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1. Introduction

In this paper we study the regularity of minimizers of the functional

I(u) =

∫

Ω

f
(

x, u(x), Du(x)
)

dx, (1.1)

where Ω ⊂ R
n is open, u : Ω → R

N , and f : Ω × R
N × R

nN → R is a
continuous function satisfying

|f(x, s, ξ)| ≤ L(1 + |ξ|p)

with p ≥ 2. This problem has been studied under various ellipticity as-
sumptions on f ; for the case when f is uniformly strictly convex in ξ,
i.e.,

fξξ(x0, s0, ξ0)ηη ≥ γ|η|2 (1.2)

for all (x0, s0, ξ0), see e.g. [10], and a comprehensive account in [8].
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If convexity is replaced by uniform strict quasiconvexity, i.e., there is
some γ > 0 such that

∫

spt ϕ

f
(

x0, s0, ξ0 +Dϕ(y)
)

dy

≥
∫

spt ϕ

[

f(x0, s0, ξ0) + γ
(

|Dϕ(y)|2 + |Dϕ(y)|p
)]

dy

(1.3)

for all ϕ ∈ C1
0 and all (x0, s0, ξ0), partial regularity of minimizers has

been studied in [5],[6] in the case independent of (x, u), in [7],[11] in the
case with (x, u), but with second derivatives with respect to ξ bounded by
|ξ|p−2, and in the general case in [2], see also [9].

These papers are motivated by the fact that in the vector-valued case
(N > 1) quasiconvexity, i.e., condition (1.3) with γ = 0, is essentially
equivalent to the semicontinuity of (1.1): see e.g. [15],[14],[1].

Of course the uniform ellipticity conditions (1.2) or (1.3) are not nec-
essary in order for the functional (1.1) to have a minimizer (this happens
for example if f(ξ) = |ξ|p with p 6= 2; however, this particular functional
may be treated in a special way as far as regularity is concerned, see e.g.
[16]).

A new kind of result has been recently proved in [3] which is useful for
studying regularity in cases of degenerate ellipticity, by showing that Du
is Hölder continuous near points where it is “close” to a value ξ0 where f
is uniformly strictly convex. Precisely, in the case independent of (x, u),
if f is convex and with growth p ≥ 1, and u is a minimizer of I, then if

lim
r→0

−
∫

Br(x0)

|Du− ξ0|p dx = 0

for some x0 such that (1.2) holds, and f is of class C2 in a neighbour-
hood of x0, then Du is Hölder continuous of any exponent α < 1 in a
neighbourhood of x0. A similar result is given when f depends also on
(x, u).

In the same spirit, we prove the following result (Theorem 2.1):

Let p ≥ 2, and let f : R
nN → R be a locally Lipschitz continuous function

satisfying

|f(ξ)| ≤ L(1 + |ξ|p), |Df(ξ)| ≤ L(1 + |ξ|p−1).
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Fix ξ0 ∈ R
nN such that f ∈ C2 in a neighbourhood of ξ0 and

∫

spt ϕ

f
(

ξ0 +Dϕ(y)
)

dy

≥
∫

spt ϕ

[

f(ξ0) + γ
(

|Dϕ(y)|2 + |Dϕ(y)|p
)]

dy for all ϕ ∈ C1
0 .

Then if u is a minimizer of
∫

f(Dv) dx and

lim
r→0

−
∫

Br(x0)

|Du− ξ0|p dx = 0,

there is a neighbourhood of x0 in which the function u is of class C1,α for

all α < 1.

An extension to the case with (x, u) is also provided (Theorem 3.1).
We remark that in the above theorem we do not require a global qua-

siconvexity assumption. On the other hand the theorem covers only the
case p ≥ 2; however, it is not clear whether a function which is genuinely
quasiconvex at some point ξ0 and has growth p < 2 may exist.

These result allow us to generalize the former partial regularity re-
sults of [5],[6],[2]: the strict quasiconvexity need no longer be uniform
(Corollaries 4.1 and 4.2).

The last part of the paper is devoted to the study of the set of regular
points in the scalar case N = 1; as an example, an application to an energy
functional of interest in nonlinear elasticity is also provided.
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2. The case independent of (x,u)

Let Ω be a bounded open subset of R
n, fix p ≥ 2 and let f : R

nN → R

satisfy:
f is locally Lipschitz continuous (2.1)

|f(ξ)| ≤ L(1 + |ξ|p) (2.2)

|Df(ξ)| ≤ L(1 + |ξ|p−1). (2.3)

We say that ξ0 ∈ R
nN is a regular point for f if there exist σ > 0, γ > 0

such that f ∈ C2
(

Bσ(ξ0)
)

and
∫

spt ϕ

f
(

ξ0 +Dϕ(x)
)

dx

≥
∫

spt ϕ

[

f(ξ0) + γ
(

|Dϕ(x)|2 + |Dϕ(x)|p
)]

dx

for every ϕ ∈ C1
0 (Rn; RN ).

Set for every u ∈W 1,p(Ω; RN )

I(u) =

∫

Ω

f
(

Du(x)
)

dx;

we say that u is a minimizer of I if

I(u) ≤ I(u+ ϕ) for every ϕ ∈W 1,p
0 (Ω; RN ).

Then we have:

Theorem 2.1 . Let f satisfy (2.1),(2.2),(2.3), and let u ∈ W 1,p(Ω; RN )
be a minimizer of I. If for some x0 ∈ Ω and some regular point ξ0

lim
r→0

−
∫

Br(x0)

|Du(x) − ξ0|p dx = 0

then in a neighbourhood of x0 the function u is of class C1,α for all α < 1.

In the sequel we denote by the same letter c any positive constant,
which may vary from line to line; if ϕ is any vector-valued function, we
denote by (ϕ)x0,r or simply by (ϕ)r the mean value of ϕ onBr(x0). Finally,
we set

gp(t) = |t|2 + |t|p.
We shall use the following lemmas:
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Lemma 2.2 . Let f satisfy (2.1),(2.2),(2.3) and let ξ0 be a regular point

for f , i.e.,
∫

spt ϕ

f
(

ξ0 +Dϕ(y)
)

dy

≥
∫

spt ϕ

[

f(ξ0) + γgp

(

Dϕ(y)
)]

dy for all ϕ ∈ C1
0 (Rn; RN )

and f ∈ C2
(

B2σ(ξ0)
)

. There exists ̺ > 0 such that for every ξ ∈ B̺(ξ0)
∫

spt ϕ

f
(

ξ +Dϕ(y)
)

dy

≥
∫

spt ϕ

[

f(ξ) +
γ

2
gp

(

Dϕ(y)
)]

dy for all ϕ ∈ C1
0 (Rn; RN ).

(2.4)

Proof . Set ω̺ = sup{|D2f(ξ) − D2f(η)| : ξ, η ∈ Bσ(ξ0), |ξ − η| < ̺},
and fix ξ such that |ξ − ξ0| < ̺ < σ/2. Then

∫

Ω

[f(ξ +Dϕ) − f(ξ)] dy

=

∫

Ω

[f(ξ0 +Dϕ) − f(ξ0)] dy

+

∫

Ω

[G(Dϕ) −G(0) −DG(0)Dϕ] dy,

(2.5)

where we set
G(η) = f(ξ + η) − f(ξ0 + η).

The first integral which appears at the right hand side of (2.5) is greater
than

∫

Ω
γgp(Dϕ) dy. As for the second, we can set

Sσ = {y ∈ Ω : |Dϕ(y)| ≤ σ/2}, Lσ = {y ∈ Ω : |Dϕ(y)| > σ/2};
remarking that G(Dϕ) − G(0) − DG(0)Dϕ = 1

2
D2G(ϑDϕ)DϕDϕ with

0 < ϑ < 1, and that ξ +Dϕ(y) ∈ Bσ(ξ0) for y ∈ Sσ, we have
∫

Ω

[f(ξ +Dϕ) − f(ξ)] dy

≥
∫

Ω

γgp(Dϕ) dy − ω̺

2

∫

Sσ

gp(Dϕ) dy

+

∫

Lσ

[G(Dϕ) −G(0) −DG(0)Dϕ] dy.

(2.6)
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Set

H(η, y) = f
(

η +Dϕ(y)
)

− f(η) −Df(η)Dϕ(y),

and

Mσ = sup{|D2f(η)| : η ∈ Bσ(ξ0)};

we remark that the last integral may be written
∫

Lσ
[H(ξ, y)−H(ξ0, y)] dy,

therefore its absolute value is bounded by

∫

Lσ

|ξ − ξ0||DηH(τ, y)| dy

≤ |ξ − ξ0|
∫

Lσ

[|Df(τ +Dϕ) −Df(τ)| +Mσ|Dϕ|] dy

≤ c(σ, |ξ0|, L)|ξ − ξ0|
∫

Lσ

(1 + |Dϕ| + |Dϕ|p−1) dy

≤ c̺̃

∫

Lσ

gp(Dϕ) dy.

If we choose ̺ such that 1
2
ω̺ + c̺̃ < 1

2
γ, the result follows from (2.6).

Lemma 2.3 . Let f satisfy (2.1),(2.2),(2.3) and assume f ∈ C2
(

Bσ(ξ0)
)

.

Set for all λ > 0 and ξ, η ∈ R
nN

fξ,λ(η) = λ−2[f(ξ + λη) − f(ξ)− λDf(ξ)η].

There exists c > 0 such that for every ξ ∈ Bσ/3(ξ0)

|fξ,λ(η)| ≤ c(|η|2 + λp−2|η|p), |Dfξ,λ(η)| ≤ c(|η| + λp−2|η|p−1).

Proof . Set K = max{|D2f(η)| : |η − ξ0| < 2σ/3}; then

|λη| ≤ σ/3 ⇒ |fξ,λ(η)| =
1

2
|D2f(ξ + ϑλη)ηη| ≤ 1

2
K|η|2;

|λη| > σ/3 ⇒ |fξ,λ(η)| ≤ λ−2c(σ)(1 + |λη| + |λη|p) ≤ c(σ)λp−2|η|p,

and the first inequality is proven. The second is analogous.

The following result may be easily derived from [8], p. 161.



Local Regularity for Minimizers of non Convex Integrals 7

Lemma 2.4 . Let f : [ r
2 , r] → [0,+∞) be a bounded function satisfying

f(t) ≤ ϑf(s) +
A

(s− t)2
+

B

(s− t)p
+D

for some 0 < ϑ < 1 and all r
2
≤ t < s ≤ r. Then there exists a constant

c(ϑ, p) such that

f
(r

2

)

≤ c
(A

r2
+
B

rp
+D

)

.

The following lemma may be found in [2], Lemma II.4; since we will
later refer to the proof, we include it for the readers’ convenience.

Lemma 2.5 . Let g : R
nN → R be a locally Lipschitz continuous function

satisfying

|g(ξ)| ≤ c1(|ξ|2 + λp−2|ξ|p), |Dg(ξ)| ≤ c1(|ξ|+ λp−2|ξ|p−1),

∫

g(Dϕ) dx ≥ γ

∫

[|Dϕ|2 + λp−2|Dϕ|p] dx for all ϕ ∈ C1
0 (Rn; RN )

for suitable constants c1, λ and γ. Fix ν ≥ 0 and let u ∈ W 1,p(Ω; RN )
satisfy

∫

Ω

g(Du) dx ≤
∫

Ω

[g(Du+Dϕ) + ν|Dϕ|] dx for all ϕ ∈W 1,p
0 (Ω; RN ).

Then there exists c2 > 0, depending only on c1, γ, such that for every

Br ⊂ Ω

−
∫

Br/2

(|Du|2 + λp−2|Du|p) dx

≤ c2 −
∫

Br

(

ν2 +
|u− (u)r|2

r2
+ λp−2 |u− (u)r|p

rp

)

dx.

Proof . Fix Br ⊂ Ω, let r
2 < t < s < r and take a cut-off function

ζ ∈ C1
0 (Bs) such that 0 ≤ ζ ≤ 1, ζ = 1 on Bt and |Dζ| ≤ 2

s−t . If we set

ϕ1 = [u− (u)r]ζ, ϕ2 = [u− (u)r](1 − ζ),
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then Dϕ1 +Dϕ2 = Du, and

γ

∫

Bs

[|Dϕ1|2 + λp−2|Dϕ1|p] dx

≤
∫

Bs

g(Dϕ1) dx =

∫

Bs

g(Du−Dϕ2) dx.

(2.7)

In addition, by the minimality of u,

∫

Bs

g(Du) dx

≤
∫

Bs

g(Du−Dϕ1) dx+ ν

∫

Bs

|Dϕ1| dx

≤
∫

Bs\Bt

g(Dϕ2) dx+
γ

2

∫

Bs

|Dϕ1|2 dx+
ν2

2γ
meas (Br).

Then

∫

Bs

g(Du−Dϕ2) dx

=

∫

Bs

g(Du) dx+

∫

Bs

[g(Du−Dϕ2) − g(Du)] dx

≤
∫

Bs\Bt

g(Dϕ2) dx+
γ

2

∫

Bs

|Dϕ1|2 dx+
ν2

2γ
meas (Br)

+ c

∫

Bs\Bt

[|Du| + |Dϕ2|

+ λp−2(|Du|p−1 + |Dϕ2|p−1)]|Dϕ2| dx.

(2.8)

By (2.7),(2.8) and the assumptions on g it then follows

∫

Bt

[|Du|2 + λp−2|Du|p] dx

≤
∫

Bs

[|Dϕ1|2 + λp−2|Dϕ1|p] dx

≤ c(γ, c1)

[

ν2rn +

∫

Bs\Bt

[|Du|2 + |Dϕ2|2
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+ λp−2(|Du|p + |Dϕ2|p)] dx
]

≤ c̃

[

ν2rn +

∫

Bs\Bt

[|Du|2 + λp−2|Du|p] dx

+

∫

Bs\Bt

( |u− (u)r|2
(s− t)2

+ λp−2 |u− (u)r|p
(s− t)p

)

dx

]

.

We fill the hole by adding to both sides the term

c̃

∫

Bt

[|Du|2 + λp−2|Du|p] dx;

then we divide by c̃+ 1, thus obtaining

∫

Bt

[|Du|2 + λp−2|Du|p] dx

≤ ϑ

∫

Bs

[|Du|2 + λp−2|Du|p] dx

+ c

∫

Br

[

ν2 +
|u− (u)r|2
(s− t)2

+ λp−2 |u− (u)r|p
(s− t)p

]

dx,

with ϑ < 1, and the result follows by Lemma 2.4.

In the sequel we assume that f satisfies (2.1),(2.2),(2.3), and that ξ0
is a regular point for f , so that (2.4) holds in B̺(ξ0) and we may assume
that f ∈ C2(B4̺). If u is a minimizer of I(u) =

∫

Ω
f(Du) dx, for every

Br(x0) ⊂ Ω we define

U(x0, r) = −
∫

Br(x0)

gp

(

Du− (Du)r

)

dx.

The main ingredient to prove Theorem 2.1 is the following decay estimate:

Proposition 2.6 . There is a constant C, depending only on ξ0, such

that for every τ < 1/4 there exists ε(τ) such that if u is a minimizer of

I(u) and

|(Du)x0,r − ξ0| < ̺, |(Du)x0,τr − ξ0| < ̺, U(x0, r) < ε
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then

U(x0, τr) < Cτ2U(x0, r).

Proof . Fix τ ; we shall determine C later. Reasoning by contradiction,
we assume that there is a sequence of balls Brh

(xh) ⊂ Ω satisfying

|(Du)xh,rh
− ξ0| < ̺, |(Du)xh,τrh

− ξ0| < ̺, U(xh, rh) = λ2
h → 0,

and
U(xh, τrh) > Cτ2λ2

h. (2.9)

Set Ah = (Du)xh,rh
, ah = (u)xh,rh

, Ãh = (Du)xh,τrh
, and

vh(z) =
u(xh + rhz) − ah − rhAhz

λhrh
,

so that

(vh)0,1 = 0, −
∫

B1

λ−2
h gp(λhDvh) dz = −

∫

B1

(|Dvh|2 +λp−2
h |Dvh|p) dz = 1.

Then we may assume

vh ⇀ v weakly in W 1,2(B1; R
N ),

λ
1−2/p
h vh ⇀ 0 weakly in W 1,p(B1; R

N )

and also Ah → A. Set Lh = {z ∈ B1 : λh|Dvh(z)| ≥ ̺}, Sh = B1 \ Lh;
then

measLh ≤ λ2
h̺

−2,

∫

Lh

|Dvh|p−1 dz ≤ λ3−p
h ̺−2/p. (2.10)

Now fix ϕ ∈ C1
0 (B1; R

N ): by the minimality of u
∫

B1

[f(λhDvh + Ah + tDϕ) − f(λhDvh + Ah)] dz ≥ 0.

Dividing by t > 0 we have

1

t

∫

Sh

[f(λhDvh +Ah + tDϕ) − f(λhDvh + Ah)] dz

≥ −
∫

Lh

f(λhDvh + Ah + tDϕ) − f(λhDvh + Ah)

t
dz

≥ −cϕ
∫

Lh

(1 + λp−1
h |Dvh|p−1) dz

≥ −cϕ,̺ λ
2
h
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by (2.10). If t is smaller than ̺/‖ϕ‖C1 , in the first integral above the
argument of f is always inB3̺(ξ0), and the integrand is bounded, therefore
as t→ 0 we have

∫

Sh

Df(λhDvh +Ah)Dϕdz ≥ −cλ2
h.

Again by (2.10)

1

λh

∫

Sh

[Df(λhDvh +Ah) −Df(Ah)]Dϕdz

≥ −cλh +
1

λh

∫

Lh

Df(Ah)Dϕdz ≥ −cλh.

This may be written also as

∫

B1

∫ 1

0

D2f(Ah + sλhDvh)1Sh
DvhDϕds dz ≥ −cλh, (2.11)

and remarking that λhDvh → 0 a.e. we have as h→ ∞
∫

B1

D2f(A)DvDϕdz ≥ 0,

which yields
∫

B1
D2f(A)DvDϕdz = 0 for every ϕ ∈ C1

0 (B1; R
N ). Then

v solves a linear system with constant coefficients; remarking that (2.4)
implies D2f(A)λiλjηαηβ ≥ γ

2 |λ|2|η|2, by the standard regularity theory
we have for every τ < 1/4

−
∫

B2τ

|Dv − (Dv)2τ |2 ≤ cτ2. (2.12)

Set

wh = vh − Ãh −Ah

λh
z

and remark that

Ãh − Ah

λh
= (Dvh)τ , (wh)s = (vh)s for all s < 1,
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and wh minimizes
∫

B1
fÃh,λh

(Dψ) dz; therefore Lemma 2.5 holds with
ν = 0, and

U(xh, τrh) = −
∫

Bτrh
(xh)

gp(Du) dx

= −
∫

Bτ

gp

[

λh

(

Dvh − (Dvh)τ

)]

dz

= −
∫

Bτ

gp(λhDwh) dz

≤ c̃−
∫

B2τ

gp

(

λh
wh − (wh)2τ

τ

)

dz

= c̃−
∫

B2τ

gp

(

λh
vh − (vh)2τ − (Dvh)τz

τ

)

dz

= c̃λ2
h

[

−
∫

B2τ

|vh − (vh)2τ − (Dvh)τz|2
τ2

dz

+ λp−2
h −

∫

B2τ

|vh − (vh)2τ − (Dvh)τz|p
τp

dz

]

= c̃λ2
h(I1

h + I2
h).

(2.13)

By the Sobolev-Poincaré inequality and (2.12)

lim
h→∞

I1
h = τ−2 −

∫

B2τ

|v − (v)2τ − (Dv)τz|2 dz

≤ c−
∫

B2τ

|Dv − (Dv)τ |2 dz

≤ c−
∫

B2τ

|Dv − (Dv)2τ |2 dz + c|(Dv)τ − (Dv)2τ |2

≤ cτ2 + c−
∫

Bτ

|Dv − (Dv)2τ |2 dz

≤ cτ2 + c−
∫

B2τ

|Dv − (Dv)2τ |2 dz

≤ ĉτ2,

(2.14)
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whereas if ϑ
2 + 1−ϑ

p∗
= 1

p we have

I2
h ≤ λp−2

h

(

−
∫

B2τ

τ−2|vh − (vh)2τ − (Dvh)τz|2 dz
)pϑ/2

·

·
(

−
∫

B2τ

τ−p∗ |vh − (vh)2τ − (Dvh)τz|p
∗

dz

)p(1−ϑ)/p∗

≤ cλp−2
h (I1

h)pϑ/2

(

−
∫

B2τ

|Dvh − (Dvh)τ |p dz
)1−ϑ

≤ cτpϑλ
(p−2)ϑ
h

[

−
∫

B2τ

λp−2
h |Dvh|p dz + −

∫

Bτ

λp−2
h |Dvh|p dz

]

≤ cτλ
(p−2)ϑ
h ,

so that
lim

h→∞
I2
h = 0. (2.15)

By (2.13),(2.14),(2.15) we get

lim sup
h→∞

λ−2
h U(xh, τrh) ≤ c̃ĉτ2,

which contradicts (2.9) if we chose C > c̃ĉ.
The fact (which we do not need in the sequel) that C does not depend

on the particular minimizer u, could have been proven by taking a different
minimizer uh in each Brh

(xh).

Proposition 2.7 . Let ξ0 be a regular point for f , and take α < 1; if

C is as in Proposition 2.6, fix τ < 1/4 such that Cτ2 < τ2α. Let u be a

minimizer of I and assume that for some Br(x0) ⊂ Ω

|(Du)x0,r − ξ0| < ̺/2, |(Du)x0,τr − ξ0| < ̺/2, U(x0, r) < δ(τ),

where δ(τ) < min{ε(τ), ̺2τ2n(1 − τα)2/4}. Then for every k

|(Du)x0,τk+1r − ξ0| < ̺, U(x0, τ
kr) < τ2kαU(x0, r). (2.16)

Proof . The result is true for k = 0; we proceed by induction, assuming
(2.16) holds for 0 ≤ k ≤ m − 1. Then U(x0, τ

m−1r) < ε(τ), and by
Proposition 2.6 we have

U(x0, τ
mr) ≤ Cτ2U(x0, τ

m−1r) ≤ τ2ατ2(m−1)αU(x0, r) = τ2mαU(x0, r).
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Now,

|(Du)τm+1r − ξ0| ≤ |(Du)r − ξ0| +
m

∑

k=0

|(Du)τk+1r − (Du)τkr|

≤ ̺

2
+

m
∑

k=0

−
∫

B
τk+1r

|Du− (Du)τkr| dx

≤ ̺

2
+ τ−n

m
∑

k=0

[

−
∫

B
τkr

|Du− (Du)τkr|2 dx
]1/2

≤ ̺

2
+ τ−n

m
∑

k=0

[U(x0, τ
kr)]1/2

≤ ̺

2
+ τ−n

m
∑

k=0

τkα[U(x0, r)]
1/2

≤ ̺

2
+

1

τn(1 − τα)
[δ(τ)]1/2 < ̺,

thus concluding the proof.

Proof of Theorem 2.1 . Suppose ξ0 is a regular point and

lim
r→0

−
∫

Br(x0)

|Du− ξ0|p dx = 0;

fix a particular α̂ < 1: for a suitable r > 0 the assumptions of Proposition
2.7 are verified uniformly in a neighbourhood of x0, i.e.,

|(Du)x,r − ξ0| < ̺, |(Du)x,τr − ξ0| < ̺, U(x, r) < ε

for all x ∈ Bs(x0). Then (2.16) implies

U(x, ̺) ≤ c
(̺

r

)2α̂

U(x, r) for all x ∈ Bs(x0),

and u ∈ C1,α̂
(

Bs(x0)
)

by a standard argument — see e.g. [8], Chapter 3.
Since Du is now continuous, by Lemma 2.2 we may suppose that s is

so small that Du(x) is a regular point for f for all x ∈ Bs(x0); moreover,
clearly

lim
r→0

−
∫

Br(x)

|Du(y) −Du(x)|p dy = 0 for all x ∈ Bs(x0).

Now fix any α < 1: the same argument employed above shows that
u ∈ C1,α in a neighbourhood of x for all x ∈ Bs(x0), therefore u ∈
C1,α

(

Bs(x0)
)

for all α < 1.
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3 . The case with (x,u)

Let Ω be a bounded open subset of R
n, fix p ≥ 2 and assume that

f : Ω × R
N × R

nN → R satisfies:

f(x, s, ξ) is locally Lipschitz continuous with respect to ξ; (3.1)

|f(x, s, ξ)| ≤ L(1 + |ξ|p); (3.2)

|fξ(x, s, ξ)| ≤ L(1 + |ξ|p−1); (3.3)

|f(x, s, ξ)− f(y, t, ξ)| ≤ L(1 + |ξ|p)ω(|x− y|p + |s− t|p), (3.4)

where ω(t) ≤ tδ, 0 < δ < 1/p, and ω is bounded, concave and increasing;

f(x, s, ξ) ≥ ψ(ξ) (3.5)

for a suitable continuous function ψ satisfying
∫

Ω

ψ
(

Dϕ(y)
)

dy ≥
∫

Ω

[ψ(0) + µ|Dϕ(y)|p] dy for all ϕ ∈ C1
0 (Ω; RN ),

with µ > 0; finally, we assume that

either f ≥ 0 or f is quasiconvex. (3.6)

We remark that if f is quasiconvex then (3.3) is implied by (3.2); assump-
tion (3.5) was introduced in [12].

We say that (x0, s0, ξ0) is a regular point for f if there exist σ > 0,
γ > 0 such that for every x ∈ Bσ(x0) and s ∈ Bσ(s0) the function f(x, s, ·)
is of class C2 in Bσ(ξ0), and

∫

spt ϕ

f
(

x, s, ξ +Dϕ(y)
)

dy

≥
∫

spt ϕ

[f(x, s, ξ) + γ(|Dϕ(y)|2 + |Dϕ(y)|p)] dy

for every x ∈ Bσ(x0), s ∈ Bσ(s0), ξ ∈ Bσ(ξ0) and ϕ ∈ C1
0 (Rn; RN ).

Set for every u ∈W 1,p(Ω; RN )

I(u) =

∫

Ω

f
(

x, u(x), Du(x)
)

dx;

then we have:
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Theorem 3.1 . Let f satisfy (3.1),. . . ,(3.6) and let u ∈ W 1,p(Ω; RN ) be

a minimizer of I. Then there exists α ∈ (0, 1) such that if for some regular

point (x0, s0, ξ0) of f we have

lim
r→0

−
∫

Br(x0)

[|u(x) − s0|p + |Du(x) − ξ0|p] dx = 0

then u is of class C1,α in a neighbourhood of x0.

In the proof we shall use the following results:

Lemma 3.2 . Let (X, d) be a metric space, and J : X → [0,+∞] a lower

semicontinuous functional not identically +∞. If

J(u) ≤ α+ inf J,

there is a v ∈ X such that

d(u, v) ≤ 1

and

J(v) ≤ J(w) + αd(v, w) for all w ∈ X.

The result above may be found in [4], the next one in [8], p. 122.

Lemma 3.3 . Let Q be a cube in R
n, and suppose that for every ball

Br(x0) ⊂ Q such that 2r < min{r0, dist (x0, ∂Q)}

−
∫

Br/2

gq dx ≤ a

(

−
∫

Br

g dx

)q

+ −
∫

Br

f q dx

with f ∈ Lk(Q), k > q. Then g ∈ Lq+ǫ
loc (Q) for some positive ǫ(a, q, k) and

(

−
∫

Br/2

gq+ǫ dx

)1/(q+ǫ)

≤ c

[(

−
∫

Br

gq dx

)1/q

+

(

−
∫

Br

f q+ǫ dx

)1/(q+ǫ)]

.

Lemma 3.4 . Let f satisfy (3.1),(3.2),(3.3),(3.5); there are q0 > p and

c0 > 0, depending only on µ, L, p, such that if u ∈ W 1,p(Ω; RN ) is a

minimizer of I, then u ∈W 1,q0

loc (Ω; RN ) and for every Br ⊂ Ω

(

−
∫

Br/2

|Du|q0 dx

)1/q0

≤ c0

(

−
∫

Br

(1 + |Du|p) dx
)1/p

.
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Proof . The argument is similar to Lemma 2.5; fix Br ⊂ Ω, let r
2 < t <

s < r, take the cut-off function ζ of 2.5, and again set

ϕ1 = [u− (u)r]ζ, ϕ2 = [u− (u)r](1 − ζ);

then ϕ1 + ϕ2 = u− (u)r and Dϕ1 +Dϕ2 = Du. Now, by (3.5)

∫

Bs

[µ|Dϕ1|p + ψ(0)] dx

≤
∫

Bs

ψ(Dϕ1) dx

≤
∫

Bs

f(x, u,Dϕ1) dx

=

∫

Bs

f(x, u,Du−Dϕ2) dx.

(3.7)

By the minimality of u we have

∫

Bs

f(x, u,Du) dx

≤
∫

Bs

f(x, u− ϕ1, Du−Dϕ1) dx

=

∫

Bs

f(x, ϕ2 + (u)r, Dϕ2) dx

=

∫

Bs\Bt

f(x, ϕ2 + (u)r, Dϕ2) dx+

∫

Bt

f(x, (u)r, 0) dx,

so that by (3.2)

∫

Bs

f(x, u,Du) dx ≤ L

∫

Bs\Bt

|Dϕ2|p dx+ crn,
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and by (3.3)

∫

Bs

f(x, u,Du−Dϕ2) dx

=

∫

Bs

f(x, u,Du) dx

+

∫

Bs

[f(x, u,Du−Dϕ2) − f(x, u,Du)] dx

≤
∫

Bs

f(x, u,Du) dx

+ c

∫

Bs\Bt

(1 + |Du|p−1 + |Dϕ2|p−1)|Dϕ2| dx

≤ crn + c

∫

Bs\Bt

(|Dϕ2|p + |Du|p) dx

≤ crn + c

∫

Bs\Bt

(

|Du|p +
|u− (u)r|p
(s− t)p

)

dx.

Then by (3.7) we obtain

µ

∫

Bs

|Dϕ1|p dx ≤ c

∫

Bs\Bt

|Du|p dx+ c

∫

Br

(

1 +
|u− (u)r|p
(s− t)p

)

dx, (3.8)

therefore

∫

Bt

|Du|p dx ≤ c

∫

Bs\Bt

|Du|p dx+ c

∫

Br

(

1 +
|u− (u)r|p
(s− t)p

)

dx;

we fill the hole, and by Lemma 2.4 we obtain

−
∫

Br/2

|Du|p dx ≤ c−
∫

Br

(

1 +
|u− (u)r|p

rp

)

dx ≤ c

(

−
∫

Br

(1 + |Du|p∗) dx

)p/p∗

,

where p∗ = np/(n+ p). The conclusion then follows by Lemma 3.3.

Lemma 3.5 . Let f satisfy (3.1),(3.2),(3.3),(3.5) and fix any (x̂, ŝ). Let

B ⊂ Ω be a ball, and let u ∈ W 1,q(B; RN ) with q > p. There exist q0 ∈
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(p, q) and c0 > 0, depending only on µ, L, p, q, such that if 0 ≤ η < 2−pµ
and v ∈ u+W 1,p

0 (B; RN ) satisfies

∫

B

f(x̂, ŝ, Dv) dx

≤
∫

B

[f(x̂, ŝ, Dv +Dϕ) + η|Dϕ|] dx for all ϕ ∈ W 1,p
0 (B; RN )

then v ∈W 1,q0(B; RN ) and

(

−
∫

B

|Dv|q0 dx

)1/q0

≤ c0

[(

−
∫

B

(1+|Dv|p) dx
)1/p

+

(

−
∫

B

(1+|Du|q) dx
)1/q]

.

Proof . We begin with the interior estimate; fix any ball Br(x0) ⊂ B,
and let t, s and ζ be as in Lemma 3.4; define

ϕ1 = [v − (v)r]ζ, ϕ2 = [v − (v)r](1 − ζ).

Following the proof of Lemma 3.4, an additional term η
∫

Bs
|Dϕ1| dx ap-

pears, and instead of (3.8) we are led to

µ

∫

Bs

|Dϕ1|p dx ≤ c

∫

Bs\Bt

|Dv|p dx+ c

∫

Br

(

1 +
|v − (v)r|p
(s− t)p

)

dx

+ η

∫

Bs

|Dϕ1| dx;

by the bounds on η we have

η

∫

Bs

|Dϕ1| dx ≤ µ

2

∫

Bs

(1 + |Dϕ1|p) dx,

and we may conclude, as in Lemma 3.4, that if Br(x0) ⊂ B then

−
∫

Br/2

|Dv|p dx ≤ c

(

−
∫

Br

(1 + |Dv|p∗) dx

)p/p∗

. (3.9)

Now we estimate v near the boundary: assume Br(x0) ∩B 6= ∅, Br(x0) ∩
(Rn \B) 6= ∅, and fix t, s, ζ as before; define

ϕ1 = (v − u)ζ, ϕ2 = (v − u)(1 − ζ),
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so that ϕ1 ∈ W 1,p
0 (Bs ∩ B). Following again the proof of Lemma 3.4 we

find

µ

∫

Bs∩B

|Dϕ1|p dx

≤
∫

Bs∩B

{

−ψ(0) + f(x̂, ŝ, Du−Dϕ2)

+
[

f
(

x̂, ŝ, Dv − (Du+Dϕ2)
)

− f(x̂, ŝ, Dv)
]}

dx

+ η

∫

Bs∩B

|Dϕ1| dx.

The last integral is dealt with as above, and using (3.2),(3.3) we have

µ

2

∫

Bt∩B

|Dv −Du|p dx

≤ c

∫

Bs∩B

[1 + |Du|p + |Dϕ2|p] dx

+ c

∫

Bs∩B

(|Dv −Du|p−1 + |Dϕ2|p−1 + |Dv|p−1)·

· |Du+Dϕ2| dx

≤ cµ

∫

Bs∩B

(1 + |Du|p + |Dϕ2|p) dx

+
µ

4

∫

Bs∩B

|Dv −Du|p dx,

so that
∫

Bt∩B

|Dv −Du|p dx

≤ c

∫

(Bs\Bt)∩B

|Dv −Du|p dx

+ c

∫

Br∩B

(

1 + |Du|p +
|u− v|p
(s− t)p

)

dx.

The usual hole-filling argument and Lemma 2.4 yield
∫

Br/2∩B

|Dv −Du|p dx ≤ c

∫

Br∩B

(1 + |Du|p) dx+ cr−p

∫

Br∩B

|v − u|p dx.
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Since v − u can be extended as zero outside B, and since the measure of
B2r \ B is greater than cnr

n, we may apply a modification of Sobolev-
Poincaré inequality, and we have

∫

Br∩B

|v − u|p dx ≤ c

(
∫

B2r∩B

|Dv −Du|p∗ dx

)p/p∗

,

so that

∫

Br/2∩B

|Dv|p dx

≤ c

∫

B2r∩B

(1 + |Du|p) dx+ cr−p

(
∫

B2r∩B

|Dv|p∗ dx

)p/p∗

.

(3.10)
Then if we set

V (x) =
{ |Dv|p∗ in B

0 outside B
U(x) =

{

1 + |Du|p in B
0 outside B

by (3.9),(3.10) we have for any ball Br in R
n

−
∫

Br/2

V p/p∗ dx ≤ c

(

−
∫

B2r

V dx

)p/p∗

+ c−
∫

B2r

U dx,

with U ∈ Lq/p(Rn). Aplying Lemma 3.3 the result follows.

Lemma 3.6 . Let f satisfy (3.1),(3.2),(3.5) and fix any (x̂, ŝ). If B is any

ball in R
n, and u ∈W 1,p(B; RN ), then the functional

∫

B
f
(

x̂, ŝ, Dw(x)
)

dx
satisfies

∫

B

f
(

x̂, ŝ, Dw(x)
)

dx ≥ µ

∫

B

|Dw|p dx− c

∫

B

(1 + |Du|p) dx

for every w ∈ u+W 1,p
0 (B; RN ); moreover, if f is also quasiconvex with re-

spect to ξ, then the functional
∫

B
f
(

x̂, ŝ, Dw(x)
)

dx is sequentially weakly

semicontinuous on u+W 1,p
0 (B; RN ).

Proof . The semicontinuity on the Dirichlet classes follows from [14],
Theorem 5.
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Let B′ be the ball with same center as B, and twice the radius, and
let ũ ∈ (u)B +W 1,p

0 (B′; RN ) be an extension of u such that
∫

B′
|Dũ|p dx ≤

c
∫

B
|Du|p dx; if we set for every w ∈ u+W 1,p

0 (B; RN )

w̃ =

{

w in B
ũ in B′ \B,

then by (3.5)

∫

B′

[µ|Dw̃|p + ψ(0)] dx

≤
∫

B′

f(x̂, ŝ, Dw̃) dx

≤
∫

B

f(x̂, ŝ, Dw) dx+ c

∫

B′\B

(1 + |Dũ|p) dx,

and the result follows.

Lemma 3.7 . Let f satisfy (3.1), . . . ,(3.6). There exist two constants,

0 < β1 < β2 < 1, a radius r0 < 1, and for every K > 0 a constant cK , such

that if u is a minimizer of I, r < r0, B2r(x0) ⊂ Ω and (|Du|p)x0,2r ≤ K

then there is a v ∈ u+W 1,p
0

(

Br(x0); R
N

)

such that

(

−
∫

Br

|Dv −Du|p dx
)1/p

≤ cKr
β1

and
∫

Br

f
(

x0, (u)x0
, r), Dv(x)

)

dx

≤
∫

Br

f
(

x0, (u)x0
, r), Dv(x) +Dϕ(x)

)

dx+ rβ2

∫

Br

|Dϕ(x)| dx

for every ϕ ∈ C1
0

(

Br(x0); R
N

)

.

Proof . By Lemma 3.4 and the minimality of u follows the existence of
q0 > p and c0 > 0 such that u ∈W 1,q0

loc (Ω; RN ) and

(

−
∫

Br

|Du|q0 dx

)1/q0

≤ c0

(

−
∫

B2r

(1 + |Du|p) dx
)1/p

(3.11)
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for every B2r ⊂ Ω. Set

I0
r (w) = −

∫

Br(x0)

f
(

x0, (u)x0,r, Dw(x)
)

dx

and

J(w) =

{

I0
r (w) if w ∈ u+W 1,p

0 (Br; R
N )

+∞ otherwise.

We claim that
I0
r (u) − inf J ≤ c̃(K)rβ, (3.12)

where β < 1 depends only on δ, L, p, µ.

First case . We assume that in (3.6) the condition f ≥ 0 holds.

Denote by (uh) a sequence in u+W 1,p
0 (Br; R

N ) such that

I0
r (uh) − inf J ≤ 1/h,

and consider the functional J on the space u + W 1,1
0 (Br; R

N ) endowed
with the metric

d1(v, w) = −
∫

Br

|Dv −Dw| dx.

Since f ≥ 0, by Fatou’s lemma J is semicontinuous in this space; we
may then apply Lemma 3.2, so that there exists a sequence (vh) in u +
W 1,1

0 (Br; R
N ) such that

−
∫

Br

|Dvh −Duh| dx ≤ 1

and

J(vh) ≤ J(w) +
1

h
−
∫

Br

|Dvh −Dw| dx for all w ∈W 1,p
0 (Br; R

N ). (3.13)

In particular J(vh) ≤ J(uh) + 1/h, hence

lim
h→∞

J(vh) = inf J (3.14)

and J(vh) is finite. Therefore vh ∈ u+W 1,p
0 (Br; R

N ) and by Lemma 3.6

−
∫

Br

|Dvh|p dx ≤ c−
∫

Br

(1 + |Du|p) dx. (3.15)
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Moreover by (3.13) we may apply Lemma 3.5 for h large enough, and there
exist c1 and q1 ∈ (p, q0) such that vh ∈W 1,q1(Br; R

N ) and

(

−
∫

Br

|Dvh|q1 dx

)1/q1

≤ c1

(

−
∫

Br

(1 + |Dvh|p) dx
)1/p

+

(

−
∫

Br

(1 + |Du|q0) dx

)1/q0

≤ c

(

−
∫

B2r

(1 + |Du|p) dx
)1/p

,

(3.16)
where we used (3.15) and (3.11). Now

I0
r (u) − I0

r (vh) ≤ −
∫

Br

[

f
(

x0, (u)r, Du
)

− f(x, u,Du)
]

dx

+ −
∫

Br

[f(x, u,Du)− f(x, vh, Dvh)] dx

+ −
∫

Br

[

f(x, vh, Dvh) − f
(

x0, (u)r, Dvh

)]

dx

= ah + bh + ch.

Then by (3.4)

|ah| ≤ −
∫

Br

L(1 + |Du|p)ω(rp + |u− (u)r|p) dx

≤ L

(

−
∫

Br

(1 + |Du|q0) dx

)p/q0

·

·
(

−
∫

Br

ωq0/(q0−p)(rp + |u− (u)r|p) dx
)1−p/q0

.

Since ω is bounded and concave,

|ah| ≤ c

(

−
∫

Br

(1 + |Du|q0) dx

)p/q0

ω1−p/q0

(

crp −
∫

Br

(1 + |Du|p) dx
)

≤ c

(

−
∫

B2r

(1 + |Du|p) dx
)1+δ(q0−p)/q0

rδp(q0−p)/q0

≤ c1(K)rδp(q0−p)/q0



Local Regularity for Minimizers of non Convex Integrals 25

by (3.11). Analogously

|ch| ≤ c

(

−
∫

Br

(1 + |Dvh|q1) dx

)p/q1

·

· ω1−p/q1

(

crp −
∫

Br

(1 + |Du|p + |D(vh − u)|p) dx
)

≤ c2(K)rδp(q1−p)/q1

by (3.15),(3.16). Since bh ≤ 0 by the minimality of u, we deduce from the
estimates above

I0
r (u) − I0

r (vh) ≤ c̃(K)rβ,

with β = δp(q1 − p)/q1, which together with (3.14) proves (3.12) in the
first case; the idea of passing to the sequence (vh) was first used in [13].

Second case . We assume that in (3.6) the quasiconvexity condition
holds.

In this case, by Lemma 3.6 the functional J is semicontinuous, and
has a minimum point ū ∈ u+W 1,p

0 (Br; R
N ) which satisfies

∫

Br

|Dū|p dx ≤ c

∫

Br

(1 + |Du|p) dx;

then, by Lemma 3.5 applied with η = 0, there exist c1 and q1 ∈ (p, q0)
such that ū ∈W 1,q1(Br; R

N ) and

(

−
∫

Br

|Dū|q1 dx

)1/q1

≤ c1

[(

−
∫

Br

(1 + |Dū|p) dx
)1/p

+

(

−
∫

Br

(1 + |Du|q0) dx

)1/q0
]

≤ c

(

−
∫

B2r

(1 + |Du|p) dx
)1/p

.

The inequality

I0
r (u) − inf J = I0

r (u) − I0
r (ū) ≤ c̃(K)rβ

may be proved as above, and also the second case is concluded.
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We now consider on the space u+W 1,1
0 (Br; R

N ) the metric

d2(v, w) =
(

c̃(K)rβ/2
)−1 −

∫

Br

|Dv −Dw| dx.

By (3.12), applying again Lemma 3.2 we find v ∈ u+W 1,p
0 (Br; R

N ) such
that

−
∫

Br

|Dv −Du| dx ≤ c̃(K)rβ/2 (3.17)

and

J(v) ≤ J(v + ϕ) + rβ/2 −
∫

Br

|Dϕ| dx for all ϕ ∈ W 1,1
0 (Br; R

N ).

This proves the last assertion of the lemma, with β2 = β/2. In addition,
by Lemma 3.6

µ−
∫

Br

|Dv|p dx ≤ I0
r (u) + rβ/2 −

∫

Br

|Dv −Du| dx

+ c−
∫

Br

(1 + |Du|p) dx

≤ c−
∫

Br

(1 + |Du|p) dx

(3.18)

since r < 1. We now select r0 = (2−p−1µ)2/β, so that we may apply
Lemma 3.5 to the functional w 7→ I0

r (w) + rβ/2 −
∫

Br
|Dv −Dw| dx. Then

there exist c and q1 ∈ (p, q0) such that

(

−
∫

Br

|Dv|q1 dx

)1/q1

≤ c

(

−
∫

B2r

(1 + |Du|p) dx
)1/p

, (3.19)

where we used also (3.18) and (3.11). Now if ϑ = q1−p
p(q1−1) we have

(

−
∫

Br

|Dv −Du|p dx
)1/p

≤
(

−
∫

Br

|Dv −Du| dx
)ϑ

·
(

−
∫

Br

|Dv −Du|q1 dx

)(1−ϑ)/q1

≤ c(K)rβϑ/2

by (3.17),(3.11) and (3.19), and the result is proved with β1 = βϑ/2.
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The next result is analogous to Proposition 2.6, and after that only
the iteration remains to be made. Fix d < β1, and set

U(x0, r) = rd + −
∫

Br(x0)

gp

(

Du− (Du)x0,r

)

dx.

Then we have:

Proposition 3.8 . Let f satisfy (3.1), . . . ,(3.6) and let (x0, s0, ξ0) be a

regular point for f . There exists a constant C such that for every τ < 1/4
there exists ε(τ) such that if u is a minimizer of I satisfying

|x̂−x0| <
σ

3
, |(u)x̂,r − s0| <

σ

3
, |(Du)x̂,r − ξ0| <

σ

3
,

|(Du)x̂,τr − ξ0| <
σ

3
, (|Du|p)x̂,2r ≤ |ξ0|p + 1

(3.20)

and

U(x̂, r) < ε

then

U(x̂, τr) < CτdU(x̂, r).

Proof . Fix τ ; we shall determine C later. Reasoning as in Proposition
2.6, assume that (3.20) holds in Brh

(xh), and that

U(xh, rh) = λ2
h → 0, (3.21)

but
U(xh, τrh) > Cτdλ2

h. (3.22)

Applying Lemma 3.7 in each Brh
(xh) we find a sequence (uh) in u +

W 1,p
0

(

Brh
(xh); RN

)

satisfying

(

−
∫

Brh
(xh)

|Duh −Du|p dx
)1/p

≤ crβ1

h (3.23)

and
∫

Brh
(xh)

f
(

xh, (u)xh,rh
, Duh

)

dx

≤
∫

Brh
(xh)

f
(

xh, (u)xh,rh
, Duh +Dϕ

)

dx

+ rβ2

h

∫

Brh
(xh)

|Dϕ| dx

(3.24)



28 E. Acerbi & N. Fusco

for every ϕ ∈ C1
0 . Set

Ah = (Duh)xh,rh
, Ãh = (Duh)xh,τrh

, ah = (uh)xh,rh
.

From (3.21) we deduce that
rd
h ≤ λ2

h, (3.25)

therefore in particular rh → 0; from (3.23) we then get, if h is sufficiently
large,

|Ah − ξ0| <
σ

3
, |Ãh − ξ0| <

σ

3
, |ah − s0| <

σ

3
.

Now gp(x+ y+ z) ≤ (1 + ǫ)gp(x) + cǫ[gp(y)+ gp(z)], and by the convexity
of gp

1

λ2
h

−
∫

Brh

gp

(

Duh − (Duh)rh

)

dx

≤ (1 + ǫ)

λ2
h

−
∫

Brh

gp

(

Du− (Du)rh

)

dx

+
cǫ
λ2

h

−
∫

Brh

[

gp(Duh −Du) + gp

(

(Duh)rh
− (Du)rh

)]

dx

≤ (1 + ǫ)

λ2
h

−
∫

Brh

gp

(

Du− (Du)rh

)

dx

+
2cǫ
λ2

h

−
∫

Brh

gp(Duh −Du) dx

≤ (1 + ǫ)

λ2
h

−
∫

Brh

gp

(

Du− (Du)rh

)

dx+ c(ǫ)
r2β1

h

λ2
h

by (3.23). Since this holds also with uh and u interchanged, if we set

Uh(xh, r) = rd + −
∫

Br(xh)

gp

(

Duh − (Duh)xh,r

)

dx

using (3.25) we deduce easily

lim
h→∞

U(xh, rh) − Uh(xh, rh)

λ2
h

= 0; (3.26)
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similarly one has

lim
h→∞

U(xh, τrh) − Uh(xh, τrh)

λ2
h

= 0. (3.27)

We now define

vh(z) =
uh(xh + rhz) − ah − rhAhz

λhrh
,

and remark that (vh)0,1 = 0, and that by (3.26)

lim sup
h→∞

∫

B1

[|Dvh|2 + λp−2
h |Dvh|p] dz ≤ 1,

so that we may suppose

vh ⇀ v weakly in W 1,2(B1; R
N ),

λ
1−2/p
h vh ⇀ 0 weakly in W 1,p(B1; R

N ),

and also
Ah → A, (u)xh,rh

→ a, xh → x̄.

Remark that (x̄, a, A) is a regular point for f . Now define

Lh = {z ∈ B1 : λh|Dvh(z)| ≥ σ/3}, Sh = B1 \ Lh,

and use (3.24) as in Proposition 2.6 to obtain, instead of (2.11),

∫

B1

∫ 1

0

fξξ(xh, ah, Ah + sλhDvh)1Sh
DvhDϕds dz

≥ −r
β2

h

λh

∫

B1

|Dϕ| dz − cλh,

whence again

∫

B1

fξξ(x̄, a, A)DvDϕdz = 0 for all ϕ ∈ C1
0 (B1; R

N ),
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and for all τ < 1/4

−
∫

B2τ

|Dv − (Dv)2τ |2 dz ≤ cτ2.

Define

wh = vh − Ãh −Ah

λh
z

and remark that
∫

B1

fÃh,λh

(

xh, (u)xh,rh
, Dwh

)

dz

≤
∫

B1

fÃh,λh

(

xh, (u)xh,rh
, Dwh +Dψ

)

dz + rβ2

h

∫

B1

|Dψ| dz.

Then we may apply Lemma 2.5, this time with ν = rβ2

h ; repeating the
argument of Proposition 2.6, and recalling (3.25), we get from (3.27)

lim sup
h→∞

U(xh, τrh)

λ2
h

≤ cτ2 + lim sup
h→∞

τdrd
h/λ

2
h ≤ cτd,

which gives the required contradiction with (3.22).

Proposition 3.9 . Take a regular point (x0, s0, ξ0) and α < d; if C is as

in Proposition 3.8, fix τ < 1/4 such that Cτd < τα. Let u be a minimizer

of I and assume that for some Br(x0)

|(u)x0,r − s0| <
σ

6
, |(Du)x0,r − ξ0| <

σ

6
, |(Du)x0,r − ξ0| <

σ

6
,

(|Du|p)x0,r ≤ |ξ|p +
1

2
, (|Du|p)x0,2r ≤ |ξ|p +

1

2

and U(x0, r) < η, with η > 0 sufficiently small. Then for all k

|(u)x0,τkr − s0| <
σ

3
, |(Du)x0,τkr − ξ0| <

σ

3
,

|(Du)x0,τk+1r − ξ0| <
σ

3
, (|Du|p)x0,2τkr ≤ |ξ|p + 1

and

U(x0, τ
kr) ≤ τkαU(x0, r).
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Proof . Reasoning as in Proposition 2.7 we have

|(Du)τm+1r − ξ0| ≤
σ

6
+ τ−n

m
∑

k=0

[U(x0, τ
kr)]1/2 (3.28)

|(u)τmr − s0| ≤
σ

6
+ cτ−n

m−1
∑

k=0

τkr(|Du|p)1/p

x0,2τkr
; (3.29)

now, since τ < 1/4, for m ≥ 2 we have

(

−
∫

B2τmr

|Du|p dx
)1/p

≤ |(Du)2τm−1r| +
(

−
∫

B2τmr

|Du− (Du)2τm−1r|p dx
)1/p

≤ |(Du)2τm−1r| + τ−n/p

(

−
∫

B
2τm−1r

|Du− (Du)2τm−1r|p dx
)1/p

≤ (|Du|p)1/p
2τm−1r + (2τ2)−n/p[U(x0, τ

m−2r)]1/p,

whereas for m = 1
(

−
∫

B2τr

|Du|p dx
)1/p

≤ |(Du)r| +
(

−
∫

B2τr

|Du− (Du)r|p dx
)1/p

≤ (|Du|p)1/p
r + (2τ)−n/p[U(x0, r)]

1/p.

Thus, combining these two estimates,

(|Du|p)1/p
2τmr ≤ (|ξ0|p +

1

2
)1/p + (2τ)−n/p[U(x0, r)]

1/p

+ (2τ2)−n/p
m−2
∑

k=0

[U(x0, τ
kr)]1/p.

From (3.28),(3.29) and this inequality, an induction argument proves the
result if η was chosen sufficiently small.

Proof of Theorem 3.1 . One may follow the lines of the proof of
Theorem 2.1, except that α must be less than d.
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4. Additional remarks

In this section we state two corollaries which follow from our results,
then we apply Theorem 2.1 in a case which is relevant in nonlinear elastic-
ity, and finally we study the scalar-valued case N = 1, identifying exactly
the set of regular points.

Theorems 2.1 and 3.1 yield two new (global) partial regularity results:
precisely, we have

Corollary 4.1 . Let f : R
nN → R be a function of class C2 satisfying for

some p ≥ 2

|f(ξ)| ≤ c(1 + |ξ|p);

assume that for every ξ there exists a positive number γ(ξ) such that

∫

sptϕ

f(ξ +Dϕ(y)) dy ≥
∫

sptϕ

[f(ξ) + γ(ξ)(|Dϕ(y)|2 + |Dϕ(y)|p)] dy

for every ϕ ∈ C1
0 (Rn; RN ). Then if u ∈W 1,p(Ω; RN ) is a local minimizer of

∫

f(Dv(x)) dx there exists an open subset Ω0 of Ω with meas (Ω \Ω0) = 0

such that u ∈ C1,α(Ω0; R
N ) for all α < 1.

Corollary 4.2 . Let f : Ω × R
N × R

nN → R satisfy for some p ≥ 2

f is twice differentiable with respect to ξ;

fξξ(x, s, ξ) is continuous;

|f(x, s, ξ)| ≤ c(1 + |ξ|p);

|f(x, s, ξ)− f(y, t, ξ)| ≤ L(1 + |ξ|p)ω(|x− y|p + |s− t|p),

where ω(t) ≤ tδ, 0 < δ < 1/p, and ω is bounded, concave and increasing;

f(x, s, ξ) ≥ ψ(ξ)

for a suitable continuous function ψ satisfying

∫

Ω

ψ
(

Dϕ(y)
)

dy ≥
∫

Ω

[ψ(0) + µ|Dϕ(y)|p] dy for all ϕ ∈ C1
0 (Ω; RN ),
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with µ > 0; finally, we assume that there exists a positive lower semicon-

tinuous function γ(x, s, ξ) such that for every (x0, s0, ξ0)

∫

spt ϕ

f
(

x, s, ξ +Dϕ(y)
)

dy

≥
∫

spt ϕ

[f(x, s, ξ) + γ(x, s, ξ)(|Dϕ(y)|2 + |Dϕ(y)|p)] dy

for every ϕ ∈ C1
0 (Rn; RN ). Let u ∈ W 1,p(Ω; RN ) be a local minimizer

of
∫

Ω
f
(

x, v(x), Dv(x)
)

dx. Then there exist an open subset Ω0 of Ω with

meas (Ω \ Ω0) = 0 such that u ∈ C1,α(Ω0; R
N ) for some α < 1.

To prove this second Corollary, it is enough to remark that (see Propo-
sitions 3.8 and 3.9) the Hölder exponent α must satisfy only α < d, and
the number d is independent of γ.

These results improve the former general regularity theorems of [5],
[6]: not only, as already in [2], the boundedness of the second derivatives of
f is dropped, but also the strict quasiconvexity need no longer be uniform.

Example 4.3 . Let n = N , and define f by

f(ξ) = |tξ ξ − I|2,

where I is the n × n identity matrix; if u : Ω ⊂ R
n → R

n is the de-
formation of an n-dimensional body Ω, the functional

∫

Ω
f(Du(x)) dx is

an important model of nonlinear elastic energy associated with u. The
“expansion points” of u are the points x at which the n eigenvalues of the
matrix

√
tDuDu are greater than 1. A not too hard computation shows

that if the eigenvalues of
√

tξ ξ are all greater than 1, then ξ is a regular
point for f ; therefore, a deformation u is of class C1,α around each of its
expansion points.

We shall henceforth confine ourselves to the scalar-valued case N = 1;
in this case, it is well known that a function being quasiconvex everywhere
is equivalent to its being convex (everywhere). This is not true for qua-
siconvexity and convexity at a single point, as is shown by the following
proposition (for any function f we denote by

f∗∗ = max{g ≤ f : g is convex}

the convex hull of f).
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Proposition 4.4 . Let f : R
n → R be continuous, and assume there

exists some ξ0 such that

∫

sptϕ

f(ξ0 +Dϕ(x)) dx ≥
∫

sptϕ

[f(ξ0) + γ(|Dϕ(x)|2 + |Dϕ(x)|p)] dx

for all ϕ ∈ C0,1
0 (Rn), where p ≥ 2 and γ ≥ 0 is a constant. Then

f(ξ0) = f∗∗(ξ0),

and, if γ > 0, we have for some positive constants c, c′ depending only on

(ξ0, γ, p)
f(ξ) ≥ c|ξ|p − c′ for all ξ.

If in addition f is twice differentiable at ξ0, then

Dijf(ξ0)ξiξj ≥ 2γ|ξ|2.

Proof . The idea is not new; take any ξ̃, η̃ and λ ∈ (0, 1) such that

λξ̃ + (1 − λ)η̃ = ξ0,

and set ξ = ξ̃ − ξ0, η = η̃− ξ0, so that λξ + (1− λ)η = 0. Let Q be a unit
cube with an edge parallel to ξ, and fix a face F of Q which is orthogonal
to ξ; for every positive integer m slice Q into m stripes orthogonal to
ξ, and call Fm the union of their faces parallel to F , then divide again
each stripe in two, a stripe with thickness λ/m, the other with thickness
(1− λ)/m, and call Qλ

m, Q1−λ
m the union of the λ-stripes and the union of

the (1− λ)-stripes respectively (they are thus intertwined). Then we may
define a Lipschitz continuous function vm on Q by setting

vm = 0 on Fm

Dvm =

{

ξ in Qλ
m

η in Q1−λ
m .

In addition, max |vm| = λ|ξ|/m: therefore, if Qδ is the cube concentric
withQ and whose side is 1+δ, we may extend vm to a Lipschitz continuous
function ϕm vanishing outside Qδ and such that

sup
Qδ\Q

|Dϕm| ≤ c(|ξ| + |η| + λ|ξ|
mδ

).
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Set ω(t) = sup{f(ζ) : |ζ| ≤ t}; then the quasiconvexity inequality yields

γ

∫

Q

(|Dϕm|2 + |Dϕm|p) dx+ (1 + δ)nf(ξ0)

≤
∫

Q

f(ξ0 +Dϕm) dx

+

∫

Qδ\Q

ω[c(1 + |ξ0|p + |ξ|p + |η|p +
|ξ|p
mp δp

)] dx

≤
∫

Q

f(ξ0 +Dϕm) dx+ cδ ω[c(1 + |ξ0|p + |ξ|p + |η|p)]

for m large enough, but Dϕm = Dvm in Q, hence

ξ0 +Dϕm =

{

ξ̃ in Qλ
m

η̃ in Q1−λ
m ,

thus
γ[λ(|ξ|2 + |ξ|p) + (1 − λ)(|η|2 + |η|p)] + (1 + δ)nf(ξ0)

≤ λf(ξ̃) + (1 − λ)f(η̃)

+ cδω[c(1 + |ξ0|p + |ξ|p + |η|p)]
for m large enough; by letting m→ ∞, then δ → 0, we get

λf(ξ̃)+ (1−λ)f(η̃) ≥ f(ξ0)+γ[λ(|ξ|2 + |ξ|p)+ (1−λ)(|η|2 + |η|p)]. (4.1)

From this we deduce in particular

λf(ξ̃) + (1 − λ)f(η̃) ≥ f(ξ0),

and by taking the infimum for λξ̃ + (1 − λ)η̃ = ξ0

f∗∗(ξ0) ≥ f(ξ0),

thus proving the first assertion since the opposite inequality is obvious.
Set M(ξ0) = max{f(ξ0 + η) : |η| ≤ 1}, and take |η| = 1 in (4.1), so

that λ = 1/(1+ |ξ|); dropping |ξ|2 and some other terms on the right-hand
side, we have

f(ξ̃) ≥ −2M(ξ0)(1 + |ξ|) + γ|ξ|p

≥ −2M(ξ0)(1 + |ξ0| + |ξ̃|) − γ|ξ0|p + 21−pγ|ξ̃|p,
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and the second assertion follows easily.
Finally, this time dropping |ξ|p and |η|p, and taking η = −ξ, so that

λ = 1/2, we have again from (4.1)

1

2
[f(ξ0 + ξ) + f(ξ0 − ξ) − 2f(ξ0)] ≥ γ|ξ|2,

and the last assertion follows by taking ξ = tζ, dividing by t2 and letting
t→ 0.

As an example, note that the function f(x) = x2−3x4+ 5
3x

6 is convex
at 0, but it is not quasiconvex at 0, since f∗∗(0) = −1

3 < f(0).
We also remark that in the proof we did not fully use the continuity

of f , but almost only the fact that it is bounded on bounded sets.

Proposition 4.5 . Let f : R
n → R be a locally Lipschitz continuous

function satisfying for some p ≥ 2

|f(ξ)| ≤ c(1 + |ξ|p), |Df(ξ)| ≤ c(1 + |ξ|p−1)

and such that the set of its regular points is not empty. Then this set is

{ξ0 : f∗∗ ∈ C2(Bσ(ξ0)) for some σ > 0, D2f∗∗(ξ0)ηη > 0 for all η 6= 0}.

Proof . If there is at least a regular point, then by Proposition 4.4 we
have

f(ξ) ≥ c|ξ|p − c′; (4.2)

take a regular point ξ0: by Lemma 2.2 a whole ball Bσ(ξ0) is made of
regular points, so by Proposition 4.4 f(ξ) = f∗∗(ξ) in Bσ(ξ0): thus f∗∗ ∈
C2(Bσ(ξ0)) and (again by Proposition 4.4) D2f∗∗(ξ0) is positive definite.

To prove the converse, assume f∗∗ is of class C2 around ξ0, and
D2f∗∗(ξ) ≥ γI for |ξ − ξ0| < σ; then necessarily f(ξ) = f∗∗(ξ) in Bσ(ξ0),
so f ∈ C2(Bσ(ξ0)) too. Now for |ξ − ξ0| < σ/2

f(ξ) ≥ f(ξ0) +Df(ξ0)(ξ − ξ0) +
γ

2
|ξ − ξ0|2, (4.3)

and for |ξ − ξ0| ≥ σ/2

f(ξ) ≥ f(ξ0) +Df(ξ0)(ξ − ξ0) +
γσ2

8
. (4.4)
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By (4.2) we have for a suitably large R that if |ξ − ξ0| ≥ R then

f(ξ) ≥ f(ξ0) +Df(ξ0)(ξ − ξ0) +
c

2
|ξ − ξ0|p. (4.5)

Now if λ ≤ c/2 satisfies

λ(t2 + tp) ≤ γσ2

8
for all t ≤ R,

we immediately deduce from (4.3),(4.4),(4.5)

f(ξ) ≥ f(ξ0) +Df(ξ0)(ξ − ξ0) + λ(|ξ = ξ0|2 + |ξ − ξ0|p),

and the strict quasiconvexity at ξ0 follows immediately.
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