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1. Introduction

The commonly adopted Weiss–Landau–Lifschitz model of micromagnetics
applies to a single crystal of a magnetic material, and according to this theory
the total energy associated with the magnetized crystal is given as a sum of
several energy contributions, as described briefly in §2 (see Brown 1963; Landau &
Lifschitz 1984; Visintin 1985; Anzellotti et al. 1991; Hubert & Schäfer 1998;
Dacorogna&Fonseca2000).When considering a body composed of several distinct
magnetic materials, surface energy terms must be taken into account due to the
interaction between grains with different magnetic properties, and this leads to the
introduction in §3 of a new model for mixtures of magnetic materials, framed
within the context of the space SBV of functions with special bounded variation
(SBV).

In this model, all material information is encapsulated in a function u, the
composite magnetization, and the total magnetic energy associated with a body
U3R3 composed of a finite number K of different magnetic materials has the
form

EðuÞZ
ð

U
½aðjujÞjVuj2CfðuÞKf $mðuÞK~h½u$$mðuÞ$dxC

ð

Ju

gðuC;uK; nÞdH2;

where f is the external magnetic field, Ju is the set of discontinuity points of u,
and the composite magnetization must satisfy the pointwise constraint,

juj2f1; 2;.;Kg a:e: in U:

In §4, we apply this model to an optimal design problem, that of minimizing the
total energy of the body U for a fixed external magnetic field f , given the K
materials which U may be made of, and possibly under fixed volume fractions of
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each component. We prove existence of a solution, and by modifying
appropriately the arguments in Carriero & Leaci (1991) and Ambrosio et al.
(2000), we establish a regularity property for the optimal configuration.

The authors warmly thank Michael Widom at CMU and Giovanni Asti at
Parma University for useful discussions on the physics of the problem. The
results in this paper were partially announced in Acerbi et al. (2002).

2. The Weiss–Landau–Lifschitz model for one crystal briefly visited

In this section, we summarize the Weiss–Landau–Lifschitz model of micro-
magnetics, which has proved to be suitable for the study of a magnetic material
with moderate conductivity. Consider a single crystal of some magnetic material,
and assume that it occupies a set U3R

3. Each of its material points is
magnetized, i.e. it generates a magnetic field described by a vector field, the
magnetization

m : U/R
3:

Below the Curie temperature, the magnetization has constant intensity,

jmjhms; in U;

where the magnetic saturation intensity ms and the Curie temperature are
characteristic of the material. We assume throughout that the temperature is
well below the Curie temperature of each material employed.

The magnetic exchange energy favours the alignment with m of the
magnetization at neighbouring points. It depends on the gradient matrix Vm
through a four-indices tensor A, also characteristic of the material, and is given
by

Ð
UhAVm;Vmidx. A good approximation, which is commonly adopted, is that

A is close to being a multiple of the identity, thus we set

ExchZ
ð

U
ajVmj2dx;

where the constant a is another characteristic of the material.
Owing to the structure of the crystal, there are some alignments of the

magnetization m (the easy axes), which are preferred with respect to others.
There is just one direction (and its opposite) for uniaxial crystals, namely the
main axis of the crystal, whereas for different symmetry groups there are several
easy directions. This preference is expressed through the anisotropy energy,
which is usually described as the integral of a non-negative polynomial in m, here
generalized to read

AnisZ
ð

U
fðmÞdx;

where the continuous function

f : vBms/ ½0;CN½
depends on the grain, not only through the material it is made of, but also
through its orientation.

It may happen that the exchange and anisotropy energies compete. For
example, consider a rod of uniaxial crystal, and assume that at the two ends of
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the rod the magnetization is forced by external conditions to be along the easy
axis, but pointing in the two opposite directions. The anisotropy energy favours
m to align with these two directions across a thin transition layer, whereas the
exchange energy term favours a slow transition. Most theories agree that the
total energy contribution of the transition layer is proportional to the area of
the cross-section. Ultimately, the material reaches equilibrium partitioned into
islands of constant m, the magnetic domains, separated by thin layers where all
the transitions take place, the Bloch walls (some of our considerations apply to
other kinds of walls, such as Néel walls, only on a large-scale level). The diameter
of magnetic domains is in the range of one-tenth of a micrometre to millimetres,
whereas the thickness of the walls is about 10–100 atomic layers, and so, as is
customary also in the physicists’ practice, we will later take into account very
thin transition layers by introducing a surface energy penalization.

The external magnetic field f interacts with the magnetization m, thus
producing another energy term (to simplify the notation we dropped a few
constants, such as a couple of 1/2 in front of some integrals)

ExtZK

ð

U
f $m dx;

and in order to minimize it, m will seek to align with f .
The last term is the demagnetizing energy. The magnetization m induces a

field h½m$ in the whole space that is determined by Maxwell’s equations,

curl h Z 0; in R
3;

divðhCm1UÞZ 0; in R3:

(

ð2:1Þ

These are to be interpreted in the sense of distributions as

h2L2ðR3;R3Þ; curl h Z 0;
Ð
R3h$v dx ZK

Ð
Um$v dx; for all v2L2ðR3;R3Þ; such that curl v Z 0:

(

The demagnetizing energy (which is a non-local term) is given by

DemagZ
ð

R3
jh½m$j2dx:

Since (2.1) holds in R3, the generated magnetic field is zero ifm is divergence-free
and is tangent to the boundary of U, whereas it is large if m has constant
direction. Thus, the demagnetizing energy has large effects and strongly
interferes with the exchange and anisotropy energies, which have opposite
preferences regarding the alignment of m. For interesting microstructure
problems arising from this situation, we refer, for example, to James &
Kinderlehrer (1990) and DeSimone et al. (2000).

The total energy associated with a magnetization m of a single crystal is given
by the sum of the four terms we discussed, i.e.

V ðmÞZExchCAnisCExtCDemag

Z
ð

U
½ajVmj2CfðmÞKf $m$dxC

ð

R3
jh½m$j2dx:
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We conclude this section by remarking that the mapping m1h½m$ has some
interesting properties (see DeSimone 1993). The theory of singular integrals
(see Stein 1970) ensures that it is linear, continuous from LpðUÞ to LpðR3Þ for any
pO1, and ð

R3
jh½m$j2dx ZK

ð

U
m$h½m$dx:

From this formula we deduce, in particular, that

m1

ð

R3
jh½m$j2dx is continuous from L2ðU;R3Þ into R:

Also, although the term Demag is non-local, some local estimates may be
recovered. If two magnetizations agree outside a ball, i.e. if mZm 0 outside
B93U, and if jmj; jm 0j%L, then we have for every qO1

ð

U
h½m$$mKh½m 0$$m 0 dx

####

####

Z
ð

U
ðmKm 0Þ$h½ðmCm 0Þ=2$CðmCm 0Þ$h½ðmKm 0Þ=2$dx

####

####

%cðL; qÞkmKm 0kq 0%c93=q
0
: ð2:2Þ

Also, by the continuity of f on the compact set vBms

ð

U
jfðmÞKfðm 0Þjdx%c93: ð2:3Þ

Both estimates will be useful when proving regularity in §5.

3. Mixtures, their energy and the new model

We now turn to mixtures of magnetic materials. Suppose that U is composed of
two crystals U1 and U2 of different materials, separated by a smooth surface S.
We stress the fact that by ‘different’ we mean that the two grains may also be
made of the same substance but with differently oriented crystallographic axes.
Each magnetic material is identified by the exchange constant a, the magnetic
saturation ms and the anisotropy function f, which contains all the necessary
crystallographic information, thus we must consider two triples ða1;ms

1;f1Þ and
ða2;ms

2;f2Þ, and the energy contribution of the magnetizations m1 and m2 of the
two grains is then

V ðm1;m2ÞZ
ð

U1

½a1jVm1j2 Cf1ðm1ÞKf $m1$dx

C

ð

U2

½a2jVm2j2 Cf2ðm2ÞKf $m2$dxC
ð

R3
jhj2dx;

where hZh½m11U1
Cm21U2

$.

E. Acerbi and others2228

Proc. R. Soc. A (2006)



The presence of the dividing surface in U creates chemical and electric
disturbances in the lattice atoms, possibly related also to the different
magnetizations on the two sides, and maybe also on the direction of the normal
vector to S (we are not aware of a physical interpretation for this, but
mathematically it comes for free). Therefore, we must include in the energy a
surface term, whose density depends on the two materials. Precisely, this density
is the sum of a positive constant with a non-negative function of the traces Trm1
and Tr m2 of the magnetizations on the two sides of S, and of the normal vector
n to S, i.e.

Sðm1;m2ÞZ
ð

S
½a1;2 Cb1;2ðTrm1;Tr m2; nÞ$dH2:

The total energy becomes

Eðm1;m2ÞZV ðm1;m2ÞCSðm1;m2Þ;
under the constraint that the modulus of each magnetization equals the
respective magnetic saturation intensity.

In the case of Kmagnetic materials, each is characterized by a triple ðai;ms
i ;fiÞ

and occupies an open subset Ui of U, where the sets Ui are pairwise disjoint and
their union is all of U up to a two-dimensional set S. If we denote by mi the
magnetization in Ui, then the energy is given by

XK

iZ1

ð

Ui

½aijVmij2 CfiðmiÞKf $mi$dxC
ð

R3
h
XK

iZ1

mi1Ui

" ######

#####

2

dxC
X

isj

Sðmi;mjÞ;

ð3:1Þ
where the terms Sðmi;mjÞ are surface integrals on subsets of S, and where we
recall that

jmijZms
i ; in Ui; mi2W 1;2ðUi;R

3Þ: ð3:2Þ
Since the landscape of the subdomains Ui, iZ1;.;K , is an unknown of the
problem in the optimal problem considered in §4, it is easy to see that this energy
does not entail compactness of energy bounded sequences of magnetizations.
Indeed, a magnetization mi which is discontinuous along a surface s3Ui is not
admissible due to the Sobolev condition in (3.2), but it may be approached by a
sequence of admissible magnetizations with equibounded energy, simply by
fattening s into an open set s0 and adding this to Uj for some jsi (extendmj to s

0

as a constant). This then leads to a finite relaxed energy for the discontinuous
function we selected. We remark that this is somewhat analogous to Gibbs’
phenomenon in fluids (see Modica 1987).

The structure of the relaxed energy, which allows inner discontinuities but
penalizes them, may be physically interpreted as keeping into account the possible
discontinuities of the magnetic field inside a crystal, or as a simplification of the
energy of a Bloch wall.

We are thus led to considering an energy which no longer forces the
magnetizations to belong to W 1;2 inside each grain, but instead allows jumps, so
it is natural to take as ambient space that of special functions of bounded
variation, SBV. We recall that the distributional derivative of a function u with
bounded variation in U3Rn may be decomposed as the sum of an absolutely
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continuous term, Vu

=

dx, and a singular part D su. Moreover (the precise
representative of) u is discontinuous on a ‘jump’ set Ju, which is countably HnK1

rectifiable. The singular part may be further decomposed into a jump part
D juZD su

=

Ju, which is supported on Ju, and a Cantor part D cuZD suKD ju.
The functions with SBV are defined as those BV functions whose distributional
derivative has no Cantor part.

If u2SBV, then the jump set has a normal n at HnK1-a.e. point, and the traces
of u from the two sides are denoted uC and uK. We will later use, without further
description, the precise definition and several properties of the space SBV, and
we refer the reader to Ambrosio et al. (2000) for a comprehensive treatise on the
subject.

We may now relax the requirements in (3.2) to read mi2SBVðUi;R
3Þ; in this

setting, the energy may be written in a form which is different, but not much
simpler than before, as we cannot charge all surface terms on the jump set of the
overall magnetization, because some parts of the surface S may then be missing.
Indeed, in two adjacent grains Ui and Uj one may well have ms

iZms
j , thus the

saturation magnetization might have no jump across the interface, although
some energy has to be taken into account (due to the electric disturbances we
mentioned). Then, at this stage it is impossible to replace the extra term on S by
an integral on the jump set J, since, in general, S<J .

In order to overcome this problem, we will rescale the magnetizations mi in
order to obtain an auxiliary magnetization field u which will contain all the
information, and which will allow us to write the energy in an easy, implicit form.
We change mi so that the magnetic saturation intensity in Ui becomes equal to i,
thus the norm of the new magnetization will jump on S. Moreover, the same
norm at any point of UnS will tell us in which of the subsets Ui the point lies.

We set for iZ1;.;K

uidi
mi

ms
i

; ud
XK

1

ui1Ui
; md

XK

1

mi1Ui
;

so that u2SBVðU;R3Þ and

Ui Z fx : juðxÞjZ ig and 1Ui
ðxÞZ ð1KjjuðxÞjKijÞCemiðjuðxÞjÞ; ð3:3Þ

m ZmðuÞZ
XK

1

ms
i

i
1Ui

 !

uZ
XK

1

ms
i

i
miðjujÞ

 !

uelðjujÞu;

and now the jump set Ju of u consists exactly of the union of both the interfaces
between grains and the inner discontinuities of the magnetic field. We remark
that given u one easily deduces m and may also decide whether a jump of u
represents an interface or an inner discontinuity of the magnetic field. The former
is also a jump of juj, the second is not.

We may now rescale the other factors. Fix any bounded, positive, continuous
function a satisfying

a : ½0;CN½/$0;CN½; aðiÞZ ms
i

i

$ %2

ai; for i Z 1;.;K ;
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and we have

ExchZ
XK

iZ1

ð

Ui

aijVmij2dx Z
ð

U
aðjujÞjVuj2dx:

Note that the definition of the function a, outside the numbers 1;.;K , allows us
to extend naturally this energy to all SBV. Analogously, take any bounded, non-
negative, continuous function satisfying

f : R3/ ½0;CN½; f##
vBi

ðzÞZfi
ms

iz

i

$ %
; for i Z 1;.;K ;

and

AnisZ
XK

1

ð

Ui

fiðmiÞdx Z
ð

U
fðuÞdx:

Now, since the mapping u1mðuÞZlðjujÞu is continuous in every Lp, so is the
mapping

u1h½mðuÞ$e ~h½u$;
although it is no longer linear because l is not; only additivity with disjoint
supports is preserved. We may write the total energy as

EðuÞZ
ð

U
½aðjujÞjVuj2 CfðuÞKf $mðuÞK~h½u$mðuÞ$dxC

ð

Ju

gðuC;uK; nÞdH2;

where the function g encompasses all the surface terms we described earlier.
In order to have semi-continuity of the energy on the set

fv2SBVðUÞ : jvjZ i a:e: in Uig;
or simply in SBVðUÞ, one has to impose on g a restriction of elementary
geometric nature, equivalent to saying that if (as we did earlier) one interposes
between two adjacent grains an infinitesimal layer of another material, the
energy will not decrease. Mathematically, this leads to the introduction of jointly
convex functions (see Ambrosio et al. 2000, §5.3).

Although the results in §4 hold for the general case of a jointly convex g
satisfying gRcO0 and the standard assumptions in Ambrosio et al. (2000, ch. 5),
we opt to consider in the sequel

gh1:

This will considerably reduce the amount of writing while leaving intact the main
points in the proof. To keep the balance even, we generalize to the n-dimensional case
in the obvious way (e.g. replace 2 and 3 by ðnK1Þ and n, respectively), only ~h needs
some care, as h was defined in terms of Maxwell’s equations and in the general case
we take it to be a continuous function mapping from every LpðUÞ into LpðRnÞ.

4. Existence and regularity for an optimal design problem

We test our model by applying it to an optimal design problem. Assume that

H1 U is a bounded, open domain of Rn;
H2 f is a given vector field in L1ðU;RnÞ;
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H3 a is a positive, continuous real function defined on ½0;CN½;
H4 f is a non-negative, continuous real function defined on R

n;
H5 ~h is a mapping from L2ðU;RnÞ to L2ðRn;RnÞ which is continuous in every

strong Lp topology (on both domain and target), and such that if u and u 0

have disjoint supports, then ~h½uCu 0$Z ~h½u$C ~h½u 0$;
H6 ms

1;.;ms
K are positive real numbers;

H7 f 2LqðU;RnÞ for some qOn.

Set
mi : ½0;CN½/R; miðtÞdð1KjtKijÞC; for i Z 1;.;K ; ð4:1Þ

m : Rn/R
n; mðzÞd

XK

1

ms
i

i
miðjzjÞ

 !

z; for z2R
n:

Define for every u2SBVðU;RnÞ

EðuÞZ
ð

U
½aðjujÞjVuj2 CfðuÞKf $mðuÞK~h½u$$mðuÞ$dxCHnK1ðJuÞ;

and consider the set of admissible functions

Adfu2SBVðU;RnÞ : jujZ 1;.;K a:e: in Ug:

The optimal design problem consists in finding a partition of U into K open sets
Ui, a ðnK1Þ-dimensional (relatively) closed set C, and a function u : U/R

n,
such that HnK1ðCÞ!CN, jujh i in each Ui, u2W 1;2ðUnC ;RnÞ and u minimizes

OPT ðv; fUig;CÞZ
ð

UnC
½aðjvjÞjVvj2 CfðvÞKf $mðvÞK~h½v$$mðvÞ$dxCHnK1ðCÞ

among all possible choices of ðv; fUig;CÞ satisfying the constraints above.
We first relax the problem to that of finding a minimizer u2A of the

functional E; we prove an existence result, and then we show using a regularity
argument that a solution to the original optimal design problem actually exists.
Precisely,

Theorem 4.1. Assume that H1,., H6 hold, and let m; E;A be defined as above.
There exists u2A, such that

EðuÞ%EðvÞ; for all v2A:

Theorem 4.2. Assume that H1,., H7 hold, let u2A be the minimizer given by
theorem 4.1 and set CZUhJu . Then HnK1ðCnJuÞZ0, the function u is in
W 1;2ðUnC ;RnÞ, and its modulus takes only the values 1;.;K in UnC . Setting
Uidfx2UnC : juðxÞjZ ig, the triple ðu; fUig;CÞ minimizes OPT . Finally, the
function u is locally Hölder continuous in each connected component of UnC,
except for a locally finite set of points.

Now that the results have been stated, we make a typographic simplification,
dropping the boldface vectorial notation and reverting to the standard one,
thus u; f ;m; ~h; z will appear in place of their boldface equivalents. We also
remark that by our requirements on the admissible functions, we may assume
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without loss of generality that for some LO0

1

L
%aðtÞ%L; 0%fðzÞ%L;

1

L
%ms

i%L: ð4:2Þ

We now prove theorem 4.1.

Proof. Clearly, the set A is not empty. Let fuhg be a sequence in A, such that

EðuhÞ/ inf
A

E:

Denoting by c any constant depending only on n;L;K ; f ;U, and whose value may
vary from line to line and expression to expression within a line, and remarking
that kuhkN%K , we have

ð

U
jVuhj2dxCHnK1ðJuhÞ%cEðuhÞCckf k1 Cc%c: ð4:3Þ

We apply the compactness theorem 4.8 of Ambrosio et al. (2000) to obtain that,
up to a subsequence, uh/u2SBVðU;RnÞ in the following sense:

uh/u a:e: and in every Lp; p!CN; ð4:4Þ

Vuh.Vu weakly in L1;

HnK1ðuhJuÞ% lim inf HnK1ðuhJuhÞ; ð4:5Þ
ð

u
jVuj2dx% lim inf

ð

u
jVuhj2dx; ð4:6Þ

where (4.5) and (4.6) hold for every u4U. Since juhðxÞj2f1;.;Kg a.e., (4.4)
implies that u2A. Moreover, if we set

Uh
i dfx2U : juhðxÞjZ ig; Uidfx2U : juðxÞjZ ig

(where it is understood that we are using the precise representatives here and
elsewhere), we have, recalling (3.3) and (4.1),

1Uh
i
ðxÞZmiðjuhðxÞjÞ/1Ui

ðxÞ ð4:7Þ

strongly in every Lp. Since clearly,

v1

ð

U
½fðvÞKf $mðvÞK~h½v$$mðvÞ$dx

is continuous in the L2 topology on LN, we deduce that
ð

U
½fðuhÞKf $mðuhÞK~h½uh$$mðuhÞ$dx/

ð

U
½fðuÞKf $mðuÞK~h½u$$mðuÞ$dx: ð4:8Þ

The last term in E is dealt with using (4.5), which yields

HnK1ðJuÞ% lim inf HnK1ðJuhÞ: ð4:9Þ
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By (4.2), (4.3) and (4.6), we have aðjujÞVu2L2ðUÞ, and so given 3O0 we may
find dO0 so small that ð

Unu
aðjujÞjVuj2dx!3; ð4:10Þ

whenever jUnuj!d. By (4.7), and again up to subsequences, the characteristic
functions converge quasi-uniformly, i.e. if dO0 is chosen as above, then there
exists ud3U, such that jUnudj!d and

1Uh
i
/1Ui

; uniformly in ud for i Z 1;.;K :

However, for characteristic functions, uniform convergence reduces to equality
(for large h), thus

Uh
i hud ZUihud:

Then, juhðxÞjZ juðxÞj in ud and we have

ð

U
aðjuhjÞjVuhj2dxR

ð

ud

aðjujÞjVuhj2dx Z
XK

iZ1

aðiÞ
ð

Uihud

jVuhj2dx;

and (4.6) implies

lim inf

ð

U
aðjuhjÞjVuhj2dxR

XK

iZ1

aðiÞ
ð

Uihud

jVuj2dx

Z
ð

ud

aðjujÞjVuj2dxR
ð

U
aðjujÞjVuj2dxK3

by (4.10). This, together with (4.8) and (4.9), yields

EðuÞ% lim inf EðuhÞZ inf
A

E;

which concludes the proof. &

Remark 4.3. The existence theorem we just proved holds under more general
conditions. The exponent 2 plays no special role and may be replaced by any pO
1, and the surface term may include an appropriate jointly convex function, in
which case we would apply the lower semi-continuity theorem 5.22 in Ambrosio
et al. (2000). We also remark that the latter part of the proof could have been
supplied by Ioffe’s theorem, but we preferred to show here how we take
advantage of the special partition-like structure.

Remark 4.4. Since the characteristic functions of the sets Uh
i converge in L1, in

particular jUh
i j/ jUij for all i. Thus, if we modify the optimal design problem to

account for fixed volume fractions, i.e. if we take K non-negative numbers ai, such
that a1C/CaKZ jUj, and if we consider as admissible only the functions in the set

Aa1;.;aK
Z fu2SBVðU;RnÞ : jfx : juðxÞjZ igjZaig;

then the limitu of aminimizing sequence is still in the same class, and so also the fixed
volume fractions optimal design problem has a solution.
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5. A road map to theorem 4.2

In theorem 4.2, the only assertion to be proved is that

HnK1ðUhJunJuÞZ 0: ð5:1Þ

Indeed, this will immediately entail that u2W 1;2ðUnC ;RnÞ, juðxÞj2f1;.;Kg
in UnC , and ðu; fUig;CÞ minimizes OPT , where Uidfx2UnC : juðxÞjZ ig. It
now suffices to apply corollary 5.2 of Hardt & Kinderlehrer (2000) to any ball
contained in a single connected component of the open set UnC : indeed, in such a
ball u also minimizes the standard micromagnetic energy considered in Hardt &
Kinderlehrer (2000), and we may conclude that u is locally Hölder continuous in
each connected component of UnC except for a locally finite set of points.

Estimate (5.1) has been treated in full detail in the unconstrained case (see
ch. 7 of Ambrosio et al. 2000) and in the case of a single constraint (i.e. KZ1, see
§§3 and 4 of Carriero & Leaci 1991). Here, we will not reproduce those parts in
the proof which reduce to obvious adaptations of those in Carriero & Leaci
(1991) and Ambrosio et al. (2000). Instead, we will sketch the proof, highlighting
the points where departing from the existing results needs an explanation, and
finally we will prove a decay lemma.

As we will frequently refer to results in ch. 7 of Ambrosio et al. (2000) (all
quoted as 7.x) and in §§3 and 4 of Carriero & Leaci (1991), we will abbreviate the
quotations to read 7.x and 3.x, 4.x, respectively. The key to (5.1) is the density
lower bound (theorem 7.21 or lemma 4.9), stating that if u is a minimizer (and in
a more general context, see definition 5.1), then in every sufficiently small ball
B9ðxÞ3U whose centre is in Ju , the amount of jump set is not too small, i.e.

HnK1ðB9ðxÞhJuÞRq09
nK1 ð5:2Þ

for some q0O0. This implies, in particular, that the HnK1-density of Ju at all
points in Ju is not zero. However, a standard measure theoretic result ensures
that this density is zero HnK1-a.e. outside Ju, and thus (5.2) implies (5.1). We
must therefore concentrate on establishing the density lower bound (5.2).

In the standard non-constrained case, this is proved via a blow-up and
comparison methods, considering a sequence of balls with vanishing radii,
rescaling the balls to the same radius, say 1, and comparing the rescaled
minimizer in each ball with suitable modifications of the same function. This
requires some ingredients which we introduce now. Since bulk and surface terms
rescale with different powers of the radius, one is forced to considering not only
the functional

ðbulk partÞCHnK1ðJuÞ;

i.e. with ‘one’ times the area of the jump, but also more generally

ðbulk partÞCcHnK1ðJuÞ;

with any cO0. When rescaling a function in a ball to have radius 1, we also have
the choice of either leaving the integral of jVuj2 intact or leaving the values taken
by u intact, but not both. Thus, in the constrained case, either we change the
main contribution in the bulk energy, or we take into account that the rescaled
functions will satisfy not the original constraints, but a rescaled version of the
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constraints, say
juðxÞj2ft; 2t;.;Ktg a:e:;

instead of juðxÞj2f1; 2;.;Kg a:e:
Now, we define for every c; tO0, every Borel set E3U, and every

u2SBVðU;RnÞ, such that jVuj2L2ðUÞ,

Fðu;c;E; tÞd
ð

E
a

juj
t

 !

jVuj2dxCcHnK1ðJuhEÞ; if juðxÞj2ft;.;Ktga:e: inE:

In situations where the exact values of c and t are irrelevant, we omit the
dependence of F on these parameters and we use the simplified notation

Fðu;EÞd
ð

E
aðjujÞjVuj2dxCHnK1ðJuhEÞ; if juðxÞj2f1;.;Kg a:e: inE: ð5:3Þ

Another useful tool is the deviation from minimality, which measures how far a
function u is from being a minimizer,

Devðu; c;E; tÞdFðu; c;E; tÞKinffFðv; c;E; tÞ : fvsug33Eg:

Clearly, the deviation from minimality is zero if and only if u is a minimizer on E.
We apply to Dev the same convention regarding the meaning of the abbreviated
Devðu;EÞ. The next definition, see Ambrosio et al. (2000), is crucial to link the
energy F to our full energy E.

Definition 5.1. Let 0%n!1. A function u2SBVlocðU;RnÞ is a n-quasi-
minimizer of F if there exist a constant kR0 and a radius 90O0, such that for
every ball B93U with 9%90,

Devðu;B9Þ%k9nKn:

If nZ0, we simply say u is a quasi-minimizer.

Proposition 5.2. A minimizer of E is a n-quasi-minimizer of Fð$;UÞ with
nZn=q.

Proof. It is enough to remark that if u is a minimizer of E and fvsug33B93U,
then we may write the inequality EðuÞ%EðvÞ as

Fðu;B9ÞKFðv;B9Þ%
ð

B9

fðvÞKfðuÞC f $ðmðuÞKmðvÞÞdx

C

ð

U

~h½u$$mðuÞK~h½v$$mðvÞdx:

Now H4 and (4.2) yield, as in (2.3),
ð

B9

jfðvÞKfðuÞjdx%cðLÞ9n;

from H2, H7 and (4.2) we deduce that
ð

B9

jf $ðmðuÞKmðvÞÞjdx%cðL; qÞkf kq9n=q
0
;
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and finally H5 with the same q as in H7 gives by (2.2)
ð

U

~h½u$$mðuÞK~h½v$$mðvÞdx
####

####%cðL; qÞ9n=q
0
:

Collecting these estimates we have (for 9%1)

Fðu;B9ÞKFðv;B9Þ%c9n=q
0
;

thus

Devðu;B9Þ%c9nKn=q:

&

Remark 5.3. We note that the integrability condition qOn required in H7 is
needed to ensure that ndn=q2ð0; 1Þ will conform with definition 5.1.

We now focus on proving the density lower bound (5.2) for n-quasi-minimizers
of F. We resume our road map. The proof of (5.2) for quasi-minimizers is largely
independent on the particular features of the functional (see theorem 7.21 and
lemma 4.9), and it rests solely on an energy upper bound (lemma 7.19, which is
obviously true in our situation) and on a decay lemma. In fact, Ambrosio et al.
(2000)only deals with quasi-minimizers, but the proof for n-quasi-minimizers is
entirely identical, and exhibiting the same technical difficulties (see Ambrosio
et al. 1997; Ambrosio & Pallara 1997).

This decay lemma (lemma 7.14 and lemma 3.9) states that if in a certain ball
the amount of jump set (in the HnK1 sense) is small and the deviation from
minimality is also small (compared with the size of the functional), then on
smaller concentric balls the value of F decays as a power of the radius. Its proof
in turn is based on an auxiliary lemma (theorem 7.7 and theorem 3.6 with
corollary 3.7) which is the true keypoint. Its statement is exactly what comes out
when trying to prove the decay lemma by contradiction.

The one big difference from the unconstrained to the constrained case is the
limitation in the comparison methods. In the unconstrained case, one may
compare the minimizer u with suitable modifications of u in two ways: either by
cutting away a part of u and replacing it with any function (this is permitted in
BV, and clearly makes no harm if image constraints are added), or by patching
the two via a smooth cut-off function. In the single-constraint case jujZ1, the
latter method produces a function whose image no longer lies on the boundary of
the unit ball, but with care (and using the fact that this has to be done only when
the amount of jump set is small); the key lemma 3.5 provides a projection on vB1
of the comparison function (which must be kept not too far from the correct
value) which satisfies a Poincaré–Wirtinger inequality.

This road is not allowed in our case, because the image is not on vB1 but on
the union of many such spheres, and there is no way to be sure that the
comparison function is always not too far from a single allowed value.

The remaining of this paper is dedicated to the proof of the decay lemma
which in our situation reads

Lemma 5.4. Let 1=L!aðiÞ!L for iZ1;.;K, and let F be defined as in (5.3).
There is a constant C0, depending on ðn;LÞ, such that for every 0!t!1 there
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exist 3; qO0, both depending on t, such that if B9ðxÞ3U, Fðv;B9Þ!CN and if

HnK1ðJv;B9Þ%39nK1; Devðv;B9Þ%qFðv;B9Þ;

then
Fðv;Bt9Þ%C0t

nFðv;B9Þ: ð5:4Þ

Before proceeding with the proof, we revisit lemma 3.9 in Carriero & Leaci
(1991) for the decay estimate in the case of a single constraint. We set

F1ðw;EÞZ
ð

E
að1ÞjVwj2dxCHnK1ðJwhEÞ; if jwjZ 1 a:e:;

and we call Dev1 the deviation from minimality relative to F1. We claim that an
argument entirely similar to that of the proof of lemma 3.9 in Carriero & Leaci
(1991) entails the validity of the statement of lemma 5.4 with F1 and D1 in place
of F and D, respectively. Indeed, combining (3.9) in Carriero & Leaci (1991) with
the inequality that is found two lines before the end of that proof, we deduce that

F1ðv;Bt9Þ%CtnF1ðv;B9Þ; ð5:5Þ

provided CO2pK1c0ðunC1Þ, where un is the HnK1 measure of the unit sphere in
Rn, and c0Zc0ðn; pÞ satisfies (see the theorem on p. 244 in Tolksdorff (1973)

kVukpLNðBðx;2r=3Þ;RnÞ%
c0

unr
n

ð

Bðx;rÞ
ð1C jVuðyÞjpÞdy;

for all Bðx; rÞ3U and all p-harmonic function u2W 1;pðU;RnÞ.
Proof. Let C0dCC1, where C is the constant in (5.5). We argue by

contradiction, assuming that for a certain t there exist a sequence of balls B9h
and a sequence of functions vh2SBVðUÞ, such that

HnK1ðJvhhB9h
Þ

9nK1
h

/0;
Devðvh;B9h

Þ
Fðvh;B9h Þ

/0;

but
Fðvh;Bt9h

ÞOC0t
nFðvh;B9h

Þ:

Note that the latter justifies the division by Fðvh;B9h
Þ in the line before. In order

to set the relevant quantities for rescaling, we define

32hd91Kn
h HnK1ðJvhhB9h Þ; qhd

Devðvh;B9h Þ
Fðvh;B9h Þ

;

and also
shd9nK1

h =Fðvh;B9h Þ; thd
ffiffiffiffiffiffiffiffiffiffiffiffi
sh=9h

p
:

Remark that in view of (5.3), 32hsh%1 and thus

q0hdsh3
2C1=ðnK1Þ
h /0:

Note also that
3h/0; qh/0; th/CN:
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The latter holds because Fðvh;B9h
Þ is bounded from above by a constant times

9nK1
h . Indeed, vh is ‘almost’ a minimizer in the sense that

ð1KqhÞFðvh;B9h
ÞZFðvh;B9h

ÞKDevðvh;B9h
Þ

Z inffFðv;B9h
Þ : fvsvhg33B9h

g%c9nK1
h ;

where in the last inequality, we used as test functions for k2N,

!vkðxÞd
e1; if x2B9hK1=k

vh; if x2B9h
nB9hK1=k;

(

where e1 is the first vector in the canonical orthonormal basis of Rn, and we let
k/CN.

With xh the centre of B9h
, set

uhðxÞdthvhðxh C9hxÞ:

Clearly, uh is defined in the unit ball B1 and

HnK1ðJuhhB1ÞZ 32h; ð5:6Þ

Fðuh; sh;B1 ; thÞZ 1; ð5:7Þ

Devðuh; sh;B1 ; thÞZ qh; ð5:8Þ

Fðuh; sh;Bt ; thÞOC0t
n: ð5:9Þ

In particular, as Jjuj3Ju, and since Jjuj contains the sets, where juj jumps from
one to another of the permitted values, we have

for all 1% i%K ; HnK1ðvfjuhjZ ithghB1Þ%32h/0;

so by the isoperimetric inequality (3.43) of Ambrosio et al. (2000), denoting by g
the isoperimetric constant for balls, we have that for all i one of the two sets

Pi
h Z fx2B1 : juhðxÞjZ ithg; Qi

h Z fx2B1 : juhðxÞjsithg

has n-dimensional measure not exceeding g3
2n=ðnK1Þ
h . We claim that for h large

there exist i2f1;.;Kg, such that the measure of Qi
h does not exceed g3

2n=ðnK1Þ
h .

Indeed, if this was not the case, then for all i2f1;.;Kg and for a subsequence
(not relabelled)

jPi
hj%g3

2n=ðnK1Þ
h ;

and thus

jB1jZ jgK
iZ1 P

i
hj%Kg3

2n=ðnK1Þ
h ;

what is clearly impossible since 3h converge to zero. This asserts the claim. As the
i’s range over a finite set, we may assume (up to the extraction of a subsequence,
not relabelled) that this happens always with the same i, say iZ1, thus for all h

jfx2B1 : juhðxÞjsthgj%g3
2n=ðnK1Þ
h :
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In particular, for any 0!Rh!1,

g3
2n=ðnK1Þ
h R

ð1

Rh

HnK1ðfjuhjsthghvBrÞdr;

thus for a suitable rh2ðRh; 1Þ,

HnK1ðfjuhjsthghvBrhÞ%
g3

2n=ðnK1Þ
h

1KRh
; ð5:10Þ

and also (this happens for a.e. rh)

HnK1ðJuhhvBrhÞZ 0:

Choose Rh, such that

1KRh Zg3
1=ðnK1Þ
h ;

and remark that Rh/1 and that the inequality (5.10) above reduces to

HnK1ðfjuhjsthghvBrhÞ%3
2C1=ðnK1Þ
h : ð5:11Þ

We change the function uh in Brh to get rid of all values of juhj different from th
by setting

whðxÞd

uhðxÞ; if jxjOrh

uhðxÞ; if jxj%rh and juhðxÞjZ th

the; otherwise;

8
><

>:

where e is any unit vector.
We claim that

Fðwh;sh;Bt ; thÞRC0t
nK2qhK2q0h: ð5:12Þ

First note that in the interior of the ball Brh we added no jump set because all
possible jump points of wh were already jump points of juhj, thus we may have
added jump points only on the boundary of Brh . Hence for any E4B1,

Jwh
hE4ðJuhhEÞgðfjuhjsthghvBrhÞ;

so by (5.6) and (5.11),

HnK1ðJwh
hBrh Þ%32hð1C3

1=ðnK1Þ
h Þ; ð5:13Þ

shHnK1ðJwh
hEÞ%shHnK1ðJuhhEÞCq0h: ð5:14Þ

Below we use the bulk part of F, so we define

f ðu;E; tÞd
ð

E
a

juj
t

$ %
jVuj2dx; if juj2ft; 2t;.;Ktg a:e:

Clearly,
f ðwh;E; thÞ% f ðuh;E; thÞ; for any E3B1: ð5:15Þ
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Since fuhswhg33B1, we have by (5.8)

Fðuh;sh;B1 ; thÞ%Fðwh; sh;B1 ; thÞCqh;

which implies by (5.14) and (5.15)

0% f ðuh;B1; thÞKf ðwh;B1; thÞ

%shHnK1ðJwh
hB1ÞKshHnK1ðJuhhB1ÞCqh

%qh Cq0h:

Therefore,
shHnK1ðJwh

hB1ÞCqhRshHnK1ðJuhhB1Þ;

and using this inequality together with (5.14), we obtain

shHnK1ðJwh
hBtÞZshHnK1ðJwh

hB1Þ

KshHnK1ðJwh
hðB1nBtÞÞ

RshHnK1ðJuhhB1Þ

KqhKshHnK1ðJwh
hðB1nBtÞÞ

RshHnK1ðJuhhB1Þ

KqhKshHnK1ðJuhhðB1nBtÞÞKq0h

ZshHnK1ðJuhhBtÞKqhKq0h: ð5:16Þ
Moreover, by (5.15) we may split the left-hand side of the inequality

f ðuh;B1; thÞKf ðwh;B1; thÞ%qh Cq0h

into two non-negative terms (the integrals inside and outside Bt), and we deduce
that

f ðwh;Bt; thÞR f ðuh;Bt; thÞKqhKq0h:

This inequality, (5.9) and (5.16), imply that

Fðwh;sh;Bt ; thÞRFðuh; sh;Bt ; thÞK2qhK2q0hRC0t
nK2qhK2q0h;

and the claim is asserted.
Remark that rh/1, so that with no loss of generality we may suppose rhRt.

Using (5.12), we get

Fðwh;sh;Brh ; thÞRFðwh; sh;Bt ; thÞRC0t
nK2qhK2q0h: ð5:17Þ

Since uhZwh in an outer annulus, if fvswhg33B1, then also fvsuhg33B1,
and so using (5.8), (5.14) and (5.15), we have

Fðwh; sh;B1 ; thÞ%Fðuh;sh;B1 ; thÞCq0h%Fðv;sh;B1 ; thÞCqh Cq0h; ð5:18Þ
yielding

Devðwh; sh;B1 ; thÞ%qh Cq0h:
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On the other hand, omitting in the following equation sh and th,

Fðwh;Brh ÞKinffFðv;Brh Þ : fvswhg33Brhg

ZFðwh;B1ÞKinffFðv;B1Þ : fvswhg33Brhg

%Fðwh;B1ÞKinffFðv;B1Þ : fvswhg33B1g;

and so
Devðwh;sh;Brh ; thÞ%Devðwh; sh;B1 ; thÞ%qh Cq0h: ð5:19Þ

Also, using (5.7), (5.14) and (5.18), we may write

Fðwh; sh;Brh ; thÞ%Fðwh;sh;B1 ; thÞ%Fðuh; sh;B1 ; thÞCq0h Z 1Cq0h: ð5:20Þ

Collecting (5.9), (5.12) (5.13), (5.17), (5.19) and (5.20), we have for h large
enough

HnK1ðJwh
hBrh Þ%32hð1C3

1=ðnK1Þ
h Þ;

Fðwh;sh;Brh ; thÞ
1Cq0h

%1%
Fðwh; sh;Brh ; thÞ
C0t

nK2qhK2q0h
;

Devðwh;sh;Brh ; thÞ%qh Cq0h%
qh Cq0h

C0t
nK2qhK2q0h

Fðwh;sh;Brh ; thÞ;

Fðwh;sh;Bt ; thÞOC0t
nK2qhK2q0hR

C0t
nK2qhK2q0h
1Cq0h

Fðwh; sh;Brh ; thÞ:

Setting
thdt=rh;

the last line above may be rewritten as

Fðwh; sh;Bthrh ; thÞO
C0r

n
h t

n
hK2qhK2q0h
1Cq0h

Fðwh; sh;Brh ; thÞ:

Recalling that
3h/0; qh/0; q0h/0; rh/1; th/t;

and performing backwards the change of variables we made to obtain uh from vh,
we get a new sequence of functions v 0h, each defined in the ball of radius 90hdrh9h,
and such that (recall that t is fixed, so it does no harm in the inequality relative
to the deviation from minimality)

HnK1ðJv 0hhB90h
Þ%uhð90hÞnK1; Devðv 0h;B90h

Þ%uhFðv 0h;B90h
Þ

and
Fðv 0h;Bth9

0
h
ÞOðC0KuhÞtnhFðv 0h;B90h

Þ; ð5:21Þ

with uh/0. But now
jv 0hjZ 1 a:e:;

therefore if we set

F1ðw;EÞZ
ð

E
að1ÞjVwj2dxCHnK1ðJwhEÞ; if jwjZ 1 a:e:;
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and we call Dev1 the deviation from minimality relative to F1, clearly

Dev1ðv 0h;B90h
Þ%Devðv 0h;B90h

Þ%uhF1ðv 0h;B90h
Þ;

and by (5.21)
F1ðv 0h;Bth9

0
h
ÞOðC0KuhÞtnhF1ðv 0h;B90h

Þ:
But for h large enough this violates the decay estimate (5.5), and we reached a
contradiction. &
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