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Abstract

We consider the integral functional∫
f (x,Du) dx

under non-standard growth assumptions that we callp(x) type: namely, we assume
that

|z|p(x) � f (x, z) � L(1 + |z|p(x)),
a relevant model case being the functional∫

|Du|p(x) dx.

Under sharp assumptions on the continuous functionp(x) > 1 we prove regular-
ity of minimizers. Energies exhibiting this growth appear in several models from
mathematical physics.

1. Introduction

The aim of this paper is the study of the regularity properties of (local) mini-
mizers of integral functionals of the type

F(u,�) :=
∫
�

f (x,Du) dx,

where� is a bounded open subset ofR
n, f : � × R

nN → R is a Carath´eodory
integrand andu ∈ W

1,1
loc (�; R

N). Under the assumption ofp-growth

|z|p � f (x, z) � L(1 + |z|p), p > 1, (1.1)
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the regularity theory for minimizers was succesfully carried out under fairly natural
assumptions of convexity (or quasiconvexity) off (see [17,11,15,2]). Quite re-
cently, integrands satisfying more general growth conditions have been considered.
Ten years ago Marcellini replaced (1.1) with the more flexible(p, q)-growth,

|z|p � f (x, z) � L(1 + |z|q), q > p > 1, (1.2)

and proved several regularity results for minimizers. Subsequently the theory of
integrals with these non-standard growth conditions received contributions from
various authors (see the references in [21–25]).

A borderline case lying between (1.1) and (1.2) is the one ofp(x)-growth,

|z|p(x) � f (x, z) � L(1 + |z|p(x)), p(x) > 1, (1.3)

a prominent model example being, withµ � 0,

F(u,�) :=
∫
�

(µ2 + |Du|2)p(x)/2 dx.

This kind of integral was first considered byZhikov in the context of homogeniza-
tion (see [34]), and in recent years the subject gained more and more importance
by providing variational models for many problems from mathematical physics.
For instance, very recently Rajagopal and R˚užička elaborated a model for the elec-
trorheological fluids: these are special non-Newtonian fluids which are character-
ized by their ability to change their mechanical properties in the presence of an
electromagnetic fieldE(x); in this case the model for the steady case is

−div S(x, E(v)) = g(x, v,Dv), div v = 0,

wherev is the velocity of the fluid,E(v) is the symmetric part of the gradientDv

and the “extra stress” tensorS satisfies standard monotonicity conditions in the
Leray-Lions fashion but withp(x)-growth. In particular

D2S(x, z) � ν(1 + |z|2)(p(x)−2)/2Id,

wherep(x) ≡ p(|E|2) andE is given (see [26,28]). Moreover other models of
this type arise for fluids whose viscosity is influenced in a similar way by the
temperature (see [33]). The differential system modelling the so called “thermistor
problem” (see [31–33]) includes equations like

−div (p(x)|Du|p(x)−2Du) = 0,

whose solutions correspond to minimizers ofF whenµ = 0. In this last casep(x)
also appears as an unknown of the system itself, and this eventually leads us to look
for minimal regularity assumptions on it. Leaving to a forthcoming paper [5] the
analysis of the vector-valued caseN > 1, we restrict ourselves here to the scalar
caseN = 1.

In this paper we want to offer essentially optimal regularity results for minimiz-
ers of functionals withp(x)-growth that, together with the preexisting ones, allow
us to give a complete picture of the regularity theory for such integrals in the scalar
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case. In the more general framework of functionals with(p, q)-growth, the first
regularity result was given byMarcellini [22], who in the scalar case obtained
Lipschitz regularity of minimizers providedp(x) � 2 is of classC1. As far as
lower regularity is concerned,Zhikov proved that, ifω(R) denotes a modulus of
continuity forp(x), then the condition

lim sup
R→0

ω(R) log
( 1

R

)
< +∞ (1.4)

ensures (see [31]) higher integrability of the gradient of minimizers ofF under
thep(x)-growth hypothesis (1.3) alone. Later on, building on Zhikov’s work,Fan
Xiangling & Zhao Dun and Alkhutov ([12,6], see also [4] for a special case)
proved localC0,α continuity of minimizers, for someα > 0 (see also [7]), again
under assumption (1.4). These results, all valid only in the scalar case, draw a
parallel to the theory of functionals withp-growth (that is:p(x) ≡ constant) in
view of the theorems ofGiaquinta & Giusti [16].

Our purpose here is to push this parallel further by giving quite sharp assump-
tions, especially onp(x), ensuring higher regularity of minimizers.

We recall that in the scalar,p-growth case (see [20]), whenf (x, z) satisfies
suitable smoothness and convexity assumptions (that is, ellipticity ofD2f ) then
localC0,α regularity of minimizers for every 0< α < 1 is known providedf (x, z)

is continuous with respect to the variablex; moreover this result is sharp (see [9]
and the references included). Here we prove (Theorem 2.1) that the same result
holds true in the case of functionals withp(x)-growth, provided condition (1.4) is
reinforced into

lim sup
R→0

ω(R) log
( 1

R

)
= 0, (1.5)

in clear accordance with the theory of functionals withp-growth where, as just
described, an additional continuity assumption (with respect tox) is required to
reach any exponentα < 1. Moreover, we also observe that in order to prove H¨older
continuity up to a certain exponentα < 1, (1.5) can be substituted by a suitable
smallness condition (see Remark 3.3).

An interesting fact is that the technical reason for condition (1.5) to arise is
quite different from the origin of (1.4). We stress that condition (1.4) is sharp since
(see [32]), in general, dropping it causes the loss of any type of regularity of min-
imizers, like Hölder continuity and even higher integrability. Moreover condition
(1.4) seems to play a central role in the theory of functionals withp(x)-growth
sinceZhikov proved (see [32]) that such functionals exhibit the so called Lavren-
tiev phenomenon if and only if (1.4) is violated, while in [1] it is proved that the
singular part of the measure representation of relaxed integrals with this growth
disappears if and only if (1.4) holds true. More significantly, in order to highlight
the importance of condition (1.4) it is useful to note that all the counterexamples
cited above are valid already in the case of the model functional∫

�

|Du|p(x) dx. (1.6)
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We actually prove something more, extending some recent results in [9] valid in the
p-growth case, where H¨older continuity for any exponentα < 1 is proved for non-
smooth integrals: indeed our H¨older continuity theorem holds without requiring any
differentiability assumption onf (x, z) with respect toz. This is of interest since
this type of regularity is usually obtained by differentiating the Euler equation of
the functional, though here the Euler equation itself cannot even be written.

Again as in the theory of functionals withp-growth,p constant (see Theo-
rem 2.2), in order to get H¨older continuity ofDu the Hölder continuity ofp(x)
will be assumed too (see also [8]). Also this result is sharp as shown by counterex-
amples valid even in the case of functionals with quadratic growth. In this way
we also extend to the case of the “p(x) Laplacian” (1.6) a classical result due to
Ural’tseva [30].

Finally we say a few words about the techniques. In order to get our estimates we
employ a careful perturbation-comparison argument, based on the freezing method;
this procedure turns out to be delicate since the perturbation is performed in the
growth exponent. Then we combine this technique with some recent estimates,
due to Iwaniec (see [19]), for the theory ofL logL(�) spaces. In the case of
Theorem 2.1 this method cannot be used directly and it must be incorporated in
a fine approximation argument to overcome the lack of differentiability of the
functional.

2. Notation and statements

In what follows,� will denote an open bounded domain inR
n, andB(x,R)

the open ball{y ∈ R
n : |x − y| < R}. If u is an integrable function defined on

B(x,R), we will set

(u)x,R = −
∫
B(x,R)

u(x) dx = 1

ωnRn

∫
B(x,R)

u(x) dx,

whereωn is the Lebesgue measure ofB(0,1). We shall also adopt the convention
of writing BR and(u)R instead ofB(x,R) and(u)x,R respectively, when the center
will not be relevant, or it is clear from the context; moreover, unless otherwise
stated, all balls considered will have the same center. Finally, the letterc will freely
denote a constant, not necessarily the same in any two occurences, while only the
dependences on relevant quantities will be highlighted.

We are going to deal with the integral functional

F(u,�) =
∫
�

f (x,Du) dx, (2.1)

defined onW1,1
loc (�). The Carath´eodory functionf : �×R

n → R will be supposed
to satisfy a growth condition of the following type:

L−1|z|p(x) � f (x, z) � L(1 + |z|p(x)) (2.2)

for any z ∈ R
n, x ∈ �, wherep : � → (1,+∞) is a continuous function and

L � 1. With this type of non-standard growth condition we adopt the following
notion of a (local) minimizer:
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Definition 1. We say that a functionu ∈ W
1,1
loc (�; R

N) is a local minimizerof F
if |Du|p(x) ∈ L1

loc(�) and∫
sptϕ

f (x,Du) dx �
∫

sptϕ
f (x,Du + Dϕ) dx

for anyϕ ∈ W
1,1
0 (�; R

N) with compact support in�.

We shall consider the following growth, ellipticity and continuity conditions:

L−1(µ2 + |z|2)p(x)/2 � f (x, z) � L(µ2 + |z|2)p(x)/2, (2.3)

∫
Q1

[f (x0, z0 + Dϕ) − f (x0, z0)] dx

� L−1
∫
Q1

(µ2 + |z0|2 + |Dϕ|2)(p(x0)−2)/2|Dϕ|2 dx (2.4)

for eachz0 ∈ R
n, x0 ∈ � and eachϕ ∈ C∞

0 (Q1) where 0� µ � 1,Q1 = (0,1)n,
and

|f (x, z) − f (x0, z)| (2.5)

� Lω(|x − x0|)
(
(µ2 + |z|2)p(x)/2 + (µ2 + |z|2)p(x0)/2)[1 + | log(µ2 + |z|2)|]

for any z0 ∈ R
n, x, x0 ∈ � and whereL � 1; hereω : R

+ → R
+ is a non-

decreasing continuous function vanishing at zero which represents the modulus of
continuity ofp(x):

|p(x) − p(y)| � ω(|x − y|).
We will always assumeω to satisfy (1.4), thus in particular without loss of generality
we may assume

ω(R) � L| logR|−1 (2.6)

for all R < 1. No differentiability will ever be assumed with respect tox (and not
even with respect toz, in the case of Theorem 2.1), thus the symbolDf will always
denote differentiation with repect toz.

Remark 2.1. We observe that our regularity results need no other growth assump-
tions, in particular on the second derivatives of the functionf . We recall that if
(2.2) holds then (2.4) implies (see, e.g., [2]) the following growth property forDf

(when it exists):
|Df (x0, z)| � c(1 + |z|)p(x0)−1

with c ≡ c(L, γ1, γ2), for anyz ∈ R
n andx0 ∈ �. Moreover, although condition

(2.4) may appear a little involved in its formulation, it is very general (see [14]):
indeed in the scalar caseN = 1 it provides a qualified form of convexity which,
for example, covers all integrands of the form

f (x, z) = (µ2 + |z|2)p(x)/2 + h(x, z)

whereh is a convex function ofz satisfying (2.5) and such that 0� h(x, z) �
L(µ2 + |z|2)p(x)/2. Condition (2.4) is also similar to the uniform strict quasicon-
vexity introduced byEvans [11], useful in the vector-valued caseN > 1.



126 Emilio Acerbi & Giuseppe Mingione

Theorem 2.1. Let u ∈ W
1,1
loc (�) be a local minimizer of the functionalF(·, �)

wheref is a continuous function satisfying(2.3)–(2.5). Suppose moreover that

lim sup
R→0

ω(R) log
( 1

R

)
= 0. (2.7)

Thenu ∈ C
0,α
loc (�) for any0 < α < 1.

When we impose higher regularity on the functionsf andp, we recover the
classicalC1,α regularity of local minimizers (see [30,8]):

Theorem 2.2. Under the hypotheses of Theorem2.1, suppose that

ω(R) � LRα

for someα in the range0 < α � 1 and allR � 1, and thatf is of classC2 with
respect to the variablez in � × (Rn \ {0}) with D2f satisfying

L−1(µ2 + |z|2)(p(x)−2)/2|λ|2 � D2f (x, z)λ ⊗ λ � L(µ2 + |z|2)(p(x)−2)/2|λ|2

for all λ ∈ R
n. ThenDu is locally Hölder continuous in�.

Remark 2.2. In a matter already burdened with technicalities we preferred to avoid
the full generality in order to highlight only the main ideas. However, our results
can be carried out for more general functionals of the type∫

�

f (x, u,Du) dx

withf satisfying (2.3)–(2.5), or the assumption inTheorem 2.2 for higher regularity,
and a continuity assumption with respect tou such as

|f (x, u, z) − f (x, u0, z)| � Lω(|u − u0|)(µ2 + |z|2)p(x)/2,

and whereω(R) � LRα, or elseω satisfies (2.7) in order to get the result of
Theorem 2.1 but with a more accurate argument.

3. Proof of the results

We prove Theorem 2.1. In this section, since all our results are local in nature,
without loss of generality we shall suppose that

1 < γ1 � p(x) � γ2 ∀ x ∈ �,

∫
�

|Du|p(x) dx < +∞.

Although we stated our theorems in the scalar case, some of the following results
will be valid also whenu is vector valued. This is the case of the next higher
integrability result, due toZhikov, that in a slightly less general statement appears
in [32] (see also [8]):



Regularity Results for a Class of Functionals with Non-Standard Growth 127

Theorem 3.1. Let ū ∈ W
1,1
loc (O,R

N) be a local minimizer of the functionalw �→∫
O f̄ (x,Dw) dx with f̄ : O × R

nN → R satisfying(2.2), (2.6)andO an open
subset of�. Suppose also that∫

O
|Dū|p(x) dx � M1,

for some fixed constantM1 < +∞. Then there exist two positive constantsc0, δ ≡
c0, δ(γ1, γ2, L,M1) such that ifBR ⊂⊂ O, then(

−
∫
BR/2

|Dū|p(x)(1+δ) dx

)1/(1+δ)

� c0 −
∫
BR

|Dū|p(x) dx + c0. (3.1)

Remark 3.1. The way Theorem 3.1 can be obtained involves a standard combina-
tion of a suitable Caccioppoli type inequality and the Gehring lemma in the version
of Giaquinta-Modica (see [32]); since the reverse H¨older type inequalities involved
are verified only on ballsBR ⊂⊂ O with R � R0 ≡ R0(n), it is also useful to
refer to general statements as in [29]. For future convenience we stress that the
higher integrability constantsc0, δ are independent of the function̄f and also of
the minimizerū; they only depend on the growth constants and on the quantityM1
above. So, once the quantities(γ1, γ2, L,M1) are fixed, the constantsδ andc0 are
determined independently of the function̄f and the minimizer̄u considered. Of
course, in (3.1),δ may be replaced at will by smaller constants.

The following result is taken from [13], see also [10]:

Theorem 3.2. Let g(z) : R
n → R be a continuous function satisfying(2.3),(2.4)

with constantp(x) ≡ p, γ1 � p � γ2, and letū ∈ W1,p(�) be a local minimizer
of the functionalw �→ ∫

BR
g(Dw) dx withBR ⊂⊂ �. ThenDū is locally bounded

and, moreover, if0 < ρ < R/2, then∫
Bρ

(µ2 + |Dū|2)p/2 dx � c
( ρ

R

)n ∫
BR

(µ2 + |Dū|2)p/2 dx

with c ≡ c(L, γ1, γ2).

The next lemma is an up-to-the-boundary higher integrability result, which we
restate from [9], Lemma 2.7, in a slightly different form.

Lemma 3.1. Letg(z) : R
n → R be a continuous function satisfying

L̃−1|z|p � g(z) � L̃(|z|p + 1),

whereL̃ � 1, γ1 � p � γ2. Let ū ∈ W1,q(B2R), p < q, B2R ⊂⊂ � and

v ∈ ū + W
1,p
0 (BR) be a minimizer of the functionalw �→ ∫

BR
g(Dw) dx in

the Dirichlet classū + W
1,p
0 (BR). Then there existc, ε ≡ c, ε(γ1, γ2, L̃) with

0 < ε < (q − p)/p, both independent ofR, v andū, such that(
−
∫
BR

|Dv|p(1+ε) dx

)1/p(1+ε)

� c

(
−
∫
BR

|Dv|p dx

)1/p

+ c

(
−
∫
B2R

|Dū|q dx

)1/q

.
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We remark that although from [9] it seems that the exponentε depends onp, the
proof of [9] itself and an accurate inspection of the statements of the various versions
of the Gehring lemma appearing in the literature (again, see for instance [29], or [18],
Proposition 6.1), reveal thatε can be chosen to be bounded uniformly away from
zero asp varies in a compact subset of]1,+∞[ such as our[γ1, γ2].

The following is a slight modification of a technical iteration lemma (see for
instance [17], Lemma 7.3), in which the assumption that+ is increasing is weak-
ened.

Lemma 3.2. Let + : [0, a[→ R, 0 < a < 1, be a positive bounded function
such that+(s) � 2 +(t) whenevers � t , and such that:

+(ρ) � C
[( ρ

R

)n + ε
]
+(R) + CRn

with 0 < C < +∞, whenever0 < ρ � R/8. Then, for anyτ such that0 < τ < n

there existc, ε0 ≡ c, ε0(C, τ, n) > 0 such that ifε � ε0, then:

+(ρ) � c
( ρ

R

)n−τ [
+(R) + Rn−τ

]
whenever0 < ρ � R/16.

Basic facts from the theory of Orlicz spaces. Let A : R
+ → R

+ be an Orlicz
function, that is,A is convex, strictly increasing and such thatA(0) = 0 and
(A(t)/t) → +∞ ast → +∞. We consider the Orlicz space generated byA, that
is the Banach spaceLA(�) (we refer the reader to the classical monograph [27] for
a complete account of the theory), equipped with the following Luxemburg norm:

‖h‖A := inf

{
λ > 0 : −

∫
�

A
( |h|

λ

)
dx � 1

}
.

In the caseA(t) = tp/p, p > 1, this quantity is equivalent to the averagedLp

norm which we define for allp � 1 as

‖h‖p :=
(

−
∫
�

|h|p dx

)1/p

. (3.2)

We will mainly be interested in the particular caseA(t) = t log(e + t). With this
choice the spaceLA(�) is denoted byL logL(�) and plays a fundamental role in
various branches of analysis. Whenp > 1, Lp(�) is continuously embedded in
this space, that is, there exists a constantc ≡ c(p) such that

‖h‖L logL(�) ≡ ‖h‖A � c(p)‖h‖p.
We note that the constantc(p) in the previous inequality blows up asp → 1.
Anyway, the prominent fact for us will be an integral characterization of the quantity
‖h‖L logL(�) recently discovered byIwaniec (see [19]): the norm‖h‖L logL(�) is
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equivalent, via a constant that does not depend on the open set�, to the integral
functional

−
∫
�

|h| log
(
e + |h|

‖h‖1

)
dx

which thus turns out to define an equivalent, order preserving norm inL logL(�).
So, connecting the previous facts, we have the following inequality valid for any
h ∈ Lp(BR) andp > 1:

−
∫
BR

|h| log
(
e + |h|

‖h‖1

)
dx � c(p)

(
−
∫
BR

|h|p dx

)1/p

. (3.3)

Choice of some relevant quantities. We start by applying Theorem 3.1 and
Remark 3.1, thus getting the higher integrability exponentδ < γ1 − 1 determined
by (γ1, γ2,8γ2L,M1), where

M1 := 8γ2L

∫
�

(
1 + |Du|2)p(x)/2

dx; (3.4)

the reasons for this peculiar choice are technical and will be clear later. We select
R0 ≡ R0(γ1, γ2,8γ2L,M1) > 0 with the property thatω(8R0) < δ/4; finally we
fix a ballBR0 ⊂⊂ � and we set

pm := max
BR0

p(x).

Then we consider ballsB(xc,4R) ≡ B4R ⊂⊂ BR0/4 and we define

p2 := max
B4R

p(x), p1 := min
B4R

p(x)

(note thatp1, p2 depend on the ball). We remark that for a suitablex0 ∈ B4R, not
necessarily the center, we havep2 = p(x0); also, we havep2 − p1 � ω(8R) �
8ω(R). The preceding choices imply that

p2(1 + δ/4) � p(x)(1 + δ/4 + ω(8R)) � p(x)(1 + δ) in B4R,

pm(1 + δ/4) � p(x)(1 + δ) in BR0.

(3.5)

Finally, without loss of generality we shall always choose 16R � R0 � 1: this is
again a technicality that will be explained later. We are now ready to state the main
proposition of the section; this will provide the necessarya priori estimates.

Proposition 3.1. Let ū ∈ W1,1(BR0) be a local minimizer of the functionalw �→∫
BR0

f̄ (x,Dw) dx with f̄ (x, z) : BR0 × R
n → R of classC2 with respect to the

variablez and satisfying(2.3)–(2.7)withL replaced by8γ2L andµ > 0. Moreover
suppose ∫

BR0

|Dū|p(x) dx � M1,

∫
BR0/4

|Dū|pm dx � M2,

whereM1 is defined in(3.4)andM2 < +∞ is a constant. Then ifB(xc,4R) ⊂⊂
BR0/4, not necessarily concentric withBR0, for every0 < τ < n there exist
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0 < R1 < R/8 andc > 0, both depending on(γ1, γ2, L,M1,M2, ω, τ ) but not
on ū, µ and f̄ , such that ∫

B(xc,ρ)

|Dū|γ1 dx � cρn−τ (3.6)

whenever0 < ρ < R1.

Proof. Let B(xc,4R) ≡ B4R ⊂⊂ BR0/4 be a ball as described above, and hence
not necessarily concentric withBR0; from now on, when not otherwise specified,
all the balls considered (exceptBR0) will havexc as their center. With the notation
introduced above, we observe that the exponentp2 is actually a function ofR, thus

p2 := max
B4R

p(x) ≡ p2(R).

We first remark that by Theorem 3.1 and by (3.5) we haveū ∈ W1,p2(1+δ/4)(B4R).
We definev ∈ ū + W

1,p2
0 (BR) as the unique solution to the following Dirichlet

problem:

min

{∫
BR

f̄ (x0,Dw) dx : w ∈ ū + W
1,p2
0 (BR)

}
,

where as abovep2 = p(x0); note that it may well happen thatx0 does not belong
to BR. We observe that the functiong(z) := f̄ (x0, z) satisfies the hypotheses of
Theorem 3.2 and Lemma 3.1 withp ≡ p2, γ1 � p2 � γ2. Hence, by the minimality
of v it follows that there existc ≡ c(γ1, γ2, L,M1,M2) < +∞ and 0< ε < δ/4,
ε ≡ ε(γ1, γ2, L) independent ofR andv, such that whenever 0< ρ < R/2∫

Bρ

|Dv|p2 dx � c
( ρ

R

)n ∫
BR

(1 + |Dv|p2) dx, (3.7)

(
−
∫
BR

|Dv|p2(1+ε) dx

)1/(1+ε)

(3.8)

� c

(
−
∫
BR

|Dv|p2 dx

)
+ c

(
−
∫
B2R

|Dū|p2(1+δ/4) dx

)1/(1+δ/4)

,∫
BR

|Dv|p2 dx � c

∫
BR

(|Dū|p2 + 1) dx. (3.9)

Now we comparēu andv in BR. Using Lemma 2.2 of [9] and the minimality ofv
we obtain by (3.7) and (3.9)∫

Bρ

(
µ2 + |Dū|2

)p2/2
dx (3.10)

� c

∫
Bρ

(
µ2 + |Dv|2

)p2/2
dx

+ c

∫
Bρ

(µ2 + |Dū|2 + |Dv|2)(p2−2)/2|Dū − Dv|2 dx
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� c
( ρ

R

)n ∫
BR

(1 + |Dū|p2) dx

+ c

∫
BR

(
µ2 + |Dū|2 + |Dv|2

)(p2−2)/2 |Dū − Dv|2 dx.

Our main task now is to give an upper estimate for the last quantity appearing in
(3.10). To this end, we observe that since the functiong satisfies (2.4) withp(x) ≡
p2 and it is of classC2, then (see [13]) it also satisfies, forν ≡ ν(γ1, γ2, L) > 0,

D2g(z) λ ⊗ λ � ν(µ2 + |z|2)(p2−2)/2|λ|2,
and using the minimality ofv together with Lemma 2.1 from [3] (that still works
for p > 2) we obtain∫

BR

[g(Dū) − g(Dv)] dx (3.11)

=
∫
BR

〈Dg(Dv),Dū − Dv〉 dx [= 0]

+
∫
BR

dx

∫ 1

0
(1 − t)D2g(tDū + (1 − t)Dv)

· (Dū − Dv) ⊗ (Dū − Dv) dt

� ν

∫
BR

dx

∫ 1

0
(1 − t)(µ2 + |tDū + (1 − t)Dv|2)(p2−2)/2|Dū − Dv|2 dt

� c−1
∫
BR

(
µ2 + |Dū|2 + |Dv|2

)(p2−2)/2 |Dū − Dv|2 dx,

with c ≡ c(L, γ1, γ2) < +∞. On the other hand, using now the minimality ofū,∫
BR

[g(Dū) − g(Dv)] dx (3.12)

=
∫
BR

[f̄ (x0,Dū) − f̄ (x,Dū)] dx

+
∫
BR

[f̄ (x,Dū) − f̄ (x,Dv)] dx [� 0]

+
∫
BR

[f̄ (x,Dv) − f̄ (x0,Dv)] dx

�
∫
BR

[f̄ (x0,Dū) − f̄ (x,Dū)] dx

+
∫
BR

[f̄ (x,Dv) − f̄ (x0,Dv)] dx
(2.5)
� cω(R)

∫
BR

((
µ2 + |Dū|2)p2/2 + (

µ2 + |Dū|2)p(x)/2
)

· (1 + | log(µ2 + |Dū|2)|) dx
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+ cω(R)

∫
BR

(
(µ2 + |Dv|2)p2/2 + (µ2 + |Dv|2)p(x)/2

)
· (1 + | log(µ2 + |Dv|2)|) dx

:= I + II .

We begin by estimating the term I; keeping the notation employed in (3.2) for the
norms,

I � cω(R)

∫
BR∩{|Dū|�e}

|Dū|p2 log |Dū|p2 dx + cω(R)Rn

� cω(R)Rn −
∫
BR

|Dū|p2 log
(
e + |Dū|p2

‖|Dū|p2‖1

)
dx

+ cω(R)Rn −
∫
BR

|Dū|p2 log(e + ‖|Dū|p2‖1) dx + cω(R)Rn

(3.3)
� c(δ)ω(R)Rn

(
−
∫
BR

|Dū|p2(1+δ/4) dx

)1/(1+δ/4)

+ cω(R) log
(
e + ‖|Dū|p2‖1

) ∫
BR

|Dū|p2 dx + cω(R)Rn

(3.5)
� cω(R)Rn

(
−
∫
BR

|Dū|p(x)(1+δ/4+ω(8R)) dx

)1/(1+δ/4)

+ c(M2)ω(R) log
( 1

R

) ∫
BR

|Dū|p2 dx + cω(R)Rn

(3.1)
� cω(R)Rn

(
−
∫
B2R

|Dū|p(x) dx
)(1+δ/4+ω(8R))/(1+δ/4)

+ cω(R) log
( 1

R

) ∫
BR

|Dū|p2 dx + cω(R)Rn

� cω(R)R−nω(8R)/(1+δ/4)
(∫

B2R

|Dū|p(x) dx
) ω(8R)

(1+δ/4)
∫
B2R

|Dū|p2 dx

+ cω(R) log
( 1

R

) ∫
BR

|Dū|p2 dx + cω(R)Rn

(2.6)
� cω(R) log

( 1

R

) ∫
B2R

|Dū|p2 dx + cω(R)Rn

with c ≡ c(γ1, γ2, L,M1,M2), sinceδ ≡ δ(γ1, γ2, L,M1). We observe that we
used the boundedness ofR−ω(8R) � c ≡ c(L) given by (2.6) to perform the last
estimate and the elementary inequality

log(e + ab) � log(e + a) + log(e + b) ∀ a, b > 0

to perform the estimate on the second line.
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The term II must be estimated in a different way; indeed,

II � cω(R)

∫
BR∩{|Dv|�e}

|Dv|p2 log |Dv|p2 dx + cω(R)Rn

� cω(R)Rn −
∫
BR

|Dv|p2 log
(
e + |Dv|p2

‖|Dv|p2‖1

)
dx

+ cω(R)Rn −
∫
BR

|Dv|p2 log(e + ‖|Dv|p2‖1) dx + cω(R)Rn

(3.3)
� c(ε)ω(R)Rn

(
−
∫
BR

|Dv|p2(1+ε) dx

)1/(1+ε)

+ cω(R) log
(
e + ‖|Dv|p2‖1

) ∫
BR

|Dv|p2 dx + cω(R)Rn

(3.8)
� c(ε)ω(R)

∫
BR

|Dv|p2 dx

+ cω(R)Rn

(
−
∫
B2R

|Dū|p(x)(1+ω(8R)+δ/4) dx

)1/(1+δ/4)

+ cω(R) log
(
e + ‖|Dv|p2‖1

) ∫
BR

|Dv|p2 dx + cω(R)Rn

(3.1)
� c

[
ω(R) + ω(R) log

(
e + ‖|Dv|p2‖1

)] ∫
BR

|Dv|p2 dx

+ cω(R)R−nω(8R)/(1+δ/4)
(∫

B4R

|Dū|p(x) dx
) ω(8R)

1+δ/4
∫
B4R

|Dū|p2 dx

+ cω(R)Rn

(3.9)
� cω(R) log

(
1

R

)∫
B4R

|Dū|p2 dx + cω(R)Rn,

again withc ≡ c(γ1, γ2, L,M1,M2). Connecting the estimates found for I and II
to (3.11) we have∫

BR

(µ2 + |Dū|2 + |Dv|2)(p2−2)/2|Dū − Dv|2 dx

� cω(R) log
( 1

R

) ∫
B4R

|Dū|p2 dx + cω(R)Rn (3.13)

and this last formula together with (3.10) finally gives, whenever 0< ρ < R/2,∫
Bρ

|Dū|p2(R) dx � c

[( ρ

R

)n + ω(R) log
( 1

R

)] ∫
B4R

|Dū|p2(R) dx + cRn.

Now we define the function+ : [0, R0/16[→ R as

+(ρ) :=
∫
Bρ

(|Dū|p2(ρ) + 1) dx.
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This is a positive function and by (3.5) andTheorem 3.1 it is also bounded. Moreover
we observe that, since the functionR �→ p2(R) is nondecreasing, then it readily
follows that+(s) � 2+(t) whenevers � t and∫

Bρ

(|Dū|p2(ρ) + 1) dx � 2
∫
Bρ

(|Dū|p2(R) + 1) dx.

With this notation we may write what we have proved as

+(ρ) � c
[( ρ

R

)n + ω(R) log
( 1

R

)]
+(R) + cRn,

valid for anyρ � R/8 and withc ≡ c(γ1, γ2, L,M1,M2). So, fixing 0< τ < n, if
we apply Lemma 3.2, choosingR1 ≡ R1(γ1, γ2, L,M1,M2, ω, τ ) > 0 such that
ω(R) log(1/R) � ε0 whenever 0< R < 16R1, we have:∫

Bρ

|Dū|p2(ρ) dx � c

(
ρ

R1

)n−τ [∫
BR1

|Dū|p2(R1) dx + 1
]

� c

(
ρ

R1

)n−τ [∫
BR0/4

|Dū|pm dx + 1
]

� cρn−τ

whenever 0< ρ < R1, which we may assume without loss of generality. But
γ1 � p2(ρ), and this immediately gives (3.6) withc ≡ c(γ1, γ2, L,M1,M2, ω, τ )

since alsoR−1
1 ≡ R−1

1 (γ1, γ2, L,M1,M2, ω, τ ) < +∞. ��
Remark 3.2. The last few lines are the only place where we used (2.7) instead of
the weaker (2.6).

Proof of Theorem 2.1. We rely on an approximation argument. We take a smooth
mollifier ϕ ∈ C∞(B(0,1)) such that

∫
B(0,1)\B(0,1/2) ϕ(y) dy = 1/2, and we define

a sequencefm : �×R
n → R, m ∈ N, of smooth approximations (in the variablez)

of the energy densityf :

fm(x, z) :=
∫
B(0,1)

f (x, z + y/m)ϕ(y) dy.

Following [13, Lemma 2.4], it is easy to check that the sequencefm satisfies
(2.3)–(2.5) uniformly with respect tom ∈ N, with L replaced by 8γ2L andµ2 by
µ2 + (1/m2). Now, letR0 ≡ R0(γ1, γ2,8γ2L,M1, ω) > 0 be as defined before
Proposition 3.1, withM1 as in (3.4). We defineum ∈ u+W

1,γ1
0 (BR0) as the unique

solution to the Dirichlet problem

min

{∫
BR0

fm(x,Dw) dx : w ∈ u + W
1,γ1
0 (BR0)

}
.

By the minimality ofum and the growth conditions satisfied byfm, it easily follows
that ∫

BR0

|Dum|p(x) dx � 8γ2L

∫
BR0

(1 + |Du|2)p(x)/2 dx
(3.4)
� M1. (3.14)
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Now we are in a position to apply Theorem 3.1 toum ≡ ū with O = BR0 and
fm ≡ f̄ , according to the choice of the constants made before Proposition 3.1. We
then find:∫

BR0/4

|Dum|pm dx
(3.5)
�

∫
BR0/4

|Dum|p(x)(1+δ) dx + cRn
0 (3.15)

(3.1)
� cR−nδ

0

(∫
BR0

(1 + |Dum|p(x)) dx
)(1+δ)

(3.14)
:� M2

with M2 ≡ M2(L, γ1, γ2, ‖|Du|p(x)‖L1(�)); we may suppose thatM2 � M1. We
apply Proposition 3.1 toum ≡ ū andfm ≡ f̄ ; thus, using (3.15), for every fixed
0 < τ < 1 we findc, R1, both depending on(γ1, γ2, L, ‖|Du|p(x)‖L1(�), ω, τ )

but independent ofm, and with 0< R1 < R0, such that∫
Bρ

|Dum|γ1 dx � cρn−τ for all 0 < ρ < R1. (3.16)

By (3.14), (3.15) we note that, sinceum = u on∂BR0, up to taking a subsequence
we may suppose

um ⇀ w weakly in W1,γ1(BR0)

wherew ∈ u + W
1,γ1
0 (BR0) ∩ W1,pm(BR0/4). We claim that actuallyw = u; we

will prove this later. With the claim accepted, the proof is finished, since letting
m → ∞ in (3.16) we get by lower semicontinuity∫

Bρ

|Du|γ1 dx � cρn−τ (3.17)

whenever 0� ρ � R1 and withc andR1 as in (3.16).At this point the result follows
by Morrey-Campanato’s integral characterization of H¨older continuity together
with a standard covering argument. We conclude by proving our claim. By the
minimality of um it follows that∫

BR0

fm(x,Dum) dx �
∫
BR0

fm(x,Du) dx. (3.18)

Using also the elementary inequality

|fm(x, z) − f (x, z)| � c

m
(|z|p(x)−1 + 1)

(which follows from the definition offm, the convexity and growth off and Re-
mark 2.1) and the fact that the sequence|Dum|p(x) is bounded inL1(BR0), and
lettingm → ∞ in (3.18), again by semicontinuity it follows that∫

BR0

f (x,Dw) dx � lim inf
m

∫
BR0

f (x,Dum) dx

= lim inf
m

∫
BR0

fm(x,Dum) dx �
∫
BR0

f (x,Du) dx.
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This in turn, sinceu is a local minimizer, implies

∫
BR0

f (x,Dw) dx =
∫
BR0

f (x,Du) dx.

At this pointw = u follows by the uniqueness of minimizers inu + W
1,γ1
0 (BR0),

since by (2.4) it turns out (see [13]) thatF is strictly convex. ��

Remark 3.3. An interesting observation is the following: if (2.6) holds for some
L, thenu ∈ C0,α for someα, see [12,6]; at the other extreme, if (2.7) holds then
u ∈ C0,α for allα. In between, fix 0< ᾱ < 1, and consequently takeτ = (1−ᾱ)γ1:
this value, together with an upper bound for

∫ |Du|p(x) dx, determines the constant
ε0 in Lemma 3.2. Thenu ∈ C0,ᾱ provided

lim sup
R→0

ω(R) log
( 1

R

)
� ε0 :

thus we may also think ofα as a function of

λ = lim sup
R→0

ω(R) log
( 1

R

)
,

and we see that

lim
λ→0

α(λ) = 1.

Before proving Theorem 2.2 we still need a result that we adapt from [20]:

Proposition 3.2. Let g(z) : R
n → R be a function of classC2 in R

n \ {0} with
D2g satisfying

L−1(µ2 + |z|2)p/2 � g(z) � L(µ2 + |z|2)p/2,

L−1(µ2 + |z|2)(p−2)/2|λ|2 � D2g(z)λ ⊗ λ � L(µ2 + |z|2)(p−2)/2|λ|2

for all z ∈ R
n \ {0} andλ ∈ R

n, where0 � µ � 1, L � 1 andγ1 � p � γ2. Let
v ∈ W1,p(BR) be a local minimizer of the functionalw �→ ∫

BR
g(Dw) dx. Then

there exist a constantc ≡ c(γ1, γ2, L) and an exponent0 < β ≡ β(L, γ1, γ2) < 1
such that

sup
BR/2

(µ2 + |Dv|2)p/2 � c −
∫
BR

(µ2 + |Dv|2)p/2 dx

sup
x,y∈Bρ

|Dv(x) − Dv(y)| � c
( ρ

R

)β
sup
BR/2

|Dv|

for anyρ � R/2.
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Proof of Theorem 2.2. An approximation argument similar to the one employed
in Theorem 2.1 allows us to suppose thatf is of classC2 with respect toz and
thatµ > 0, with the same constants as before. All the following estimates will be
independent ofµ, so that the result will hold for the original functionf . We shall
definex0 andB(xc, R) afterwards; for anyu ∈ W1,p(x0)

(
B(xc, R)

)
the problem

min

{∫
B(xc,R)

f (x0,Dw) dx : w ∈ u + W
1,p(x0)
0

(
B(xc, R)

)}
(3.19)

admits for its unique solutionv the estimate, easily obtained by Proposition 3.2
above by consideringg(z) := f (x0, z),

−
∫
B(xc,ρ)

|Dv − (Dv)xc,ρ |p(x0) dx

� c
( ρ

R

)βp(x0) −
∫
B(xc,R)

(1 + |Dv|p(x0)) dx (3.20)

wheneverρ � R/2, wherec > 0 andβ such that 0< β < 1 depend only on
γ1, γ2, L (here we took into account that 1< γ1 � p(x0) � γ2).

Keeping the notation employed in and immediately before Proposition 3.1, we
consider ballsB(xc,4R) ⊂⊂ BR0/4 and we set

p2 := max
B4R

p(x) ≡ p2(R).

(This is the last time we meetBR0. Henceforth all balls we consider will have center
in xc, which we shall omit.) Now let us fixτ = αβ/8(n+β). By the last inequality
in Proposition 3.1, and reasoning as we did to obtain (3.17), we deduce the existence
of a radiusR1 and a constantc, both depending onγ1, γ2, L, |||Du|p(x)||L1(�), α,
such that whenever 0< R < R1∫

BR

|Du|p2(R) dx � cRn−τ . (3.21)

Take R such that 4R < R1 and letx0 ∈ B4R be such thatp(x0) = p2; let
v ∈ u+W

1,p2
0 (BR)be the solution to (3.19). Repeating the proof of Proposition 3.1,

but using the fact thatω � LRα, we obtain∫
BR

(
µ2 + |Du|2 + |Dv|2

)(p2−2)/2 |Du − Dv|2 dx

� cRα/2
∫
B4R

(|Du|p2 + 1) dx.

Now, if p2 � 2, we readily have that∫
BR

|Du − Dv|p2 dx � c

∫
BR

(
µ2 + |Du|2 + |Dv|2

)(p2−2)/2 |Du − Dv|2 dx

� cRα/2
∫
B4R

(|Du|p2 + 1) dx;



138 Emilio Acerbi & Giuseppe Mingione

if p2 � 2, then Hölder inequality, the minimality ofv and the bounds onf yield∫
BR

|Du − Dv|p2 dx

�
(∫

BR

(
µ2 + |Du|2 + |Dv|2

)(p2−2)/2 |Du − Dv|2 dx
)1/2

·
(∫

BR

(
µ2 + |Du|2 + |Dv|2

)(2−p2)/2 |Du − Dv|2p2−2 dx

)1/2

� cRα/4
(∫

B4R

(|Du|p2 + 1) dx

)1/2

·
(∫

BR

(1 + |Du|p2 + |Dv|p2) dx

)1/2

� cRα/4
∫
B4R

(|Du|p2 + 1) dx,

so that, in any case, we come up with∫
BR

|Du − Dv|p2(R) dx � cRα/4
∫
B4R

(|Du|p2(R) + 1) dx. (3.22)

Now we compareu andv in BR; indeed, since we chose 4R < R1 we may use
(3.20)–(3.22), the minimality ofv and the fact that the mappingR �→ p2(R) is
nondecreasing and we have:∫

Bρ

|Du − (Du)xc,ρ |p2(R) dx

� c

∫
Bρ

|Du − (Dv)xc,ρ |p2(R) dx

� cρn −
∫
Bρ

|Dv − (Dv)xc,ρ |p2(R) dx + c

∫
BR

|Du − Dv|p2(R) dx

� c
( ρ

R

)βp2(R)

ρn −
∫
BR

(|Du|p2(R) + 1) dx

+ cR
α
4

∫
B4R

(|Du|p2(4R) + 1) dx

� c
( ρ

R

)β
ρnR−τ + cR

α
4 +n−τ .

We chooseρ = 1
2R

1+θ whereθ = α/4(n + β): then in the previous inequality,
written withρ only, the two exponents are the same, and with the choice ofτ we
made at the beginning they are equal ton + λ for someλ � λ0 > 0, with λ0
depending onγ1, γ2, L, |||Du|p(x)||L1(�), α. From this inequality it easily follows
that ∫

B(xc,ρ)

|Du − (Du)xc,ρ |γ1 dx � cρn+(λ0γ1/γ2).
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The assertion follows by Campanato’s characterization of H¨older continuity. ��
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