy » Dwp, + sz) dz +ry? / | D dz.
Bl Bl

Then we may apply Lemma 2.5, this time with v = rgz; repeating the

argument of Proposition 2.6, and recalling (3.25), we get from (3.27)

) U(zp, Tr )
lim sup % < er? +limsup 79 /N2 < er?,
h—o0 h h—o0

which gives the required contradiction with (3.22). m

Proposition 3.9 . Take a regular point (xg, So,&p) and o < d; if C' is as
in Proposition 3.8, fix 7 < 1/4 such that Ct% < 7®. Let u be a minimizer
of I and assume that for some B,.(xg)

ag ag g
[(W)zo,r — S0l < =, [(Du)o,r — ol < — [(Du)o,r — ol < —,
6 6 6

p p 1 p p 1

(|Du| )mo,r < |§| + 57 (|Du| >$o727" < |§| + 5

and U(zg,r) <n, with n > 0 sufficiently small. Then for all k

g g
|(u)mo,7'kr - 30| < 55 |(Du>mo,rkr - §0| < 7,
3 3
ag
|(Du>xo,7k+1r - §0| < §7 (|Du|p>xo,27kr S |§|p +1

and
Ul(xo, TkT) < TkO‘U(xo, T).



LocAL REGULARITY FOR MINIMIZERS OF NON CONVEX INTEGRALS 31

PROOF . Reasoning as in Proposition 2.7 we have

(D) ymsry — & < % + 77 (U, 7)) 2 (3.28)
k=0
o m—1
|(w)7myr — 50| < 6 +er " Z Tkr(|Du|p>i£f)27.kr§ (3.29)
k=0

now, since 7 < 1/4, for m > 2 we have

1/p
(][ | Dul|P daj)
B27—mr

1/p
< ‘(DU)ZTm—lr‘ + <][ |DU - (DU’)QTm_lT‘|p d.l))
Bo,m,.

< |(Du)aymony| + 707 (][

B27—m_1r

1/p
|Du — (Du>27-'m717- |p dl’)

< (IDulP)a2 .+ (2r2) PO (g, 720 VP,

whereas for m =1

1/p
(][ | Dul|P daj)
B2T'r

< |(Du),| + (][B IDu- <Du>r\pda:) v

< (IDuf?)}/? + (27)"/P[U (o, )] V/P.

Thus, combining these two estimates,

1
(DU, < (Iol? + 5)M7 + (27) /(U o, )]

3

+ (27PN U (2o, 7FP)] VP
0

>
Il

From (3.28),(3.29) and this inequality, an induction argument proves the
result if  was chosen sufficiently small. m

PrROOF OF THEOREM 3.1 . One may follow the lines of the proof of
Theorem 2.1, except that a must be less than d. m
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4. Additional remarks

In this section we state two corollaries which follow from our results,
then we apply Theorem 2.1 in a case which is relevant in nonlinear elastic-
ity, and finally we study the scalar-valued case N = 1, identifying exactly
the set of regular points.

Theorems 2.1 and 3.1 yield two new (global) partial regularity results:
precisely, we have

Corollary 4.1 . Let f : R™ — R be a function of class C? satisfying for
some p > 2

IF(O)] < (T +[€7);

assume that for every £ there exists a positive number v(§) such that

F(€+ Do(y)) dy > / [F() + 7€) (IDe(w) > + |1Do(w)?)) dy

spte sptop

for every p € C3(R™;RY). Then ifu € W?(Q; RY) is a local minimizer of

[ f(Dv(x)) dx there exists an open subset Qo of  with meas (2 \ Q) =0
such that v € C*(Qo; RY) for all a < 1.

Corollary 4.2 . Let f: Q x RY x R™™ — R satisfy for some p > 2
f is twice differentiable with respect to &;

fee(z, 5,&) is continuous;
|f(@,5,8)| < e(1+[€]P);
|f(@,5,8) = f(y, 6, < L1+ [§) w(lz — y[" + [s — ¢[7),
where w(t) <t°, 0 < § < 1/p, and w is bounded, concave and increasing;

fx,s,6) = ¢(€)

for a suitable continuous function 1 satisfying

/ W (De(y)) dy > /[w(o) + pu|Dp(y)[Pldy  for all ¢ € CH (L RY),
Q Q
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with p > 0; finally, we assume that there exists a positive lower semicon-
tinuous function ~y(x, s, ) such that for every (xo, so,&o)

| ssr Do) dy
spt ¢

> / @5, + 15, ODp) [+ 1Del) )] dy

for every ¢ € C§(R™;RY). Let u € WHP(Q;RY) be a local minimizer
of [, f(x,v(x), Dv(x))dx. Then there exist an open subset Qg of Q with
meas (Q\ Q) = 0 such that u € C1*(Qo; RY) for some a < 1.

To prove this second Corollary, it is enough to remark that (see Propo-
sitions 3.8 and 3.9) the Holder exponent o must satisfy only o < d, and
the number d is independent of ~.

These results improve the former general regularity theorems of [5],
[6]: not only, as already in [2], the boundedness of the second derivatives of
f is dropped, but also the strict quasiconvexity need no longer be uniform.

Example 4.3 . Let n = N, and define f by
f&)=lee—1p,

where I is the n x n identity matrix; if v : Q@ € R" — R" is the de-
formation of an n-dimensional body €, the functional [, f(Du(z)) dx is
an important model of nonlinear elastic energy associated with u. The
“expansion points” of u are the points x at which the n eigenvalues of the
matrix vt Du Du are greater than 1. A not too hard computation shows
that if the eigenvalues of \/ﬁ are all greater than 1, then ¢ is a regular
point for f; therefore, a deformation u is of class C1'® around each of its
expansion points.

We shall henceforth confine ourselves to the scalar-valued case N = 1;
in this case, it is well known that a function being quasiconvex everywhere
is equivalent to its being convex (everywhere). This is not true for qua-
siconvexity and convexity at a single point, as is shown by the following
proposition (for any function f we denote by

f =max{g < f : g is convex}

the convex hull of f).
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Proposition 4.4 . Let f : R® — R be continuous, and assume there
exists some &, such that

f(é0 + Dpla)) de > / [F(€0) + 11Dl + | D(a) )]

spte spty

for all p € C’g’l(R”), where p > 2 and v > 0 is a constant. Then

f (&) = (o),

and, if v > 0, we have for some positive constants ¢, ¢ depending only on

(€0,7,p)
f(&) = clglF = ¢ for all €.

If in addition f is twice differentiable at &y, then
D;; f(&0)&:&5 > 2vI€)*
PROOF . The idea is not new; take any &, ij and A € (0,1) such that

AE+ (1= N)ij = &o,

and set £ = £ — &y, n = 71 — &o, so that A& + (1 — A\)n = 0. Let Q be a unit
cube with an edge parallel to &, and fix a face I’ of () which is orthogonal
to &; for every positive integer m slice ) into m stripes orthogonal to
¢, and call F},, the union of their faces parallel to F', then divide again
each stripe in two, a stripe with thickness A/m, the other with thickness
(1—X)/m, and call Q),, QL-* the union of the A-stripes and the union of
the (1 — \)-stripes respectively (they are thus intertwined). Then we may
define a Lipschitz continuous function v,, on @) by setting

vm =0 on F,,

_ ¢ Q)
Dum = {77 in Q1A

In addition, max |v,,| = A|{|/m: therefore, if Qs is the cube concentric
with @) and whose side is 1+, we may extend v,,, to a Lipschitz continuous
function ¢,,, vanishing outside ()5 and such that

AlE
sup |Digw| < clle] + Il + ).

Q5\Q 0
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Set w(t) = sup{f(¢) : [(| < t}; then the quasiconvexity inequality yields
7 [ Dol 1Dl da+ (140" 6)

séf@+D%wm
13

mp opP

n / Wle(1+ 16ol? + 6P + InP + L)) do
Qs\Q

< [ $(60+ D) da + cofe(1+ ol + 67 + 117
Q
for m large enough, but Dy,, = Dv,, in ), hence
N
Do, — ¢ inQj,
R

thus
YIAEP + [€17) + (L= M) (Inl> + [n")] + (14 6)" f (&)
<A + (1= A)f(7)
+ cdwle(1 + |€ol” + [€1P + [n]?)]

for m large enough; by letting m — oo, then § — 0, we get

AF(E)+ (L =N f(@) = f(&) +7NEP +[EP) + (L= Nl + [nlP)]- (4.1)

From this we deduce in particular

A+ (L =N f(0) = f(&o),
and by taking the infimum for A\ + (1 — \)7j = &

(&) > f(&o)

thus proving the first assertion since the opposite inequality is obvious.

Set M (&) = max{f(& +n) : |n| < 1}, and take |n| =1 in (4.1), so
that A = 1/(1+£|); dropping |€]? and some other terms on the right-hand
side, we have

f(&) = —2M (&) (1 + [&]) +~[€1”
> —2M (§0) (1 + |&o| + [€]) — vI6ol” + 2! P1IEP7,
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and the second assertion follows easily.
Finally, this time dropping |£|P and |n|P, and taking n = —¢, so that
A = 1/2, we have again from (4.1)

[f (€0 + &) + f(&0 — &) — 2f(&0)] = VIEP,

N —

and the last assertion follows by taking & = t(, dividing by t? and letting
t—0.m

As an example, note that the function f(z) = z? —3z*+ 22 is convex
at 0, but it is not quasiconvex at 0, since f**(0) = —% < f(0).

We also remark that in the proof we did not fully use the continuity
of f, but almost only the fact that it is bounded on bounded sets.

Proposition 4.5 . Let f : R® — R be a locally Lipschitz continuous
function satisfying for some p > 2

[fOI<c+[eP),  IDFE]< e+

and such that the set of its regular points is not empty. Then this set is
{&: [** € C*(B,(&)) for some o >0, D?*f**(&)nn > 0 for all n # 0}.

PRroOOF . If there is at least a regular point, then by Proposition 4.4 we
have

f(&) = clglP = s (4.2)
take a regular point £y: by Lemma 2.2 a whole ball B, (&) is made of
regular points, so by Proposition 4.4 f(§) = f**(£) in B,(&): thus f** €
C?(By(&)) and (again by Proposition 4.4) D?f**(&,) is positive definite.

To prove the converse, assume f** is of class C? around &y, and

D2 f**(€) > 71 for [§ — &l < o; then necessarily f(§) = f**(£) in B, (&),
so f € C%(B,(&)) too. Now for [£ — &| < 0/2

F(&) > £(S0) + DF(€0) (€ — &) + 51 — &l (4.3)

and for |§ — &| > 0/2

2

F() 2 J(&0) + DI (60) (€ — &) + Lo (4.4)
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By (4.2) we have for a suitably large R that if | — &3] > R then
7€) 2 £(&) + DF(E)E — &) + 51 ~ & (4.5)
Now if A < ¢/2 satisfies
A2 +1P) < % for all t < R,
we immediately deduce from (4.3),(4.4),(4.5)

F(&) > f(&0) + Df(€0)(€ = &o) + A€ = &ol* + 1€ — &IP),

and the strict quasiconvexity at & follows immediately. m
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