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REGULARITY RESULTS FOR EQUILIBRIA
IN A VARIATIONAL MODEL FOR FRACTURE

Emilio Acerbi 1 Irene Fonseca 2 Nicola Fusco 3

Abstract

In recent years models describing interactions between fracture and damage have been
proposed in which the relaxed energy of the material is given by a functional involving bulk

and interfacial terms, of the form

G(K, u) :=

∫

Ω\K

F (∇u) dx + λ

∫

Ω\K

|u − g|q dx + βHN−1(K ∩ Ω) ,

where Ω is an open, bounded subset of R
N , q ≥ 1, g ∈ L∞(Ω; R

N ), λ, β > 0, the bulk energy
density F is quasiconvex, K ⊂ R

N is closed, and the admissible deformation u : Ω → R
N

is C1 in Ω \ K. One of the main issues has to do with regularity properties of the “crack

site” K for a minimizing pair (K, u). In the scalar case, i.e. when u : Ω → R, similar models
were adopted to image segmentation problems, and the regularity of the “edge” set K has

been successfully resolved for a quite broad class of convex functions F with growth p > 1

at infinity. In turn, this regularity entails the existence of classical solutions. The methods
thus used cannot be carried out to the vector-valued case, except for a very restrictive class of

integrands. In this paper regularity on the plane is obtained for minimizers of G corresponding
to bulk energy densities of the form

F (ξ) =
1

2
|ξ|2 + h(det ξ),

where the convex function h grows linearly at infinity.
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1. Introduction

In recent years models involving bulk and interfacial energies have been used in
the contexts of fracture mechanics, phase transitions, and image segmentation
in computer vision (see [BZ], [DGCL], [FFr], [MS]). The underlying quasistatic
problems deal with minimization of an energy functional of the form

G(K, u) :=

∫

Ω\K

F (∇u) dx+ λ

∫

Ω\K

|u− g|q dx+ βHN−1(K ∩Ω)

where Ω is an open, bounded subset of R
N , q > 1, g ∈ L∞(Ω; Rk), λ, β > 0,

and HN−1 stands for the (N − 1)-dimensional Hausdorff measure, among all
pairs (K, u) with K closed in R

N and u : Ω → R
k is smooth; the first two

terms in G represent the bulk energy and the last one accounts for interfacial
energy. In order to attack this problem De Giorgi and Ambrosio (see [A1],
[DGA]) introduced the space SBV of functions of special bounded variation, i.e.
BV functions u whose distributional derivative Du, which is a finite, Radon
measure, may be decomposed into an absolutely continuous part ∇uLN with
respect to the N -dimensional Lebesgue measure LN , and a singular part whose
support is an (N − 1)-dimensional rectifiable set Su. This is the “jump” set
of u, in the sense that u has traces u+ 6= u− HN−1-a.e. on the two sides of
Su (for example, the Cantor-Vitali function is BV but not SBV ). Then to the
functional G one may associate the functional F defined on SBV as

F(u) :=

∫

Ω

F (∇u) dx+ λ

∫

Ω

|u− g|q dx+ βHN−1(Su ∩Ω) .

Due to the relaxation result of Fonseca and Francfort (see [FFr]), and under
suitable growth conditions for the bulk energy density F , it is not restrictive to
take F quasiconvex. We recall that F is said to be quasiconvex if

F (ξ) ≤
∫

Q

F (ξ + ∇ϕ(x)) dx

for all k × N matrix ξ, ϕ ∈ C∞
0 (Q; Rk), and where Q = (0, 1)N . A particular

class of quasiconvex functions which plays an important role in elasticity is the
class of polyconvex functions, i.e. convex functions of all minors of the matrix ξ.

Under the quasiconvexity assumption, and if F is superlinear and g is
bounded, the lower semicontinuity and compactness results of Ambrosio (see
[A1], [A2], [A3]) yield the existence of a SBV minimizer of F . Note that, in
general, if u ∈ SBV then the set Su is far from being closed, i.e. HN−1

(

(Su \
Su) ∩Ω

)

> 0.
In the scalar-valued case where u : Ω → R, quasiconvexity reduces to con-

vexity and De Giorgi, Carriero and Leaci [DGCL] proved that if

F (ξ) = |ξ|2

and if g is bounded, then
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HN−1
(

(Su \ Su) ∩Ω
)

= 0

for any minimizer u ∈ SBV (Ω; R) of F . From this property one immediately
concludes that the pair (Su, u) is a minimizer of the original functional G. The
result of [DGCL] has been extended to a quite broad class of convex functions
F with growth p > 1 at infinity, and further regularity on the set Su has been
obtained (see [AFP], [AP], [B], [DG], [DS], [FFu]).

In this paper we deal with a two-dimensional, vector-valued, polyconvex
case, considering a class of functionals G which includes in particular the model

∫

Ω\K

[1

2
|∇u|2 + | det∇u|

]

dx+ λ

∫

Ω\K

|u− g|q dx+ βH1(K ∩Ω) ,

where u ∈W 1,2(Ω\K; R2) and g is bounded. In Theorem 2.1 we prove that this
functional admits a minimizing pair of the form (Su, u), where u ∈ SBV (Ω; R2)
and, moreover, u ∈ C0,α(Ω \ Su; R2) for every 0 < α < 1.

2. Statements and Auxiliary Results

If Ω ⊂ R
N is open, we say that a function of bounded variation u ∈ BV (Ω; Rk)

is a function of special bounded variation, u ∈ SBV (Ω; Rk), if, denoting by Su

the complement of the set of Lebesgue points of u, the distributional derivative
Du is represented by

Du = ∇uLN + (u+ − u−) ⊗ ν HN−1⌊Su ,

where ∇u is the Radon-Nikodym derivative of the finite, Radon measure Du
with respect to the N -dimensional Lebesgue measure LN , ν is the normal to
the rectifiable set Su, u+ and u− are the traces of u on Su, and HN−1 denotes
the (N − 1)-dimensional Hausdorff measure.

We recall that the recession function h∞ of a convex function h : R →
[0,+∞) is defined by

h∞(t) := lim
s→+∞

h(st)

s
,

and it is convex and positively homogeneous of degree one.
In this paper we prove the following theorem.

Theorem 2.1. Let Ω be a bounded, open subset of R
2. Let h : R → [0,∞) be a

convex function such that h(0) ≤ h(t) ≤ C(1 + |t|), and
∣

∣

∣

∣

h∞(t) − h(st)

s

∣

∣

∣

∣

≤ C

sm

for some 0 < m < 1, and for all t ∈ R, s ≥ s0 > 0. Let λ, β > 0 and define

G(K, u) :=

∫

Ω\K

[1

2
|∇u|2 + h(det∇u)

]

dx+ λ

∫

Ω\K

|u− g|q dx+ βH1(Ω ∩K) .
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There exists a minimizer of G(·, ·) of the form (Su, u), with u ∈ SBV (Ω,R2),
among all pairs (K, v) with K ⊂ Ω closed and v ∈W 1,2(Ω \K; R2). Moreover,

H1((Su \ Su) ∩Ω) = 0 .

In order to prove Theorem 2.1, we invite the reader to follow the same
steps taken in the proof of Theorem 4.1 of [FFu]. It is easy to verify that
all the auxiliary lemmas hold in this case, with one exception: the Density
Lower Bound ([FFu], Lemma 4.3) uses the Decay Lemma ([FFu], Lemma 4.4),
which was proved by Carriero and Leaci [CL] only in the p-harmonic case,
i.e. F (ξ) = |ξ|p. Knowing that local minimizers are locally Lipschitz functions
played a fundamental role in the analysis.

We introduce the notation

F0(u, c, A) :=

∫

A

[1

2
|∇u|2 + h∞(det∇u)

]

dx+ cH1(Su ∩ A) ,

Φ0(u, c, A) := inf{F0(w, c, A) : w ∈ SBV (Ω; R2), w = u in Ω \A} ,
Ψ0(u, c, A) := F0(u, c, A)− Φ0(u, c, A) ,

where A is an open subset of Ω, c > 0, u ∈ SBV (Ω; R2). In the case where
u ∈W 1,2(A; R2) we simply write

F0(u,A) :=

∫

A

[1

2
|∇u|2 + h∞(det∇u)

]

dx .

In the sequel, we use the notation BR, R > 0, to denote a generic open ball of
radius R, centered at x ∈ Ω, such that BR ⊂ Ω.

Definition. We say that u ∈W 1,2(Ω) is a W 1,2-local minimizer of

I(v;Ω) :=

∫

Ω

F (∇v) dx , v ∈ W 1,2(Ω)

if

I(u;BR(x0)) = min
{

I(v;BR(x0)) : v ∈ u+W 1,2
0 (BR(x0))

}

for all balls BR(x0) ⊂ Ω.

We now state the version of the decay lemma which holds in our case. The
density lower bound, and thus Theorem 2.1, follow from the decay lemma by
the same argument used in [FFu].

Lemma 2.2. [Decay Lemma] For all γ ∈ (0, 1) there exists τγ ∈ (0, 1) such
that for every τ ∈ (0, τγ) and for every c > 0 there exist ε = ε(c, τ, γ), θ =
θ(c, τ, γ), R0 = R0(c, τ, γ), such that if 0 < ρ < R0, and if u ∈ SBV (Ω; R2) is
such that F0(u, c, Bρ) ≤ ε2ρ and Ψ0(u, c, Bρ) ≤ θF0(u, c, Bρ), then

F0(u, c, Bτρ) ≤ τ2−γF0(u, c, Bρ) .
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In order to prove Lemma 2.2, we follow the proof of Lemma 3.12 in [FFu],
and we suppose that the result is not true; then there exist γ ∈ (0, 1), for every
τγ ∈ (0, 1) there exists τ ∈ (0, τγ), there exist c > 0, two sequences {εh}, {θh},
with limh εh = limh θh = 0, a sequence {uh} ⊂ SBV (Ω; R2), and a sequence of
balls BRh

(xh) ⊂⊂ Ω with limhRh = 0 such that

F0

(

uh, c, BRh
(xh)

)

= εhRh , Ψ0

(

uh, c, BRh
(xh)

)

= θhF0

(

uh, c, BRh
(xh)

)

,

and
F0

(

uh, c, BτRh
(xh)

)

> τ2−γF0

(

uh, c, BRh
(xh)

)

.

After rescaling, it is easily seen that the rest of the proof can be carried out in
a similar way to Lemma 3.12 in [FFu], provided an estimate of the type

∫

Bτ

[1

2
|∇u|2 + h∞(det∇u)

]

dx ≤ Cτ2−α

∫

B1

[1

2
|∇u|2 + h∞(det∇u)

]

dx

holds for local minimizers of F0 in W 1,2(B1; R
2), for any 0 < α < 1 or, equiva-

lently,

Theorem 2.3. If u ∈W 1,2(B1,R
2) is a W 1,2-local minimizer of F0 then

∫

Bτ

|∇u|2 dx ≤ Cτ2−α

∫

B1

|∇u|2 dx (2.1)

for all α, τ ∈ (0, 1) and some constant C > 0, C ≡ C(α, h∞).

This is, therefore, the only result still needed to prove Theorem 2.1. As an
immediate consequence of (2.1), it follows that u ∈ C0,α for all α ∈ (0, 1) (see
[G], Theorem 1.1, Chapter 3).

The rest of the paper will be dedicated to proving Theorem 2.3. Although
we will rely strongly on the arguments used by Dougherty [D] to obtain higher
integrability of local minimizers in the case where h ∈ C1(R), we could not find
an easier way to adapt directly his proof to more general Lipschitz functions h
by means of a simple approximation and density approach.

The following lemma may be found in [G] (Chap. 3, Lemma 2.1) in the case
where with γ = β; although stated in a slightly weaker form, its proof yields
the result below.

Lemma 2.4. Let φ : [0,+∞) → [0,+∞) be a nonnegative, nondecreasing func-
tion, such that

φ(ρ) ≤ H
( ρ

R

)α

φ(R) +KRβ

for all 0 < ρ < R ≤ R0 and for some constants H,K ≥ 0 and 0 < β < α. Then
for every γ ∈ [β, α) there exists a constant C = C(H,α, β, γ) such that

φ(ρ) ≤ C
[( ρ

R

)γ

φ(R) +Kρβ
]

for all 0 < ρ < R ≤ R0.
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Next, we prove a decay estimate for solutions of a well known elliptic equa-
tion.

Lemma 2.5. Let Ω ⊂ R
N be an open, bounded domain. If f ∈ Lp(Ω; RN ),

p ≥ 2, and if v ∈W 1,2(Ω) satisfies

∆v = div f in Ω

then for any δ ∈ (0, 2N/p) there exists a constant C = C(p,N, δ) such that if
BR ⊂ Ω and 0 < ρ < R then

∫

Bρ

|Dv|2 dx ≤ C
[( ρ

R

)N−δ
∫

BR

|Dv|2 dx+ ρN−2N/p
(

∫

BR

|f |p dx
)2/p]

. (2.2)

Proof. Fix a ball BR ⊂ Ω, and let w be the harmonic function which minimizes

z 7→
∫

BR

|∇z|2 dx , z ∈ v +W 1,2
0 (BR) .

Since |Dw|2 is subharmonic we get
∫

Bρ

|Dw|2 dx ≤
( ρ

R

)N
∫

BR

|Dw|2 dx (2.3)

for all ρ < R.
We claim that if ρ < R then
∫

Bρ

|Dv|2 dx ≤ 2
( ρ

R

)N
∫

BR

|Dv|2 dx+ C RN−2N/p
(

∫

BR

|f |p dx
)2/p

. (2.4)

If (2.4) holds, then (2.2) follows from Lemma 2.4, setting

φ(ρ) :=

∫

Bρ

|∇v|2 dx , α := N , β := N − 2N

p
, γ := N − δ .

To prove the claim, we start by noting that
∫

BR

Dv · (Dv −Dw) dx =

∫

BR

f · (Dv −Dw) dx ,

∫

BR

Dw · (Dv −Dw) dx = 0 ,

so that
∫

BR

|Dv −Dw|2 dx =

∫

BR

f · (Dv −Dw) dx .

Using Cauchy-Schwartz, Young’s, and Hölder’s inequality, we obtain
∫

BR

|Dv −Dw|2 dx ≤
∫

BR

|f |2 dx ≤ C RN−2N/p
(

∫

BR

|f |p dx
)2/p

,
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which, together with (2.3), yields
∫

Bρ

|Dv|2 dx ≤ 2
(

∫

Bρ

|Dw|2 dx+

∫

BR

|Dv −Dw|2 dx
)

≤ 2
( ρ

R

)N
∫

BR

|Dw|2 dx+ C RN−2N/p
(

∫

BR

|f |p dx
)2/p

.

This inequality reduces to (2.4) since, by definition of w,
∫

BR

|Dw|2 dx ≤
∫

BR

|Dv|2 dx .

⊓⊔

3. The Main Theorem

The main result of this section is the following.

Theorem 3.1. Let Ω be an open subset of R
2, and let u ∈ W 1,2(Ω,R2) be a

W 1,2-local minimizer of

F (v;Ω) :=

∫

Ω

[1

2
|Dv|2 +M | detDv|

]

dx

with M > 0. If α ∈ (0, 1), BR ⊂ Ω, and if ρ < R, then
∫

Bρ

|Du|2 dx ≤ C
( ρ

R

)2α
∫

BR

|Du|2 dx

for some constant C. In particular, u ∈ C0,α(Ω; R2).

Before proving this result, we show how Theorem 2.3 can be derived as a
simple corollary.

Proof of Theorem 2.3. Let u be a W 1,2-local minimizer of

F0(v, A) :=

∫

A

[1

2
|∇v|2 + h∞(det∇v)

]

dx , v ∈W 1,2(Ω; R2) ,

where the recession function is given by

h∞(t) =

{

at if t > 0

−bt if t < 0

for some a, b ≥ 0. Since v 7→ det∇v is a null-lagrangian, i.e.
∫

A

det∇v dx =

∫

A

det∇w dx
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whenever v, w ∈ W 1,2(Ω; R2), A ⊂ Ω has Lipschitz boundary and v = w on
∂A, we conclude that u is a W 1,2-local minimizer of

F1(v;A) =

∫

A

[1

2
|∇v|2 + a(det∇v)+ + b(det∇v)− +

b− a

2
det∇v

]

dx

=

∫

A

[1

2
|∇v|2 +

a+ b

2
| det∇v|

]

dx .

The result now follows from Theorem 3.1. ⊓⊔
Next we recall some algebraic inequalities used by Dougherty [D], and which

will enter in the proof of Theorem 3.1. For completeness, we include the proofs.
Consider a 2 × 2 matrix

D =

(

a b
c d

)

.

Then

detD = ad− bc , adjD =

(

d −c
−b a

)

, tr(DTD) = |D|2 = a2 + b2 + c2 + d2 ,

where adjDTD = (detD)2I, and we define

A :=
1

2
(a2 +c2−b2−d2) , B := ab+cd , σ := sign(detD) whenever detD 6= 0.

Lemma 3.2. The following inequalities hold:

(i) |A| + |B| ≤ |D|2 ;

(ii) |D|2 ≤ 2(|A| + |B|) if detD = 0 ;

(iii) |σ adjD −D| ≤ 4
√

|A| + |B| if detD 6= 0 .

Proof. It is clear that

|A| + |B| ≤ 1

2
(|a| + |b|)2 +

1

2
(|c| + |d|)2

≤ a2 + b2 + c2 + d2 ,

proving (i). Also, consider the right stretching tensor U :=
√
DTD: then its

eigenvalues ν1 ≥ ν2 ≥ 0 are the principal stretches of D, and it can be seen
easily that

| detD| = ν1ν2 , |D|2 = ν2
1 + ν2

2 .

By virtue of the polar decomposition, we may find rotations R,Q ∈ SO(2) such
that

D = RU , U = QT

(

ν1 0
0 ν2

)

Q ,

and so
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(

A B
B −A

)

= DTD − 1

2
|D|2I

=
1

2
QT

(

ν2
1 − ν2

2 0
0 ν2

2 − ν2
1

)

Q .

Hence
ν2
1 − ν2

2 = 2
√

|A|2 + |B|2 . (3.1)

If detD = 0 then ν2 = 0, and

|D|2 = ν2
1 = 2

√

|A|2 + |B|2 ≤ 2(|A| + |B|) ,

and we conclude (ii). Now consider the matrix

D̃ =

(

a −b
c −d

)

:

with obvious notation we have

|A| = |Ã| , |B| = |B̃| , |D| = |D̃| , |σ adjD −D| = |σ̃ adj D̃ − D̃|

but σ̃ = −σ; thus to prove (iii) we may confine ourselves to the case σ = +1,
eventually replacing D by D̃. If detD > 0 then

| adjD −D| =

∣

∣

∣

∣

(

d− a −c− b
−b− c a− d

)
∣

∣

∣

∣

=
√

2|a− d|2 + 2|c+ b|2
≤ 2(ν1 − ν2) ,

(3.2)

because (as a direct computation shows)

|a− d| =

∣

∣

∣

∣

tr

[(

1 0
0 −1

)

D

]
∣

∣

∣

∣

∣

∣

∣

∣

= tr

[(

1 0
0 −1

)

RQT

(

ν1 0
0 ν2

)

Q

]
∣

∣

∣

∣

≤ ν1 − ν2 ,

|b+ c| = |D12 +D21|

=

∣

∣

∣

∣

[

RQT

(

ν1 0
0 ν2

)

Q

]

12

+

[

RQT

(

ν1 0
0 ν2

)

Q

]

21

∣

∣

∣

∣

≤ ν1 − ν2 .

Finally, (3.1), (3.2), and (i) yield

| adjD −D| ≤ 2(ν1 − ν2) = 4

√

|A|2 + |B|2
ν1 + ν2

≤ 4

√

|A|2 + |B|2
|D| ≤ 4

√

|A|2 + |B|2
√

|A| + |B|
≤ 4

√

|A| + |B| .
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⊓⊔

To avoid overburdening the reader with indices, we change the notation just
for the length of the proof of Theorem 3.1, conforming to the one employed in
[D]: we denote by U the local minimizer of F , replacing the former u. Then
we are free to denote by (u, v) the components of U , whereas the variables
are X = (x, y). We also use Φ = (φ, ψ) to designate any smooth function
Φ ∈ C1

0 (Ω; R2) with support in a ball BR ⊂ Ω.

Proof of Theorem 3.1. Step 1. Following the argument of Dougherty [D],
we consider a variation of the domain for the local minimizer U , i.e. we study
the variation U(I + εΦ) near ε = 0, obtaining a first set of Euler-Lagrange
equations.

Let BR ⊂⊂ Ω, fix Φ ∈ C1
0 (BR,R

2), and ε > 0 small. Setting Uε(Y ) :=
U(Y + εΦ(Y )), due to the minimality of U we have

F (Uε;BR) − F (U ;BR) ≥ 0 ,

and since a simple change of variables yields

∫

BR

| detDUε| dY =

∫

BR

| detDU| dX ,

we deduce that
∫

BR

(

|DUε|2 − |DU|2
)

dY ≥ 0 ,

and so
∫

BR

A(φx − ψy) +B(φy + ψx) dX = 0 , (3.3)

where, using the notations introduced above,

D =

(

ux uy

vx vy

)

,

A :=
1

2
(u2

x + v2
x − u2

y − v2
y)

B := uxuy + vxvy .

Hence A,B ∈ L1(Ω), and (3.3) can be written, in the sense of distributions, as

{

Ax +By = 0
Bx −Ay = 0 ,

and so A,B are harmonic in BR. In particular,

sup
BR/2

(|A|+ |B|) ≤ 4

πR2

∫

BR

(|A| + |B|) dX . (3.4)



Acerbi, Fonseca and Fusco 11

Step 2 . For t ≥ 0 define

Ω+
t := {X ∈ Ω : detDU > t} ,

Ω−
t := {X ∈ Ω : detDU < −t} ,
Ωt := {X ∈ Ω : | detDU| ≤ t} .

Let σ(X) denote the sign of detDU(X) whenever the determinant is not equal
to zero. Cleary, if t > 0 and ε is sufficiently small then X ∈ Ω+

t implies that
det(DU+εΦ)(X) > 0, while det(DU+εΦ)(X) < 0 whenever X ∈ Ω−

t . Therefore

∫

Ω

1

2

|D(U + εΦ)|2 − |DU|2
ε

dx+M

∫

Ω+

t

detD(U + εΦ) − detDU
ε

dx

−M
∫

Ω−

t

detD(U + εΦ) − detDU
ε

dx+M

∫

Ωt

| detD(U + εΦ)| − | detDU|
ε

dx ≥ 0 .

Since

detD(U + εΦ) = detDU + ε adjDU ·DΦ+ ε2 detDΦ ,

and

| adjDU ·DΦ| ≥ | detDU + ε adjDU ·DΦ| − | detDU|
ε

,

we obtain, letting ε→ 0,

∫

Ω

DU ·DΦdX +M

∫

Ω\Ωt

σ adjDU ·DΦdX +M

∫

Ωt

| adjDU ·DΦ| dX ≥ 0 .

Replacing Φ by −Φ, this inequality reduces to

∫

Ω

DU ·DΦdX +M

∫

Ω\Ωt

σ adjDU ·DΦdX −M

∫

Ωt

| adjDU ·DΦ| dX ≤ 0 ,

or, equivalently,

(M + 1)

∫

Ω

DU ·DΦdX +M

∫

Ω\Ωt

(σ adjDU ·DΦ−DU ·DΦ) dX

≤M

∫

Ωt

(| adjDU ·DΦ| +DU ·DΦ) dX .

Letting t→ 0, and setting M ′ = 1 + 1/M , we conclude that

M ′

∫

Ω

DU ·DΦdX +

∫

Ω\Ω0

(σ adjDU ·DΦ−DU ·DΦ) dX

≤
∫

Ω0

(| adjDU ·DΦ| +DU ·DΦ) dX .

(3.5)
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Step 3 . We compare U with the solution of a more regular problem: fix
BR ⊂ Ω, and let V ∈W 1,2(BR/2; R

2) be the solution of







M ′∆V = −div
[

χΩ\Ω0
(σ adjDU −DU)

]

in BR/2

V = U on ∂BR/2 .
(3.6)

By Lemma 3.2 (iii) it follows that the right hand side of the equation is the
divergence of an L2 function, and so we have, in weak form,

∫

BR/2

M ′DV ·DΦdX +

∫

BR/2\Ω0

(σ adjDU −DU) ·DΦdX = 0

for all Φ ∈ W 1,2
0 (BR/2; R

2). Subtracting this equation from (3.5), and choosing
Φ = U − V, we obtain

∫

BR/2

M ′|DU −DV|2 dX ≤
∫

BR/2∩Ω0

(| adjDU| + |DU|)|DU −DV| dX ,

and noticing that | adjDU| = |DU|, by virtue of Cauchy-Schwartz inequality
and Lemma 3.2 (ii), we have

∫

BR/2

|DU −DV|2 dX ≤ 4

∫

BR/2∩Ω0

|DU|2 dX

≤ 8

∫

BR/2∩Ω0

(|A| + |B|) dX .

(3.7)

Step 4 . Fix BR ⊂ Ω. Since A and B are harmonic functions, by Lemma
3.2 (iii) we have χΩ\Ω0

(σ adjDU − DU) ∈ Lp
loc(Ω) for every p ≥ 2, and so,

applying Lemma 2.5 to (3.6) with δ = 2/p, we obtain

∫

Bρ

|DV|2 dX

≤ C
[( ρ

R

)2−2/p
∫

BR/2

|DV|2 dX + ρ2−4/p
(

∫

BR/2

(|A|p/2 + |B|p/2) dX
)2/p]

for all ρ < R/2, where C = C(p). This estimate, together with (3.7), yields
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∫

Bρ

|DU|2 dX

≤ 2

∫

Bρ

|DV|2 + 2

∫

BR/2

|DU −DV|2 dX

≤ C
( ρ

R

)2−2/p
∫

BR/2

|DV|2 dX + Cρ2−4/p
(

∫

BR/2

(|A|p/2 + |B|p/2) dX
)2/p

+ 2

∫

BR/2

|DU −DV|2 dX

≤ C
[( ρ

R

)2−2/p
∫

BR/2

|DU|2 dX + ρ2−4/p
(

∫

BR/2

(|A|p/2 + |B|p/2) dX
)2/p

+

∫

BR/2

|DU −DV|2 dX
]

≤ C
[( ρ

R

)2−2/p
∫

BR/2

|DU|2 dX + ρ2−4/p
(

∫

BR/2

(|A|p/2 + |B|p/2) dX
)2/p

+

∫

BR/2

(|A|+ |B|) dX
]

≤ C
[( ρ

R

)2−2/p
∫

BR/2

|DU|2 dX +R2−4/p
(

∫

BR/2

(|A|p/2 + |B|p/2) dX
)2/p]

.

Finally, by Lemma 2.4 with γ = β := 2 − 4/p, α = 2 − 2/p, we conclude that
∫

Bρ

|DU|2 dX

≤ C
[( ρ

R

)2−4/p
∫

BR/2

|DU|2 dX + ρ2−4/p
(

∫

BR/2

(|A|p/2 + |B|p/2) dX
)2/p]

,

for all ρ < R/2, where the constant C does not depend on R. From (3.4) and
Lemma 3.2 (i), it follows that

∫

Bρ

|DU|2 dX

≤ C
( ρ

R

)2−4/p
∫

BR/2

|DU|2 dX + C
ρ2−4/p

R−4/p
sup
BR/2

(|A| + |B|)

≤ C
( ρ

R

)2−4/p[
∫

BR

|DU|2 dX +

∫

BR

(|A| + |B|) dX
]

≤ C
( ρ

R

)2−4/p
∫

BR

|DU|2 dX

for all ρ < R/2, and the arbitrariness of p ≥ 2, together with standard C0,α

regularity results (see [G], Chapter 3, Theorem 1.1), concludes the proof. ⊓⊔
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