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Abstract

We consider the integral functional

/ f(x, Du)dx

under non-standard growth assumptions that weigall type: namely, we assume
that
2P £ fx,2) £ LA+ 12)PW),

a relevant model case being the functional

/wmmmm

Under sharp assumptions on the continuous funchion > 1 we prove regular-
ity of minimizers. Energies exhibiting this growth appear in several models from
mathematical physics.

1. Introduction

The aim of this paper is the study of the regularity properties of (local) mini-
mizers of integral functionals of the type

F(u, Q) = / f(x, Du) dx,
Q

where is a bounded open subset®t, f : Q@ x R — R is a Carateodory
integrand and < W,i;cl(sz; RYM). Under the assumption @f-growth

lz|? = f(x,2) S LA+ 1z1P), p>1, (1.1)
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the regularity theory for minimizers was succesfully carried out under fairly natural
assumptions of convexity (or quasiconvexity) pf(see [17,11,15,2]). Quite re-
cently, integrands satisfying more general growth conditions have been considered.
Ten years ago Marcellini replaced (1.1) with the more flexilpleg)-growth,

|2I” = f(x,2) = L1+ Iz|), q>p>1 1.2)

and proved several regularity results for minimizers. Subsequently the theory of
integrals with these non-standard growth conditions received contributions from
various authors (see the references in [21-25]).

A borderline case lying between (1.1) and (1.2) is the ong(@§-growth,

217D < foe ) S LA+ peo) > 1, (.3)

a prominent model example being, wjth= 0,
F(u, Q) = / (W2 + | Du|?)P@/2 gx.
Q

This kind of integral was first considered Byiikov in the context of homogeniza-

tion (see [34]), and in recent years the subject gained more and more importance
by providing variational models for many problems from mathematical physics.
For instance, very recently Rajagopal ana?i€ka elaborated a model for the elec-
trorheological fluids: these are special non-Newtonian fluids which are character-
ized by their ability to change their mechanical properties in the presence of an
electromagnetic fiel&(x); in this case the model for the steady case is

—div S(x, £E(v)) = g(x, v, Dv), divv =0,

whereuv is the velocity of the fluid€ (v) is the symmetric part of the gradiebw
and the “extra stress” tensdrsatisfies standard monotonicity conditions in the
Leray-Lions fashion but withy (x)-growth. In particular

D?S(x,z) = v(1+ |22 P®=2/2|g,

where p(x) = p(|E|?) andE is given (see [26,28]). Moreover other models of
this type arise for fluids whose viscosity is influenced in a similar way by the
temperature (see [33]). The differential system modelling the so called “thermistor
problem” (see [31-33]) includes equations like

—div (p(x)| DulP®~2Du) = 0,

whose solutions correspond to minimizersfofvhenu = 0. In this last cas@ (x)
also appears as an unknown of the system itself, and this eventually leads us to look
for minimal regularity assumptions on it. Leaving to a forthcoming paper [5] the
analysis of the vector-valued cade> 1, we restrict ourselves here to the scalar
caseN = 1.

In this paper we want to offer essentially optimal regularity results for minimiz-
ers of functionals withp (x)-growth that, together with the preexisting ones, allow
us to give a complete picture of the regularity theory for such integrals in the scalar
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case. In the more general framework of functionals wjthg)-growth, the first
regularity result was given byIarceLLINT [22], who in the scalar case obtained
Lipschitz regularity of minimizers provideg(x) > 2 is of classCl. As far as
lower regularity is concerne@Hnikov proved that, ifw (R) denotes a modulus of
continuity for p(x), then the condition

. 1
"Tj‘(‘)‘pa’(m Iog<E> < +00 (1.4)

ensures (see [31]) higher integrability of the gradient of minimizerg afnder
the p(x)-growth hypothesis (1.3) alone. Later on, building on Zhikov’s we
XIANGLING & ZHAO DUN AND ALKHUTOV ([12, 6], see also [4] for a special case)
proved localc®® continuity of minimizers, for some > 0 (see also [7]), again
under assumption (1.4). These results, all valid only in the scalar case, draw a
parallel to the theory of functionals with-growth (that is:p(x) = constant) in
view of the theorems df1aQuiNTA & GrusTi [16].

Our purpose here is to push this parallel further by giving quite sharp assump-
tions, especially op(x), ensuring higher regularity of minimizers.

We recall that in the scalap-growth case (see [20]), whefi(x, z) satisfies
suitable smoothness and convexity assumptions (that is, ellipticify’gf) then
local C%¢ regularity of minimizers for every & o < 1 is known provided (x, z)
is continuous with respect to the variabiemoreover this result is sharp (see [9]
and the references included). Here we prove (Theorem 2.1) that the same result
holds true in the case of functionals wittix)-growth, provided condition (1.4) is
reinforced into

. 1
Iwg_s)gpw(R) Iog(R) =0, (1.5
in clear accordance with the theory of functionals witigrowth where, as just
described, an additional continuity assumption (with respegf tis required to
reach any exponent < 1. Moreover, we also observe that in order to prowddei
continuity up to a certain exponeat< 1, (1.5) can be substituted by a suitable
smallness condition (see Remark 3.3).

An interesting fact is that the technical reason for condition (1.5) to arise is
quite different from the origin of (1.4). We stress that condition (1.4) is sharp since
(see [32)]), in general, dropping it causes the loss of any type of regularity of min-
imizers, like Hilder continuity and even higher integrability. Moreover condition
(1.4) seems to play a central role in the theory of functionals with)-growth
sinceZnikov proved (see [32]) that such functionals exhibit the so called Lavren-
tiev phenomenon if and only if (1.4) is violated, while in [1] it is proved that the
singular part of the measure representation of relaxed integrals with this growth
disappears if and only if (1.4) holds true. More significantly, in order to highlight
the importance of condition (1.4) it is useful to note that all the counterexamples
cited above are valid already in the case of the model functional

fQ | Du|P™ dx. (1.6)
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We actually prove something more, extending some recent results in [9] valid in the
p-growth case, where dlder continuity for any exponent < 1 is proved for non-
smooth integrals: indeed oudttier continuity theorem holds without requiring any
differentiability assumption orf (x, z) with respect ta;. This is of interest since

this type of regularity is usually obtained by differentiating the Euler equation of
the functional, though here the Euler equation itself cannot even be written.

Again as in the theory of functionals with-growth, p constant (see Theo-
rem 2.2), in order to get dlder continuity of Du the Holder continuity ofp(x)
will be assumed too (see also [8]). Also this result is sharp as shown by counterex-
amples valid even in the case of functionals with quadratic growth. In this way
we also extend to the case of the(%) Laplacian” (1.6) a classical result due to
URAL’TSEVA [30].

Finally we say a few words about the techniques. In order to get our estimates we
employ a careful perturbation-comparison argument, based on the freezing method;
this procedure turns out to be delicate since the perturbation is performed in the
growth exponent. Then we combine this technique with some recent estimates,
due toIwaniec (see [19]), for the theory of log L(2) spaces. In the case of
Theorem 2.1 this method cannot be used directly and it must be incorporated in
a fine approximation argument to overcome the lack of differentiability of the
functional.

2. Notation and statements

In what follows, 2 will denote an open bounded domaini¥i, andB(x, R)
the open bally € R" : |x — y| < R}. If u is an integrable function defined on
B(x, R), we will set

1
W)x,r = ][ u(x)dx = / u(x)dx,
B(x,R) wn R" Jp(x R

wherew, is the Lebesgue measure B0, 1). We shall also adopt the convention
of writing Br and(u) g instead ofB(x, R) and(u),, g respectively, when the center
will not be relevant, or it is clear from the context; moreover, unless otherwise
stated, all balls considered will have the same center. Finally, the dettiéifreely
denote a constant, not necessarily the same in any two occurences, while only the
dependences on relevant quantities will be highlighted.

We are going to deal with the integral functional

F(u, ) :/ f(x, Du)dx, (2.1)
Q
defined orWlé’cl(Q). The Caratbodory functionf : Q@ x R” — R will be supposed
to satisfy a growth condition of the following type:
L7HP® < f(x,2) S L+ 12)PY) (2:2)

foranyz € R", x € @, wherep : Q@ — (1, +00) is a continuous function and
L = 1. With this type of non-standard growth condition we adopt the following
notion of a (local) minimizer:
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Definition 1. We say that a function € Wli’cl(Q; RM) is alocal minimizerof F
if |[Du|P™ e LL () and

loc

/ f(x, Du)dx §/ f(x, Du+ Dg)dx
spip Spip

foranygp € Wol’l(Q; RN) with compact support i.
We shall consider the following growth, ellipticity and continuity conditions:
L™Hp? + (2P < f(x,2) £ L + 12?072, (2.3)

/Q Lf (x0. 20+ Dg) — f(x0. z0)] dx
1

> L7 [ (P + 120/ + |D) PO Dyl dx  (2.4)
01
foreachep € R", xo € Qandeacky € C§°(Q1) where 0= 1 = 1,01 = (0, 1)",
and

[f(x,2) = f(xo0, 2)] (2.5)
< Lo(lx — xo) (w2 + 12172 4 (12 + |25P502)[1 + | log(u? + |z1?)]]

for anyzp € R*, x,xo € Q and whereL = 1; herew : R — RT is a non-
decreasing continuous function vanishing at zero which represents the modulus of
continuity of p(x):

lp(x) = p(WI = w(lx — y)).
We will always assume to satisfy (1.4), thus in particular without loss of generality
we may assume

w(R) < L|logR|™! (2.6)

for all R < 1. No differentiability will ever be assumed with respectktfand not
even with respect tg, in the case of Theorem 2.1), thus the symbglwill always
denote differentiation with repect to

Remark 2.1. We observe that our regularity results need no other growth assump-
tions, in particular on the second derivatives of the functforWe recall that if
(2.2) holds then (2.4) implies (see, e.g., [2]) the following growth propertyX6r
(when it exists):

IDf (x0, )| < c(1 4 |z))P0O~1
with ¢ = ¢(L, y1, y2), for anyz € R" andxg € Q. Moreover, although condition
(2.4) may appear a little involved in its formulation, it is very general (see [14]):
indeed in the scalar cagé = 1 it provides a qualified form of convexity which,
for example, covers all integrands of the form

O, 2) = (2 + 121D 4 h(x, 7)

where# is a convex function ot satisfying (2.5) and such that 8 i(x,z) <
L(u2 + |z|%)P™)/2, Condition (2.4) is also similar to the uniform strict quasicon-
vexity introduced byEvans [11], useful in the vector-valued casé> 1.
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Theorem 2.1. Letu € W51 (%2) be a local minimizer of the functiona (-, )
where f is a continuous function satisfying.3)—(2.5) Suppose moreover that

: 1
I|rpjgpw(R) Iog<§> =0. (2.7)

0,
loc

Thenu € C.2 () forany0 < a < 1.

When we impose higher regularity on the functighsnd p, we recover the
classicalcl-* regularity of local minimizers (see [30, 8]):

Theorem 2.2. Under the hypotheses of Theor@m, suppose that
w(R) < LR

for somex in the ranged < o < 1and all R < 1, and thatf is of classC? with
respect to the variable in © x (R” \ {0}) with D? f satisfying

L7Hp2 + [z PO72/2512 < D? f(x, DA @ & < L(u? + [2[2) 1072722
for all A € R". ThenDu is locally Hélder continuous irf2.

Remark 2.2. In a matter already burdened with technicalities we preferred to avoid
the full generality in order to highlight only the main ideas. However, our results
can be carried out for more general functionals of the type

/ f(x,u, Du)dx
Q

with f satisfying (2.3)—(2.5), or the assumptionin Theorem 2.2 for higher regularity,
and a continuity assumption with respectiteuch as

|f(x,u,2) — f(x,u0,2)| £ Lo(lu — ugl)(u? + |2|2)P@/2,

and wherew(R) < LR, or elsew satisfies (2.7) in order to get the result of
Theorem 2.1 but with a more accurate argument.

3. Proof of theresults

We prove Theorem 2.1. In this section, since all our results are local in nature,
without loss of generality we shall suppose that

1<y Spx)Sy Vxeq, / |DulPY dx < +o0.
Q

Although we stated our theorems in the scalar case, some of the following results
will be valid also whenu is vector valued. This is the case of the next higher
integrability result, due tZnikov, that in a slightly less general statement appears
in [32] (see also [8]):
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Theorem 3.1. Letu € Wli’cl((’), R™) be a local minimizer of the functional —
Jo f(x, Dw)dx with f : O x R"N — R satisfying(2.2), (2.6)and O an open
subset of2. Suppose also that

/ |Dit|P™) dx < My,
(@)

for some fixed consta; < +oo. Then there exist two positive constargss =
co, 8(y1, y2, L, M1) such that ifBg cc O, then

1/(1+9)
(][ | Dig | PO+ dx) < COJ[ |Dit|P® dx + co. (3.1)
Bg)2 Br

Remark 3.1. The way Theorem 3.1 can be obtained involves a standard combina-
tion of a suitable Caccioppoli type inequality and the Gehring lemma in the version
of Giaquinta-Modica (see [32]); since the revers#dér type inequalities involved

are verified only on ball#g cc O with R £ Ry = Rp(n), it is also useful to

refer to general statements as in [29]. For future convenience we stress that the
higher integrability constants, § are independent of the functighand also of

the minimizeri; they only depend on the growth constants and on the quaiity
above. So, once the quantities, y», L, M1) are fixed, the constanésandcg are
determined independently of the functighand the minimizei considered. Of
course, in (3.1)§ may be replaced at will by smaller constants.

The following result is taken from [13], see also [10]:

Theorem 3.2. Letg(z) : R” — R be a continuous function satisfyirtg.3),(2.4)
with constantp(x) = p, y1 < p < y», and leti € W2() be a local minimizer
of the functional — fBR g(Dw) dx with Bg cC Q. ThenDi is locally bounded
and, moreover, i0 < p < R/2, then

n
(w2 + |Di|*)?/2 dx < C(ﬁ) (1* + D)2 dx
B, R7Jby
with c = ¢(L, y1, y2).

The next lemma is an up-to-the-boundary higher integrability result, which we
restate from [9], Lemma 2.7, in a slightly different form.

Lemma 3.1. Letg(z) : R* — R be a continuous function satisfying
LYzl” £ g(2) £ L(lzl” + D),
<

whereL > 1,91 < p < yo. Leti € WY4(Bog), p < ¢q, Bog cC Q and
v E U+ Wol”’(BR) be a minimizer of the functional — fBR g(Dw)dx in

the Dirichlet classu + Wol”’(BR). Then there exist, ¢ = ¢, e(y1, y2, L) with
0 < ¢ < (g — p)/p, both independent &, v andiz, such that

1/p(1+e) 1/p 1/q
(][ |Dv|p(1+8)dx) < c<][ |Dv|de> +c(][ |Dii|? dx> )
Br Bgr Bag
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We remark that although from [9] it seems that the exporeatgpends omp, the
proof of [9]itself and an accurate inspection of the statements of the various versions
ofthe Gehring lemma appearing inthe literature (again, see forinstance [29], or [18],
Proposition 6.1), reveal thatcan be chosen to be bounded uniformly away from
zero asp varies in a compact subsetdf, +oo[ such as oufy1, y2].

The following is a slight modification of a technical iteration lemma (see for
instance [17], Lemma 7.3), in which the assumption thas increasing is weak-
ened.

Lemma3.2.Letd : [0,a[— R, 0 < a < 1, be a positive bounded function
such that® (s) < 2 ®(r) wheneves < ¢, and such that:

®(p) < C [(%)" + e] ®(R) + CR"

with0 < C < +o0, wheneveb < p < R/8. Then, for anyr suchthaD < 7 < n
there exist, g = ¢, €0(C, T, n) > 0such that ife < gg, then:

D(p) =c (%)n_r [®(R) + R"]

wheneved < p < R/16.

Basic facts from the theory of Orlicz spaces. Let A : Rt — R™ be an Orlicz
function, that is,A is convex, strictly increasing and such th&0) = 0 and
(A(t)/t) - 400 ast — +oo. We consider the Orlicz space generateddhyhat

is the Banach spade” (Q) (we refer the reader to the classical monograph [27] for
a complete account of the theory), equipped with the following Luxemburg norm:

. ) 7] <
Ihlla = inf {x ~0: ]QA(T) dx < 1}.

In the caseA(r) = t”/p, p > 1, this quantity is equivalent to the averaged
norm which we define for alp = 1 as

1/p
ll, == <]{2 |h|P dx) . 3.2

We will mainly be interested in the particular cas€¢) = ¢ log(e + ¢). With this
choice the space?(Q) is denoted by log L(2) and plays a fundamental role in
various branches of analysis. When> 1, L?(2) is continuously embedded in
this space, that is, there exists a constasatc(p) such that

12llL1ogLie) = lIhlla = c(P)IIAllp.

We note that the constantp) in the previous inequality blows up as — 1.
Anyway, the prominent fact for us will be an integral characterization of the quantity
71l 10g () recently discovered biwaniec (see [19]): the normiiz | 1og () iS
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equivalent, via a constant that does not depend on the opé&n, $etthe integral

functional |
Ih|log(e + ———
][ o R ) dx

which thus turns out to define an equivalent, order preserving noindg L (£2).
So, connecting the previous facts, we have the following inequality valid for any
h e LP(Bg)andp > 1:

|l 1A d h|\?d v 3.3
]éR"Og(”W) x < c(p)(]éRH x) . (3.3)

Choice of some relevant quantities. We start by applying Theorem 3.1 and
Remark 3.1, thus getting the higher integrability expordeaty; — 1 determined
by (y1, y2, 8"2L, M1), where

My = 8V2L/ (1+ |Dul?)P 7 dx; (3.4)
Q

the reasons for this peculiar choice are technical and will be clear later. We select
Ro = Ro(y1, y2, 82L, M1) > 0 with the property thab (8Rg) < &/4; finally we
fix a ball Bg, cC €2 and we set

pm = maxp(x).
BRO

Then we consider ballB(x., 4R) = Bar CC Bgy/4 and we define

p2:i=maxp(x),  p1:=mMminp(x)
Bar Bag
(note thatps, p> depend on the ball). We remark that for a suitalye= B4g, not
necessarily the center, we haye = p(xp); also, we havey, — p1 < w(8R) <
8w (R). The preceding choices imply that

p2(1+38/4) = p(x)(1+8/4+ w(8R)) = p(x)(1+38) in Bag,
(3.5)
pn(1+68/4 = p(x)(1+9) in Bg,.

Finally, without loss of generality we shall always choos®16 Ry < 1: this is
again a technicality that will be explained later. We are now ready to state the main
proposition of the section; this will provide the necessapyiori estimates.

Proposition 3.1. Letii € Wh(Bg,) be a local minimizer of the functional
fBR f(x, Dw)dx with f(x,z) : Bg, x R" — R of classC? with respect to the
varlablez and satisfyind2.3)—(2.7)with L replaced by8"2L andu > 0. Moreover
suppose
i@y <y, [ pam dx <
Brg BRrg/4

whereM: is defined in(3.4)and M2 < +o0 is a constant. Then iB(x., 4R) CC
Bpy/4, NOt necessarily concentric witBg,, for every0 < r < n there exist
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0 < R1 < R/8andc > 0, both depending ofy1, y2, L, M1, M2, w, t) but not
oni, u and f, such that

/ |Di|"r dx < cp T (3.6)
B(xc,p)

wheneveb < p < R;.

Proof. Let B(x.,4R) = Bar CC Bg,y4 be a ball as described above, and hence
not necessarily concentric witBg,; from now on, when not otherwise specified,
all the balls considered (exceBk,) will have x. as their center. With the notation
introduced above, we observe that the expomperi$ actually a function oR, thus

p2 = Mmaxp(x) = p2(R).
Bar

We first remark that by Theorem 3.1 and by (3.5) we haee W1 P20+8/4) (B,z).
We definev € i + Wol”’z(BR) as the unique solution to the following Dirichlet
problem:

min{ f(xo, Dw)dx : w € it + Wé”’z(BR)} ,
Bg

where as abovp, = p(xp); note that it may well happen thag does not belong
to Br. We observe that the functiog(z) := f(xo, z) satisfies the hypotheses of
Theorem 3.2and Lemma 3.1 with= py, y1 < p2 < y»2. Hence, by the minimality
of v it follows that there exist = c(y1, y2, L, M1, M2) < +oo and O< ¢ < §/4,

e = e(y1, y2, L) independent ok andv, such that whenever@ p < R/2

n
/ |Dv|P? dx < ¢ (ﬁ) (1+ |Dv|??) dx, 3.7)
B, R Bg
1/(1+¢)
( ][ | Dy|P2(+e) dx) (3.8)
Bg
1/(1+68/4)
<c (][ | Dv|P? dx) +c <][ | Dig |P21+3/4) dx) ,
Bg Bag
/ |Dv|P2 dx < c/ (|Di|"? + 1) dx. (3.9)
Bgr Bgr

Now we compare andv in Bg. Using Lemma 2.2 of [9] and the minimality of
we obtain by (3.7) and (3.9)

_ o\ P2/2
/<M2+|Du|2> dx (3.10)
By
/2
§c/ (,112—|—|Dv|2>p2 dx
By

+c/ (w2 + |Di|? + |Dv|»)P2=2/2|Dit — Dv|?dx
By
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10 n _
< —_ p2
_c< ) R(1+|Du| )dx

(p2—2)/2
—i—c[ <M2+|Dﬁ|2+|Dv|2) > |pii — Do) dx.
Bg

Our main task now is to give an upper estimate for the last quantity appearing in
(3.10). To this end, we observe that since the funcgisatisfies (2.4) withp (x) =
p» and it is of clas<C?, then (see [13]) it also satisfies, for= v(y1, y2, L) > 0,

ng(Z) ARAZ v(,u2 + |Z|2)(p2_2)/2|k|2,

and using the minimality of together with Lemma 2.1 from [3] (that still works
for p > 2) we obtain

/ [g(Du) — g(Dv)]dx (3.12)
Br
= f (Dg(Dv), Du — Dv)dx [= 0]
Br

1
+/ dx/ (1—1)D?g(tDii + (1 —t)Dv)
Br 0
- (Dii — Dv) ® (Dit — Dv) dt

1
> v/ dx/ A —1)(W? + |tDi + (1 — 1) Dv|®)P2=2/2|pig — Dv|? dt
Br 0

v

(p2—2)/2
c_1/ (uz + D + |Dv|2) \Dii — Dv|?dx,
Bg
with ¢ = ¢(L, y1, y2) < 4+00. On the other hand, using now the minimality:qf

. [¢(Du) — g(Dv)]dx (3.12)

= [ [f(xo, Dit) — f(x, Dit)]dx
Bpr

+ | [f(x,Di)— f(x,Dv)]dx  [£0]
Br

+ | [f(x, Dv) — f(xo, Dv)ldx
Br

< / [f (xo, Dit) — f(x, Dit)] dx
Br

+ | [f(x, Dv) — f(xo, Dv)ldx
Br

cw(R)/B <(’u2+|DIZ|2)[72/2+(H2+|Dﬁ|2)p(x)/2)
R

- (1+ |log(u? + |Daf?)|) dx

2.5)
=
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+ cw(R)/ ((MZ +|Dv|H)P2/% 4 (u? + |DU|2)p(x)/2>
Bg

- (1+ log(? + | Dv[?)|) dx
=1+ 1l.

We begin by estimating the term I; keeping the notation employed in (3.2) for the
norms,

I < co(R) |Di|P?log | Dit|P? dx + cw(R)R"
B Ditf2e)
DIZ P2
< cw(R)R”][ | Dii| 72 |og(e+ L)
Br Il Dul|P2| 1

+cw(R)R" ][ |Di|P? log(e + ||| Du|P?||1) dx + cw(R)R"
Br
(3.3

1/(1+68/4)
< c((S)a)(R)R"( ][ |Dﬁ|P2<l+5/4>dx>
Br

+ co(R) log (e + |||Da|f’2||1)/ |Dit|P2 dx + cw(R)R"
Br

(35

1/(1+5/4)
< co(R)R" (][ | Dig|P®)(A+8/4+w(8R) dx)
Br

l - n
+ ¢(M2)w(R) Iog(E)/ |Dii|P2 dx + cw(R)R
Bpg
3D

3. (1+8/4+w(8R))/(1+38/4)
: )

co(R)R" <][ |Di|P™) dx
Bar

+ co(R) Iog(%)/B |Dit|2 dx + co(R)R"

R

A

(8R)
< cw(R)R—rzw(BR)/(1+6/4) </ |DL_l|p(x) dx) a+s/% / |D12|p2 dx
Bogr Bar

1

+ co(R) Iog<E> /B |Dii|”? dx + cw(R)R"
R

26)

< co(R) Iog(%)/B |Dii|"? dx + cw(R)R"
2R

with ¢ = ¢(y1, v2, L, M1, M2), sinced = 8(y1, y2, L, M1). We observe that we
used the boundedness Bf *R) < ¢ = ¢(L) given by (2.6) to perform the last
estimate and the elementary inequality

log(e + ab) < log(e + a) + log(e + b) Ya,b >0

to perform the estimate on the second line.



Regularity Results for a Class of Functionals with Non-Standard Growth 133

The term Il must be estimated in a different way; indeed,

I £ co(R) |Dv|P2log|Dv|P?2dx + cw(R)R"
BrN{|Dv|=Ze}
Dv P2
< ca)(R)R"][ |Dv|P? |Og(6+¥) dx
Br l1Dv|P2]|1

+cw(R)R" ][ |Dv|P2log(e + ||| Dv|P?||1) dx + cw(R)R"

Bg

(3.3 1/(14¢)
< c(s)a)(R)R"(][ | Dy|P2(1+e) dx)
Bgr

+ cw(R) |Og(e+|||Dv|p2||1)/ |Dv|P2dx + cw(R)R"
Br

(3-8
< c(e)w(R) |Dv|P2 dx
Br
1/(1+8/4)
+ cw(R)R" (][ | Dig |+ 8R)+5/4) dx)
Bag
+ co(R) log (e + |||Dv|”2||l)/ |Dv|”2 dx + co(R)R"
Br

3D
<

c[o(R) + a®ylog(e + 11Du"1)] [ (Dul dx
Bg
w(@R)

+ Ca)(R)anw(BR)/(lJr(S/‘l) (/ |Dﬁ|p(x) dx) 1+5/4 / |Dl/_t|p2 dx
Bag Bag

+ cw(R)R"
3.9 1
< cw(R)log <—>f |Du|P2dx + co(R)R",
R Bag

again withc = c(y1, y2, L, M1, M2). Connecting the estimates found for I and Il
to (3.11) we have

(12 + |Dit|? + |Dv|») 2272\ pji — Dv|?dx
Bg

§ca)(R)Iog<%)/B |Di|"? dx + co(R)R"  (3.13)

4R

and this last formula together with (3.10) finally gives, whenever p < R/2,

I 1
7| P2(R) < Py = 7| P2(R) n
/I;p|Du| dx _c|:( ) +a)(R)|Og< )]/B |Du| dx + cR".

4R

Now we define the functio® : [0, Rg/16[— R as

®ww=f<mmmm+nw.
By
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Thisis a positive function and by (3.5) and Theorem 3.1 itis also bounded. Moreover
we observe that, since the functiéh— p2(R) is nondecreasing, then it readily
follows that®(s) < 2d(¢) whenever < r and

(Da|”2? + 1ydx <2 | (Da)”?® + 1) dx.
B, B,

With this notation we may write what we have proved as

®(p) < c[(%) +w(R) Iog(%)]mm 4 cR",

valid for anyp < R/8 and withc = ¢(y1, y2, L, M1, M>). So, fixing0< t < n, if
we apply Lemma 3.2, choosingy = R1(y1, y2, L, M1, M, w, ) > 0 such that
o (R)1og(1/R) < ¢o whenever O< R < 16R1, we have:

n—t
/ |D,;|P2(p) dx < ¢ (ﬁ) [/ |D12|"’2(R1) dx + 1]
By Ry Bry

n—t
gc(ﬁ) [f |Dii| P dx+1]
Ry BRry/a

n—t

< cp

whenever O< p < R1, which we may assume without loss of generality. But
y1 < p2(p), and this immediately gives (3.6) with= c(y1, y2, L, M1, M2, w, T)
since alsaRyt = R (1, y2, L, M1, M2, 0, T) < +00. O

Remark 3.2. The last few lines are the only place where we used (2.7) instead of
the weaker (2.6).

Proof of Theorem 2.1. We rely on an approximation argument. We take a smooth
mollifier ¢ € C*°(B(0, 1)) such thatf3(0,1)\3(o,1/2) o(y)dy = 1/2, and we define
asequencg, : @xR" — R, m € N, of smooth approximations (in the variahle

of the energy density:

Fnl,2) = / Fz 4 y/me(y) dy.
B(0.1)

Following [13, Lemma 2.4], it is easy to check that the sequeficesatisfies
(2.3)—(2.5) uniformly with respect ta € N, with L replaced by &L andu? by
w2 + (1/m?). Now, let Ry = Ro(y1, y2, 8"2L, M1, w) > 0 be as defined before
Proposition 3.1, with\/1 as in (3.4). We defing,,, € u + W&”’l(BRO) as the unique
solution to the Dirichlet problem

min{ Fu(x, Dw)dx : w € u+ W&’“(BRO)}.
BRO

By the minimality ofu,, and the growth conditions satisfied Iy, it easily follows
that

3.4
/ |Dum|/’(")dx§87’2L/ 1+ |DulPHPO%qx < M. (3.14)
BRO

Brg
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Now we are in a position to apply Theorem 3.Liig = u with O = Bg, and
fm = f, according to the choice of the constants made before Proposition 3.1. We
then find:

(3.5
/ |Dity|P dx < / | Dit | PO x4 cRE (3.15)
Bro/a Bro/a

3.1 (A+8) (314
< cRy™ / (L + [Dup ") dx S M
Br,

with Mo = Ma(L, y1, y2. ||| Du|?™ | 11q)); we may suppose thatlz = Mi. We
apply Proposition 3.1 ta,, = i and f,, = f; thus, using (3.15), for every fixed
0 < 7 < 1 we findc, Ry, both depending oky1, y2, L, [[|Du|?™ | 1), @, T)
but independent of:, and with O< R1 < Ry, such that

/ |Duy | dx < cp"™ " forallO0 < p < Ry. (3.16)
By

By (3.14), (3.15) we note that, sinag, = u on d Bg,, up to taking a subsequence
we may suppose

um — w weakly in W1(Bg,)

wherew € u + W&’”(BRO) N whem (BRro/4). We claim that actuallyy = u; we
will prove this later. With the claim accepted, the proof is finished, since letting
m — oo in (3.16) we get by lower semicontinuity

/ |[Du|"tdx < cp" " (3.17)
B

0

whenever £ p £ R1 and withc andR1 asin (3.16). At this point the result follows

by Morrey-Campanato’s integral characterization afld¢i continuity together
with a standard covering argument. We conclude by proving our claim. By the
minimality of u,, it follows that

S (x, Duy) dx < Sfm(x, Du) dx. (3.18)
B, Brq

Using also the elementary inequality
.2 = f@ D] S = ()"0 4 1)

(which follows from the definition off,,, the convexity and growth of and Re-
mark 2.1) and the fact that the sequemnbe,,|”™ is bounded inL'(Bg,), and
lettingm — oo in (3.18), again by semicontinuity it follows that

f(x, Dw)dx < liminf f(x, Du,,) dx
By m Bry

= liminf fu(x, Duy)dx < f(x, Du)dx.
m BRO BRO
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This in turn, since: is a local minimizer, implies
/ f(x, Dw)dx :/ f(x, Du)dx.
Br Bry

At this pointw = u follows by the uniqueness of minimizersir4- Wol”’l(BRO),
since by (2.4) it turns out (see [13]) thatis strictly convex. O

Remark 3.3. An interesting observation is the following: if (2.6) holds for some
L, thenu e C%* for someu, see [12,6]; at the other extreme, if (2.7) holds then
u € C%%foralla. Inbetween, fix 0< @ < 1, and consequently take= (1—&)y1:
this value, together with an upper bound fo|rDu|P(x) dx, determines the constant
o in Lemma 3.2. Them € C%¢ provided

1
. Iy
"ngp“’(m Iog(R) <ego:
thus we may also think af as a function of
A = limsupw(R) Iog(l),

R—0 R
and we see that

lim a(d) = 1.

r—0
Before proving Theorem 2.2 we still need a result that we adapt from [20]:

Proposition 3.2. Letg(z) : R” — R be a function of clas€? in R" \ {0} with
D?g satisfying

L7 (% + 12197% < g(2) £ L(u? + (219772,
L7Hu? + 12727202 £ D2g()h @ A £ L + |2/ P =272
forallz e R"\ {0}andir € R",where0 < n £ 1,L 2 landy; £ p £ yo. Let
v € WLP(Bpg) be alocal minimizer of the functional — fBR g(Dw)dx. Then

there exist a constamt= c(y1, y2, L) and an exponert < 8 = B(L, y1,2) < 1
such that

sup (u? + |DvIA)P/? < ¢ f (u? + |Dv|?)P2 dx
Bg/2 Br

P\B
sup |Du(x) = Dv(y)| < (%) sup D]
X,y€By Bgrj2

foranyp < R/2.
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Proof of Theorem 2.2. An approximation argument similar to the one employed
in Theorem 2.1 allows us to suppose thais of classC? with respect taz and
thaty > 0, with the same constants as before. All the following estimates will be
independent oft, so that the result will hold for the original functigh We shall
definexo and B(x., R) afterwards; for any € W70 (B(x,, R)) the problem

min {/ f(x0, Dwydx : w € u+ Wo”"(B(x,, R))} (3.19)
B(xc,R)

admits for its unique solutiom the estimate, easily obtained by Proposition 3.2
above by considering(z) := f(xo, 2),

][ |Dv — (Dv),, ™ dx
B(xc,p)

[IA

. (ﬁ)’g”(x") ][ (14 |Dv|P%)dx  (3.20)
R B(xc.R)
wheneverp £ R/2, wherec > 0 andp such that O< 8 < 1 depend only on
v1, v2, L (here we took into account thatd y1 < p(xg) < y»).

Keeping the notation employed in and immediately before Proposition 3.1, we
consider ballsB(x., 4R) CC Bgy/4 and we set

p2 = Mmaxp(x) = p2(R).
Bag

(Thisis the last time we metg,. Henceforth all balls we consider will have center

in x., which we shall omit.) Now let us fix = «8/8(n + ). By the last inequality

in Proposition 3.1, and reasoning as we did to obtain (3.17), we deduce the existence
of a radiusRy and a constant, both depending opy, y2, L, ||| Du|P™|| 1), a,

such that whenever @ R < Ry

/ |Du|P2®) gx < eR"T. (3.21)
Bgr

Take R such that & < R1 and letxg € Bag be such thap(xg) = po; let
v e u+W§’p2(BR) be the solution to (3.19). Repeating the proof of Proposition 3.1,
but using the fact thab < L R*, we obtain

(p2—2)/2
/ (,u2+|Du|2+|Dv|2> |Du — Dv|?dx
Bg

< cRY? | (|Dul’? + 1) dx.

Bag
Now, if p» = 2, we readily have that

(p2—2)/2
/ |Du — Dv|P2 dx §c/ (,u2~|-|Du|2+|Dv|2) |Du — Dv|?dx
BRr Bg

< cRY? | (|DulP? 4 1ydx;

Bag
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if p2 < 2, then Holder inequality, the minimality ob and the bounds off yield

/ |Du — Dv|P2dx
Br

(p2—2)/2 12
(/ (M2+|Du|2+|Dv|2> ’ |Du—Dv|2dx>
Bpg

2-p2)/2 1/2
(/ (M2+|Du|2+|Dv|2> ? |Du—Dv|2P22dx)
Bg

A

A

1/2
< cRY/4 ( (|Du|P? + 1) dx)
Bag

1/2
. ( (l+|Du|p2+|Dv|p2)dx>
Bpr

A

cRY* | (|DulP? + 1) dx,
Bag

so that, in any case, we come up with

[ |Du — Dv|P2® gx < cR** | (1Du|P?® + 1) dx. (3.22)
Bg

Bag

Now we compare: andv in Bg; indeed, since we choseR4< R; we may use
(3.20)—(3.22), the minimality ob and the fact that the mappin® — p2(R) is
nondecreasing and we have:

/ |Du — (Du)y, ,|"2® dx
By

A

c/ |Du — (D), p|P?*® dx
By

A

c,o”][ |Dv — (Dv)xc,p|p2(R) dx +c/ |Du — Dv|P?®) gx
B B

P R

Bp2(R)
¢ (ﬁ) S (ADulP® 4 1y dx
R Br

A

+ cR% (|Du|P24R 4 1) dx

Bag

C(g)ﬂan_rHR%ﬂ_f_

A

We choosep = %R”Q wheref = «o/4(n + B): then in the previous inequality,
written with p only, the two exponents are the same, and with the choieens#
made at the beginning they are equahteg- A for somer = Ao > 0, with &g
depending onv1, y2, L, |||Du|P(")||L1(Q), «. From this inequality it easily follows
that

f |[Du — (Du)y, p|Vl dx < cp”“‘(AOV:L/Vz).
B(xc,p)
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The assertion follows by Campanato’s characterizationaléier continuity. O
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