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REGULARITY OF MINIMIZERS

FOR A CLASS OF MEMBRANE ENERGIES

Emilio Acerbi 1 Irene Fonseca 2 Nicola Fusco 3

Abstract Regularity properties for (local) minimizers of elastic energies have been challenging

mathematical techniques for many years. Recently the interest has resurfaced due in part to

the fact that existing partial regularity results do not suffice to ensure existence of (classical)

solutions to problems involving free discontinuity sets. The analysis of such questions was

started with the fundamental work of De Giorgi in the early 80’s in connection with the

Mumford-Shah model for image segmentation in computer vision, and later applied to some

models for fracture mechanics, thin films, and membranes ([1], [18], [20]). In this paper it is

shown that local minimizers in W 1,2(Ω;Rd) of the functional

F0(u,Ω) :=

∫

Ω

[

1

2
|Du|2 + f(|ν(u)|)

]

dx

are Hölder continuous of any exponent γ ∈ (0, 1), where Ω ⊂ R2 is an open, bounded

set, f is a (not necessarily convex) function growing linearly at infinity, and ν(u) stands for

the vector of all 2 × 2 minors of Du. As a consequence, it is possible to obtain existence of

“classical” minimizers in SBV (Ω;R2) of

F(u,Ω) :=

∫

Ω

[

1

2
|∇u|2 + f(|ν(u)|)

]

dx+ β

∫

Ω

|u− g|q dx+ γHN−1(Su ∩Ω)

where g ∈ L∞(Ω;Rd), q > 1, β, γ > 0. These minimizers are “classical” in the sense

that HN−1
(

(Su \ Su) ∩Ω
)

= 0 and u ∈W 1,2(Ω \ Su).
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1. Introduction

De Giorgi’s seminal work in the early 80’s in the study of free discontinuity
problems with relation to the model of Mumford Shah for image segmentation
in computer vision ([9], [10], [11], [11], [13], [14], [25]) has opened many doors
into the study of mathematical questions relevant to the understanding of the
behavior of thin films, membranes, and fractured elastic media (see [7], [13],
[15], [18]). Although very different in physical nature and motivation, models
for these problems have as a common feature the fact that, when searching for
quasistatic stable or metastable solutions, one is led to minimizing among all
pairs (K, u) an energy involving bulk and interfacial terms,

G(K, u) :=

∫

Ω\K

F (Du) dx+ β

∫

Ω\K

|u− g|q dx+ γHN−1(K ∩Ω)

where Ω is an open, bounded subset of RN , q > 1, g ∈ L∞(Ω;Rd), β, γ > 0,
HN−1 stands for the (N − 1)-dimensional Hausdorff measure, K is closed in
RN and u : Ω → Rd is smooth.

In order to find minima for this energy, as it is usual one relaxes the spaces
of admissible fields where lower semicontinuity and compactness results may be
found more easily ([2], [3], [4]), and through regularity arguments one concludes
that, indeed, these solutions live in the more restricted set of “classical” fields.
De Giorgi and Ambrosio (see [2], [4], [15]) introduced the space SBV of functions
of special bounded variation, i.e. BV functions u whose distributional derivative
Du, which is a finite, Radon measure, may be decomposed into an absolutely
continuous part ∇uLN with respect to the N -dimensional Lebesgue measure
LN , and a singular part whose support is an (N −1)-dimensional rectifiable set
Su. This is the “jump set” of u, in the sense that u has traces u+ 6= u− HN−1

a.e. on the two sides of Su. They showed that

F(u;Ω) :=

∫

Ω

F (∇u) dx+ β

∫

Ω

|u− g|q dx+ γHN−1(Su ∩Ω) (1.1)

admits a minimizer in SBV provided F is a convex function growing superlin-
early at infinity and coercive. In the scalar-valued case, where u : Ω → R, De
Giorgi, Carriero and Leaci [16] proved that if F (ξ) = |ξ|2 then

HN−1
(

(Su \ Su) ∩Ω
)

= 0

for any minimizer u ∈ SBV (Ω;R) of F , and so the pair (Su, u) is a “classical”
minimizer of the original functional G. Note that, in general, if u ∈ SBV then
the set Su is far from being closed, i.e. HN−1

(

(Su \ Su) ∩ Ω
)

> 0, and it may
be even dense in Ω. The result of [16] has been extended to a quite broad class
of convex functions F with growth p > 1 at infinity, and further regularity on
the set Su has been obtained (see [1], [5], [6], [11], [20]).

In the vectorial case u : Ω → Rd, d ≥ 2, Fonseca and Francfort (see [18])
showed that functionals of the type (1.1) appear naturally in the study of effec-
tive energies for fractured elastic materials.
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In this paper we show that local minimizers u ∈ W 1,2(Ω;Rd) of the func-
tional

F0 : v ∈W 1,2(Ω;Rd) 7→
∫

Ω

[

1

2
|Du|2 + f(|ν(u)|)

]

dx

are in C0,γ
loc (Ω;Rd) for all γ ∈ (0, 1), where Ω ⊂ R2 is open and bounded, f

grows linearly at infinity, and ν(u) stands for the vector of all 2 × 2 minors of
Du. In turn, this regularity will entail that minimizers u ∈ SBV (Ω;Rd) of

F(u,Ω) :=

∫

Ω

[

1

2
|∇u|2 + f(|ν(u)|)

]

dx+ β

∫

Ω

|u− g|q dx+ γHN−1(Su ∩Ω)

are “classical” mimimizers in that u ∈W 1,2(Ω\Su;R2) for every 0 < γ < 1, and
HN−1

(

(Su\Su)∩Ω
)

= 0. In the case where d = 3 we may consider these energies
as associated to thin films or membranes (see [7], [12], [19], [23]). We remark
that f does not need to be convex. This regularity result was already obtained
for N = 2, ν(u) = det∇u, and when f is convex (see [1]). As in that paper,
here we use an argument similar to the one introduced by Bauman, Phillips and
Owen [8], and used by Dougherty [17]; precisely, we obtain regularity of local
minimizers by means of the higher integrability of two auxilliary combinations
of the derivatives of u, A := (|D1u|2 − |D2u|2)/2, B := D1u ∧D2u, which turn
out to be harmonic functions in the case where d = 2 (see Proposition 3.2).

2. Statements and Preliminary Results

If Ω ⊂ RN is open, we say that a function of bounded variation u ∈ BV (Ω;Rd)
is a function of special bounded variation (see [2], [3], [4], [14], [15]]), u ∈
SBV (Ω;Rd), if, denoting by Su the complement of the set of Lebesgue points
of u, the distributional derivative Du is represented by

Du = ∇uLN + (u+ − u−) ⊗ ν HN−1⌊Su ,

where ∇u is the Radon-Nikodym derivative of the finite, Radon measure Du
with respect to the N -dimensional Lebesgue measure LN , ν is the normal to
the rectifiable set Su, u+ and u− are the traces of u on Su, and HN−1 denotes
the (N − 1)-dimensional Hausdorff measure.

In the sequel we consider Ω to be a bounded, open subset of R2, and we let
f : [0,+∞) → [0,∞) to be a C1 function such that

(H1) f(t) ≤ C(1 + t) for some C > 1;
(H2) there exist M ∈ [0,+∞) such that

lim
t→+∞

f ′(t) = M ;

(H3) there exist α,C > 0 such that for all t ≥ 1
∣

∣

∣

∣

f ′(t) − f(t)

t

∣

∣

∣

∣

≤ C

tα
.
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It is not restrictive to assume that

0 < α < 1

and in what follows we will work under this assumption. Also, in order to
simplify the notation the value of the constant C may change from one line to
the next, and BR, R > 0, will denote a generic open ball of radius R, centered
at x ∈ Ω, and such that BR ⊂ Ω.

Given u ∈ SBV (Ω;Rd) we define

ν(u) :=
∂u

∂x1
∧ ∂u

∂x2
,

the 2-covector whose components are the 2 × 2 subdeterminants of ∇u.
Consider the energies

G(K, u) :=

∫

Ω\K

[1

2
|∇u|2 + f(|ν(u)|)

]

dx+ β

∫

Ω\K

|u− g|q dx+ γH1(Ω ∩K),

F(u;Ω) :=

∫

Ω

[

1

2
|∇u|2 + f(|ν(u)|)

]

dx+ β

∫

Ω

|u− g|q dx+ γHN−1(Su ∩Ω),

and

F0(u;Ω) :=

∫

Ω

[

1

2
|Du|2 + f(|ν(u)|)

]

dx.

The following lemma may be found in [21] (Chap. 3, Lemma 2.1).

Lemma 2.1. Let φ : [0,+∞) → [0,+∞) be a nonnegative, nondecreasing func-
tion, such that

φ(ρ) ≤ H
[( ρ

R

)γ

+ ε
]

φ(R) +KRβ

for all 0 < ρ < R ≤ R0 and for some constants H,K ≥ 0 and 0 < β < γ. Then
there exist constants ε0 = ε0(H, γ, β), C = C(H, γ, β) such that

φ(ρ) ≤ C
[( ρ

R

)β

φ(R) +Kρβ
]

for all 0 < ρ < R ≤ R0.

Definition 2.2. We say that u ∈W 1,2(Ω;Rd) is a W 1,2-local minimizer of

I(v;Ω) :=

∫

Ω

F (∇v) dx , v ∈W 1,2(Ω;Rd)

if

I(u;BR(x0)) = min
{

I(v;BR(x0)) : v ∈ u+W 1,2
0 (BR(x0);R

d)
}

for all balls BR(x0) ⊂ Ω.

The main result of this paper is the following theorem.
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Theorem 2.3. If u ∈ W 1,2(Ω,Rd) is a W 1,2-local minimizer of F0 then u ∈
C0,γ

loc for all γ ∈ (0, 1).

In the proof of Theorem 2.3 we will use classical arguments of regularity
theory within the framework of the Morrey spaces Lp,λ; for a detailed study of
these methods we refer the reader to [21], [24].

Definition 2.4. Given λ ≥ 0 we say that f ∈ Lp,λ(Ω;R) if there exists a
constant C > 0 such that

∫

Bρ

|f |p dx ≤ Cρλ

for alll x ∈ Ω and 0 < ρ < diamΩ. The function f is said to be in Lp,λ
loc (Ω;R)

if f ∈ Lp,λ(Ω′;R) for all Ω′ ⊂⊂ Ω.

It can be shown that, with Ω ⊂ R2,

Lp,0(Ω) = Lp(Ω), Lp,2(Ω) = L∞(Ω), Lp,λ(Ω) = {0} if λ > 2,

and that Lp,λ(Ω) is a Banach space endowed with the norm

||f ||Lp,λ(Ω) :=

{

sup
x∈Ω,0<ρ<diamΩ

ρ−λ

∫

B(x,ρ)

|f |p dx
}

1

p

.

Morrey proved that (see Theorem 3.5.2, [24])

Lemma 2.5. If u ∈ W 1,2
loc (Ω) and Du ∈ L2,λ

loc (Ω) for some 0 < λ < 2 then

u ∈ C
0,λ/2
loc (Ω).

In light of Lemma 2.5, we will prove Theorem 2.3 by showing that if u is a
W 1,2-local minimizer of F0 then for all 0 ≤ λ < 2

∫

Bρ

|Du|2 dx ≤ C
( ρ

R

)λ
∫

BR

|Du|2 dx+ Cρλ (2.1)

for all 0 < ρ < R with BR ⊂⊂ Ω.
As a corollary we obtain,

Corollary 2.6. Let u ∈ SBV (Ω;Rd) be a minimizer for F . Then (Su, u) is a
minimizer for G among all pairs (K, v) with K ⊂ Ω closed and v ∈ W 1,2(Ω \
K;Rd). Moreover,

H1((Su \ Su) ∩Ω) = 0.

Following the argument introduced by De Giorgi, Carriero and Leaci [16],
and outlined in [1], the corollary holds provided we can show that W 1,2 local
minimizers of
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v ∈W 1,2(B1;R
d) 7→

∫

B1

[

1

2
|Du|2 +M |ν(u)|

]

dx

satisfy an estimate of the type
∫

Bρ

[

1

2
|Du|2 +M |ν(u)||

]

dx ≤ Cρλ

∫

B1

[

1

2
|Du|2 +M |ν(u)|

]

dx+ Cρλ,

for some 0 < λ < 2 and 0 < 0 ≤ 1 or, equivalently,
∫

Bρ

|∇u|2 dx ≤ Cρλ

∫

B1

|Du|2 dx+ Cρλ.

We conclude that the assertion of the corollary holds true provided we prove
(2.1).

The following lemma may be found in [21], Theorem 3.1, Chapter 3, page
87.

Lemma 2.7. Let λ < 2, let f ∈ L2,λ(BR;R2), and let v ∈W 1,2(BR;R) satisfy

∆v = div f in BR.

Then Dv ∈ L2,λ
loc (BR;R2), and for every ρ ≤ R

∫

Bρ

|Dv|2 dx ≤ C
( ρ

R

)λ
∫

BR

|Dv|2 dx+ Cρλ ||f ||2L2,λ(BR).

Lemma 2.8. Let p > 1 and 0 ≤ λ < 2. If fi,j ∈ Lp,λ
loc (Ω) for i, j ∈ {1, 2} and

u ∈ L1
loc(Ω) is a distributional solution of

∆u =
∑

D2
i,jfi,j

then u ∈ Lp,λ
loc (Ω).

Proof. Let BR ⊂⊂ Ω and for every i, j let vi,j be the solution of (see Theorem
9.15 and Lemma 9.17, [22])







∆vi,j = fi,j

vi,j ∈W 1,p
0 (BR) ∩W 2,p(BR),

and we set
w :=

∑

Di,jvi,j .

Then w ∈ Lp(BR) and ||w||Lp(BR) ≤ C
∑ ||fi,j||Lp(BR). In addition, ∆w =

∑

Di,jfi,j in D′, so that the function

v := u− w

is harmonic, i.e. ∆v = 0. Hence
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sup
BR/2

|v| ≤ C(p)

(

1

|BR|

∫

BR

|v|p dx
)1/p

,

from which we deduce that for every ρ ≤ R/2 (thus, for all 0 < ρ ≤ R)
∫

Bρ

|v|p dx ≤ C
( ρ

R

)2
∫

BR

|v|p dx.

We have
∫

Bρ

|u|p dx ≤ C

∫

Bρ

(|v|p + |w|p) dx

≤ C
( ρ

R

)2
∫

BR

|v|p dx+ C

∫

BR

|w|p dx

≤ C
( ρ

R

)2
∫

BR

|u|p dx+ C

∫

BR

|w|p dx

≤ C
( ρ

R

)2
∫

BR

|u|p dx+ CRλ

.

By Lemma 2.1 we deduce that for all 0 < ρ ≤ R
∫

Bρ

|u|p dx ≤ C
( ρ

R

)λ
∫

BR

|u|p dx+ Cρλ

≤ ρλ

[

C

Rλ

∫

BR

|u|p dx+ C

]

,

and so u ∈ Lp,λ
loc (Ω). ⊓⊔

We end this section with a list of algebraic inequalities, following an argu-
ment introduced [8] (see also [17]).

Let P,Q ∈ Rd and set

A :=
|P |2 − |Q|2

2
, B := P ·Q, ν := P ∧Q.

Lemma 2.9. We have
i) 2

√
A2 +B2 ≤ |P |2 + |Q|2;

ii) 0 ≤ |P |2 + |Q|2 − 2|ν| ≤ 2
√
A2 +B2;

iii) if ν = 0 then |P |2 + |Q|2 = 2
√
A2 +B2;

iv) if α, β ∈ RN and ν 6= 0 then

∣

∣

∣

∣

1

|ν|ν · (P ∧ β + α ∧Q) − (P · α+Q · β)

∣

∣

∣

∣

2

≤ 4
√

A2 +B2 (|α|2 + |β|2).

Proof. Since

|ν|2 =
∑

i<j

|PiQj − PjQi|2 =
1

2

∑

i,j

|PiQj − PjQi|2 = |P |2|Q|2 − (P ·Q)2,
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we have
|P |2|Q|2 = B2 + |ν|2,

and so

4A2 = (|P |2 + |Q|2)2 − 4|P |2|Q|2 = (|P |2 + |Q|2)2 − 4(B2 + |ν|2),
and

4(A2 +B2) = (|P |2 + |Q|2)2 − 4|ν|2.
Clearly i) and iii) follow. In addition, we have that

(|P |2 + |Q|2)2 − 4|ν|2 ≥ 0

hence

0 ≤ |P |2 + |Q|2 − 2|ν| ≤
√

(|P |2 + |Q|2)2 − 4|ν|2 = 2
√

A2 +B2,

which yields assertion ii).
Now remark that if ν 6= 0 then P 6= 0 and, setting

Q′ := Q− P ·Q
|P |2 P,

then also Q′ 6= 0. Define the orthonormal vectors

P1 :=
P

|P | , Q1 :=
Q′

|Q′| .

We write
P = pP1, Q = s P1 + q Q1

with

p := |P |, q := |Q′|, s :=
P.Q

|P | .

Note that
ν = pq P1 ∧Q1, |ν| = pq,

and that if v ∈ RN then

(P1 ∧Q1) · (P1 ∧ v) = v ·Q1, (P1 ∧Q1) · (v ∧Q1) = v · P1.

We have
1

|ν|ν · (P ∧ β + α ∧Q) − (P · α+Q · β)

= (P1 ∧Q1) · (pP1 ∧ β − s P1 ∧ α+ q α ∧Q1) − (pP1 · α+ s P1 · β + q Q1 · β)

= [(q − p)P1 − sQ1] · α+ [−s P1 + (p− q)Q1] · β
= v1 · α+ v2 · β,

with
v1 := (q − p)P1 − sQ1 and v2 := −s P1 + (p− q)Q1.

We have

|v1 ·α+ v2 · β|2 ≤ (|v1|2 + |v2|2)(|α|2 + |β|2) = 2(|P |2 + |Q|2 − 2|ν|)(|α|2 + |β|2),
which, together with ii), concludes the proof of iv). ⊓⊔
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3. Proof of the Regularity Theorem

In this section we assume that u ∈W 1,2(Ω;Rd) is a local minimizer of F0.

Proposition 3.1. If Du ∈ L2,λ
loc (Ω;Rd) for some 0 ≤ λ < 2 then Du ∈

L
2,q0(λ)
loc (Ω;Rd), where q0(λ) := α+ λ(1 − α/2).

Before proceeding with the proof of this result, we remark that using an
iterative scheme where

λ0 := 0, λk+1 := q0(λk)

then

lim
k→+∞

λk = lim
k→+∞

α
k

∑

i=0

(

1 − α

2

)i

= 2,

hence (2.1) will follow for all 0 ≤ λ < 2 and, as justified in Section 2, this suffices
to assert Theorem 2.3.

The proof of Proposition 3.1 uses higher integrability properties of the func-
tions

A :=
|D1u|2 − |D2u|2

2
, B := (D1u) · (D2u),

where D1u and D2u stand for the column vectors in Rd of the derivatives of u
with respect to x1 and to x2, respectively.

Proposition 3.2. The functions A and B solve the system






∆A = D2
11g −D2

22g

∆B = 2D2
12g,

where

g := f(|ν(u)|)− |ν(u)| f ′(|ν(u)|).

In addition, if Du ∈ L2,λ
loc (Ω;R2d) for some 0 ≤ λ < 2 then

√

|A| + |B| ∈
L

2,2α+λ(1−α)
loc (Ω;R).

Proof. Consider Φ := (ϕ, ψ) ∈ C1
0 (Ω;R2), and let ε > 0 be small enough so

that with Φε(x) := x + εΦ(x), then Φε : Ω → Ω is a smooth diffeomorphism
satisfying

detDΦε(x) = 1 + εdivΦ(x) + ω1(x, ε),

detDΦ−1
ε (y) = 1 − εdivΦ(Φ−1

ε (y)) + ω2(y, ε),

where ωi(·, ε)/ε→ 0, as ε→ 0, uniformly in Ω. Set

uε(y) := u
(

Φ−1
ε (y)

)

, y ∈ Ω.
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We have

∫

Ω

|Duε(y)|2dy =

∫

Ω

|Du(I− εDΦ)|2(Φ−1
ε (y)) dy + o(ε)

=

∫

Ω

|Du(I− εDΦ)|2(1 + εdivΦ) dx+ o(ε)

=

∫

Ω

|Du|2 dx+ ε

∫

Ω

[

|Du|2 divΦ− 2DuDΦ ·Du
]

dx+ o(ε),

where the inner product of two d × 2 matrices ξ and η is defines as ξ · η :=
trace(ξT η).

On the other hand, since

ν(uε(y)) = [detDΦ−1
ε (y)] ν(u)(Φ−1

ε (y)),

we also have that, setting Ωε := {x ∈ Ω : |εdivΦ− ω2||ν(u)| 6= 0},
∫

Ω

f(|ν(uε(y))|) dy =

∫

Ω

f ((1 − εdivΦ+ ω2)|ν(u)|) detDΦε dx

=

∫

Ωε

[f(|ν(u)|) + (−εdivΦ+ ω2)|ν(u)| f ′(|ν(u)|)] detDΦε dx

+

∫

Ωε

[

f((1 − εdivΦ+ ω2)|ν(u)|) − f(|ν(u)|)
(−εdivΦ+ ω2)|ν(u)|

− f ′(|ν(u)|)
]

(−εdivΦ+ ω2)|ν(u)|) detDΦε dx

+

∫

Ω\Ωε

f(|ν(u)|) detDΦε dx

=

∫

Ω

f(|ν(u)|) detDΦε dx

+

∫

Ω

(−εdivΦ+ ω2)|ν(u)| f ′(|ν(u)|) detDΦε dx+ o(ε),

=

∫

Ω

f(|ν(u)|) dx+ ε

∫

Ω

[f(|ν(u)|) − |ν(u)| f ′(|ν(u)|)] divΦdx+ o(ε),

because by Lebesgue’s dominated convergence, by (H1), and due to the bound-
edness of f ′,
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lim
ε→0

∫

Ωε

∣

∣

∣

∣

f((1 − εdivΦ+ ω2)|ν(u)|) − f(|ν(u)|)
(−εdivΦ+ ω2)|ν(u)|

− f ′(|ν(u)|)
∣

∣

∣

∣

|ν(u)|
∣

∣

∣
divΦ− ω2

ε

∣

∣

∣
|1 + εdivΦ+ ω1| dx = 0.

By the local minimality of u we have F0(uε) − F0(u) ≥ 0, from which the
Euler-Lagrange equation can be easily obtained,
∫

Ω

[

1

2
|Du|2 divΦ−DuDΦ.Du

]

dx =

∫

Ω

[ |ν(u)|f ′(|ν(u)|) − f(|ν(u)|) ] divΦdx

for every Φ = (ϕ, ψ) ∈ C1
0 (Ω;R2). This equation may be rewritten as

∫

Ω

[A(D2ψ −D1ϕ) −B(D1ψ +D2ϕ)] dx =

∫

Ω

−g(D1ϕ+D2ψ) dx,

that is,
{

D1A+D2B = D1g

D2A−D1B = −D2g,

and the first assertion follows. By (H3)

|g| ≤ C(1 + |ν(u)|1−α)

and so, assuming that Du ∈ L2,λ
loc (Ω;R2d) we have that |ν(u)| ∈ L1,λ

loc (Ω;R) and

g ∈ L
1

1−α ,λ

loc (Ω).

We may now use Lemma 2.8 to obtain that

A,B ∈ L
1

1−α ,λ

loc (Ω),

and by Hölder inequality we conclude that

√

|A| + |B| ∈ L
2,2α+λ(1−α)
loc (Ω).

⊓⊔
Finally, in order to prove Proposition 3.1 we introduce the following notation:

q(λ) := 2α+ λ(1 − α),

Ω0 := {x ∈ Ω : |ν(u)| = 0},

Ω′
0 := {x ∈ Ω : |ν(u)| > 0},

ΩK := {x ∈ Ω : 0 < |ν(u)| ≤ K},

Ω′
K := {x ∈ Ω : |ν(u)| > K}.
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Proof of Proposition 3.1. Fix φ ∈ W 1,2
0 (Ω;Rd) and assume that Du ∈

L2,λ
loc (Ω;R2d) for some 0 ≤ λ < 2. For ε ∈ R set uε(x) := u(x) + εφ(x). Define

P := D1u, Q := D2u, α := D1φ, β = D2φ, ν := ν(u).

Since
ν(uε) = ν(u) + εP ∧ β + εα ∧Q+ ε2α ∧ β,

we have
∫

Ω

f(|ν(uε)|) dx−
∫

Ω

f(|ν|) dx = ε

∫

Ω′

0

f ′(|ν|) ν|ν| · (P ∧ β + α ∧Q) dx

+ |ε|
∫

Ω0

f ′(0)|P ∧ β + α ∧Q| dx+ o(ε).

Local minimality of u entails

lim sup
ε→0−

F0(uε;Ω) − F0(u;Ω)

ε
≤ 0,

and so
∫

Ω

Du ·Dφdx+

∫

Ω′

0

f ′(|ν|) ν|ν| · (P ∧β+α∧Q) dx ≤
∫

Ω0

f ′(0)|P ∧β+α∧Q| dx.

We have

(M + 1)

∫

Ω

Du ·Dφdx+M

∫

Ω′

0

[

ν

|ν| · (P ∧ β + α ∧Q) − (P · α+Q · β)

]

dx

+

∫

Ω′

0
∩ΩK

(f ′(|ν|) −M)
ν

|ν| · (P ∧ β + α ∧Q) dx

≤ C

∫

Ω0

|Du||Dφ| dx+ ωK

∫

Ω′

K

|Du||Dφ| dx,

where
ωK := sup

t≥K
|M − f ′(t)|.

We recall that by (H2)

ωK → 0 as k → +∞.

By Lemma 2.9 iii), iv) we deduce that

(M + 1)

∫

Ω

Du ·Dφdx+

∫

Ω

G ·Dφdx

≤ C

∫

Ω

√

|A| + |B||Dφ| dx+ ωK

∫

Ω

|Du||Dφ| dx
(3.1)

with
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G1 := χΩ′

0
∩ΩK

(M − f ′(|ν|)) ν|ν| ∧Q

G2 := χΩ′

0
∩ΩK

(f ′(|ν|) −M)
ν

|ν| ∧ P

and where χA stands for the characteristic function of the set A. By Lemma 2.9
ii), iii), and recalling that on ΩK we have |ν| ≤ K, we have

|G| ≤ C(K)(1 +
√

|A| + |B|), a.e. in Ω, (3.2)

and by Proposition 3.2 we deduce that G ∈ L2,q(λ)(Ω;Rd). Next, for a fixed
ball BR ⊂⊂ Ω we compare u with the solution of the Dirichlet problem







(M + 1)∆v = divG in BR

v − u ∈W 1,2
0 (BR;R).

(3.3)

By Lemma 2.7 Dv ∈ L
2,q(λ)
loc (BR;R2) and for all 0 < ρ ≤ R

∫

Bρ

|Dv|2 dx ≤ C
( ρ

R

)q(λ)
∫

BR

|Dv|2 dx+ C(K)ρq(λ). (3.4)

¿From (3.1) and (3.3) we have for all φ ∈W 1,2
0 (BR;Rd)

(M+1)

∫

BR

(Du−Dv)·Dφdx ≤ C

∫

Ω∩BR

√

|A| + |B||Dφ|dx+ωK

∫

BR

|Du||Dφ|dx.

Therefore, taking φ := u − v, and using the fact that Lemma 2.9 i) and (3.2)
yield

|G| ≤ C|Du|,
∫

BR

|Dv|2 ≤ C

∫

BR

|Du|2,

we have
∫

BR

|Du−Dv|2 dx ≤ C

∫

BR

(|A| + |B|) dx+ CωK

∫

BR

|Du|2 dx.

Using (3.4) we now obtain
∫

Bρ

|Du|2 dx ≤ C

[

( ρ

R

)q(λ)

+ ωK

]
∫

BR

|Du|2 dx+ C(K)Rq(λ),

and if K is large enough, so that ωK is small, from Lemma 2.1 we conclude that
for all 0 < λ′ < q(λ)

∫

Bρ

|Du|2 dx ≤ C
( ρ

R

)λ′
∫

BR

|Du|2 dx+ Cρλ′

, (3.4)

and thus (3.4) holds true for λ′ = q0(λ). ⊓⊔
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