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Abstract

We prove regularity results for weak solutions to systems modelling electro-
rheological fluids in the stationary case, as proposed in [27,31]; a particular case
of the system we consider is

div u = 0, − div
(
(1 + |E(u)|2)(p(x)−2)/2E(u))+Dπ = f (x, u,Du),

where E(u) is the symmetric part of the gradient Du and the variable growth
exponent p(x) is a Hölder continuous function larger than 3n/(n+ 2).

1. Introduction

In recent years increasing attention has been paid to the study of electro-
rheological fluids; these are particular fluids of high technological interest, possess-
ing the ability to change, sometimes in a dramatic way, their mechanical properties
when in the presence of an electromagnetic field E (their viscosity may vary by a
factor of 1000). The mathematical modelling of such fluids was investigated by dif-
ferent authors adopting different points of view and involving various mathematical
and numerical approaches (see the introduction of [31] and the references therein).
In the context of continuum mechanics these fluids are seen as non-Newtonian flu-
ids; very recently Růžička (following the ideas proposed by Rajagopal & Růžička
in [27]) developed an interesting mathematical model for such fluids, taking into
account the delicate interaction between the electromagnetic field E and the moving
liquid. The resulting system (see [31] for a description of the building procedures
and for a general analysis) arising from these studies is:

curl E = 0, div E = 0,

ut − div S
(
E, E(u))+Dπ + [Du]u = f + χE[DE]E, (1.1)

div u = 0,



214 Emilio Acerbi & Giuseppe Mingione

where, according to the notation proposed in [29,31], u : �(⊂ R
3) → R

3 is
the velocity, E is the applied electromagnetic field, S the extra stress tensor, π the
pressure andχE the constant dielectric susceptibility; following a standard notation,
E(u) denotes the symmetric part of the gradient.

The constitutive relation proposed in [27,29,31] for the extra stress S is

S(E, z) := g(E)(1 + |z|2)(p(E)−2)/2z

+ terms with the same growth (1.2)

for any z ∈ S3, the space of symmetric 3 × 3 matrices; we remark that the other
terms have a different shape, so system (1.1) has no overall special structure.

The main new feature of system (1.1) is that the monotonicity and the ellipticity
properties of the vector field S are strongly influenced by E through a variable
growth exponent dependence: indeed in (1.2) the exponent p is actually a function
of the quantity |E|2. Since (1.1) is uncoupled, we may first obtain E = E(x), thus
the dependence of p and S on E is indeed a dependence on x. With a suitable choice
of the parameters, it turns out that

DzS(x, z)λ⊗ λ � ν(1 + |z|2)(p(x)−2)/2|λ|2,
|DzS(x, z)| � L(1 + |z|2)(p(x)−2)/2

(1.3)

for any symmetric 3 × 3 matrices z, λ, where the function p : R
+ → (1,+∞)

reflects the physical properties of the fluid and has in general large oscillations
when |E| changes (with p < 2 when |E| is large). The natural energy associated
with this problem is thus given by∫

�

|E(u)|p(x) dx.

The basic existence theory for the system (1.1) has been estabilished by Růžička
in [31], see also [29]; this theory is particularly satifactory in the steady case

− div S +Dπ + [Du]u = f + χE[DE]E. (1.4)

As is clear from (1.3), a major difficulty to be overcome is the fact that S exhibits a
nonstandard growth (see [23–25,3] and the references therein), that is, its growth
and coercivity exponents are different:

L−1(|z|γ1 − 1) � S(x, z)z � L(|z|γ2 + 1),

where

9
5 < γ1 := minp(x) � γ2 := maxp(x). (1.5)

In this paper we are interested in the (interior) regularity properties of solutions to
(1.1) in the stationary case (1.4). A first step in this direction has been performed
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in [31] where the author proves the existence of a W 2,2 solution to (1.4). Here we
are in a more general setting and we analyse systems as

div u = 0, divA
(
x, E(u))+Dπ = B(x, u,Du), (1.6)

where the vector fieldA exhibts an ellipticity property as in (1.3) for a fixed function
p(x). Under natural assumptions we shall prove that if u is a local weak solution
to (1.6), then Du is Hölder continuous in an open subset of full measure, �0, i.e.,
Du ∈ C0,α(�0) for some α in the range 0 < α < 1 and with meas (� \�0) = 0.

To our knowledge this is, apart from the higher differentiability result obtained
in [31] (see also [30] for periodic boundary conditions), the first regularity result
for the model of electro-rheological fluids proposed in [31], and in any case the first
in a pointwise sense. A further step, based on Theorem 2.1, will be the estimate of
the Hausdorff dimension of the singular set� \�0, as well as regularity results for
the pressure.

We add some comments; first, note that of special importance in the theory are
the bounds (1.5) allowed for p(x): these reflect the physical properties of a fluid.
Of course, the larger the interval [γ1, γ2], the larger the class of fluids the model
is going to cover. In other words, the amplitude γ2 − γ1 relates to the possible
excursions of the viscosity of the fluid when E changes, so it is important to prove
results allowing for large values of γ2 − γ1.

In [31] the author proves existence of weak solutions for the stationary problem
under the only hypothesis (1.5), and we remark that the same lower bound also
appears when treating non-Newtonian fluids of standard type, that is when p is a
constant (for these issues see the book [22]).

Subsequently different bounds (according to the type of problem under consid-
eration) are introduced in [31] on γ2 in order to prove existence of higher differen-
tiable solutions, for which the single condition on γ1 is no longer sufficient, in this
way further restricting the class of fluids under consideration.

On the other hand, the hypotheses we consider here are consistent with, and in
some respect weaker than, the ones considered by Růžička: in particular the lower
bound (1.5) onγ1 is the same as that found by Růžička, while there is no upper bound
for γ2, which is needed in [31] to prove existence of strong solutions: this allows
us to treat a broad class of fluids for which higher excursions of the viscosity (and
consequently of p(x)) are observed. In this way the existence theorem of Růžička,
for which (1.5) suffices, has now a regularity counterpart.

The techniques used to obtain Theorem 2.1 are suitable for obtaining results
for a more general class of systems, including the one of electro-rheological fluids
we considered. This is of interest for several reasons; in the paper [38], following
previous work by Baranger & Mikelić [5], Zhikov proposed a model for a class
of fluids that are influenced in a similar way by the temperature T , rather than by
an external electromagnetic field E. In this model, once again, the stress tensor
satisfies growth conditions of the type (1.3), which we may call “p(x) type”, and
the underlying energy is

∫ |Du|p(x) dx. The exponent function p(x) ≡ p
(
T (x)

)
turns out to be also an unknown of the system (which is highly coupled), thus
minimal regularity assumptions must be considered on it: in Theorem 2.1 we allow
p(x) to be simply Hölder continuous rather than being Lipschitz continuous, as
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in [31]. Although this is not essential in the theory of electro-rheological fluids,
the techniques developed here to treat this case could be useful when dealing with
systems like the one proposed by Zhikov.

We remark that since this generalization involves no additional technical dif-
ficulties and is essentially no different to the three-dimensional physical case, we
develop our results in any dimension n; this is due to the fact that our methods also
allows us to prove regularity results for solutions to general elliptic systems with
nonstandard growth conditions that were not covered by the available regularity
theory, see [23–25]; this may be of interest in itself, judging by the large number
of papers that recently appeared on the subject. For related results, see also [7,9,
32–34].

Finally, we say a few words about the proofs. The starting point is proving a
higher integrability result stating that actually |Du|p(x) ∈ L1+δ1 for some δ1 > 0,
rather than just |Du|p(x) ∈ L1. This gives the manoeuvrability needed to adopt a
blow-up procedure, which is a common tool when proving partial regularity; but
the main point here is that the nonstandard growth conditions of the system force
us to blow up solutions not in the whole � but in small open subsets depending on
the solution itself, on the higher integrability exponent δ1, and on the size of the
oscillations of p(x). At this stage various higher integrability results are important
to overcome the lack of standard growth conditions of the system, and in particular
a quantitative knowledge of the stability of certain higher integrability exponents
arising from reverse Hölder inequalities will be crucial. Moreover, in order to treat
the physically important case inf p(x) < 2, we need to prove a certain form of
Korn inequality for a two-parameter family of Orlicz spaces, paying attention to
the stability of the constants appearing uniformly with respect to the parameters.
The regularity of the solutions is then achieved via a quite delicate localization of
the iteration arguments employed to get partial regularity.

2. Preliminaries and statements

In what follows, � denotes an open bounded domain in R
n, and B(x,R) the

open ball {y ∈ R
n : |x−y| < R}. If u is an integrable function defined onB(x,R),

we set

(u)x,R = −
∫
B(x,R)

u(x) dx = 1

ωnRn

∫
B(x,R)

u(x) dx,

where ωn is the Lebesgue measure of B(0, 1). We also adopt the convention of
writing BR and (u)R instead of B(x,R) and (u)x,R respectively, when the centre
is not relevant, or is clear from the context; moreover, unless otherwise stated,
all balls considered will have the same centre. We denote by Sn the set of all
symmetric n × n matrices. Given two vectors x, y ∈ R

n, we denote their tensor
product by x ⊗ y := {xiyj }i,j ∈ R

n2
and their symmetric tensor product by

x � y := (1/2)(x ⊗ y + y ⊗ x) ∈ Sn. If v : �→ R
n is an L1 function, we denote

by E(v) its symmetric distributional derivative:

E(v) ≡ {E(v)}ij :=
(
∂j v

i + ∂ivj
)
/2.
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Abusing notation, if z ∈ Rn2
, we denote by E(z) its symmetric part:

E(z) ≡ {E(z)}ij := (zij + zji)/2.
If s > 1, then s′ := s/(s − 1) is the conjugate exponent of s, while if 1 < s < n,
then s∗ := ns/(n − s) is the Sobolev conjugate exponent of s, whereas s∗ is any
real number if s � n. Finally, the letter c freely denotes a constant, not necessarily
the same in any two occurrences, while only the relevant dependences will be
highlighted; if need be, we write, e.g., CM or CL or the like to stress that some
constant depends on M , L etc., and we denote by ĉ, C̃ or the like any occurrence
of some particular constant that we will later recall.

We are concerned with the following system:

div u = 0, − divA
(
x, E(u))+Dπ = B(x, u,Du), (2.1)

where π is the pressure, as in (1.1), and the continuous vector fieldsA : �×Sn →
R
n2

and B : � × R
n × R

n2 → R
n satisfy the following growth and ellipticity

assumptions:

A(x, ·) ∈ C1(Sn), (H1)

|DzA(x, z)| � L(1 + |z|2)(p(x)−2)/2,

DzA(x, z)λ⊗ λ � L−1(1 + |z|2)(p(x)−2)/2|λ|2, (H2)

|A(x, z)− A(x0, z)| � Lω(|x − x0|)
×
[
(1 + |z|2)(p(x)−1)/2 + (1 + |z|2)(p(x0)−1)/2

]
× (

1 + log(1 + |z|)),
(H3)

|B(x, u, z̃)| � L
(|u||z̃| + f (x)) (H4)

for any z, λ ∈ Sn, x, x0 ∈ �, u ∈ R
n, z̃ ∈ R

n2
, where L � 1, ω : R

+ → R
+,

f : �→ R
+ and p : �→]1,+∞[ are functions such that

f ∈ Ln+nβloc , p(x) � γ1 � 3n

n+ 2
+ 2β, (H5)

for some β > 0. Moreover, p(x) and ω are supposed to be continuous functions
such that

|p(x)− p(x0)| � ω(|x − x0|) � L|x − x0|α, (H6)

where 0 < α < 1. In view of the definition (2.5) below, it is not restrictive to
assume that A : � × Sn → Sn. We also remark that (H2) implies the following
growth and coercivity properties for A:

|A(x, z)| � c(|z|p(x)−1 + 1), A(x, z)z � c−1(|z|p(x) − 1), (2.2)
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and also, through Lemma 2.1 in [2],

[A(x, z)− A(x, ξ)](z− ξ) � c−1(1 + |z|2 + |ξ |2)(p(x)−2)/2|z− ξ |2 (2.3)

for a suitable constant c ≡ c(n, L). Except at a single point, in place of (H6) we
will need only the much weaker form of “logarithmic continuity”

R−ω(R) � c ≡ cL,α. (2.4)

If p(x) is as above, we put

W 1,p(x) := {u ∈ W 1,1(�;R
n) : |E(u)|p(x) ∈ L1(�)},

with its local variant, W 1,p(x)
loc , defined in a similar fashion; we remark that in the

standard case p(x) ≡ p this definition is equivalent to the usual one with |E(u)|p
replaced by |Du|p, by Korn inequality, whereas the two notions might be different
in this case. Moreover we set

C∞
0,div(�) := {u ∈ C∞

0 (�;R
n) : div u = 0}.

In our setting, according to [31], a function u ∈ W
1,p(x)
loc is a weak solution to

system (2.1) if

div u = 0,∫
�

A
(
x, E(u))E(ϕ) dx =

∫
�

B(x, u,Du)ϕ dx ∀ϕ ∈ C∞
0,div(�).

(2.5)

Our main result is the following:

Theorem 2.1. Let u ∈ W
1,p(x)
loc be a weak solution to system (2.1) and assume

(H1)–(H6) are satisfied. There exists an open set �0 ⊂ � such that |� \�0| = 0
and Du is Hölder continuous in �0.

Let us collect some auxiliary results. We shall widely use the function Vp : R
k →

R
k defined by

Vp(z) := (1 + |z|2)(p−2)/4z (2.6)

for each z ∈ R
k and for any p > 1. All the properties of Vp that we need may be

found in [8], Lemma 2.1, and we restate them here in a way that suits our needs,
together with some other properties that are a straightforward consequence of (2.6).

Lemma 2.2. Let p > 1, and let V ≡ Vp : R
k → R

k be as in (2.6); then there exist
c, c(M) depending on p, k such that, for any z, η ∈ R

k and t > 0,

(a) |V (tz)| � max{t, tp/2}|V (z)|,
(b) |V (z+ η)| � c

(|V (z)| + |V (η)|),
(c) |V (z)− V (η)| � c(M)|V (z− η)| if |η| � M and z ∈ R

k ,

(d) | V (z− η)| � c(M)|V (z)− V (η)| if |η| � M and z ∈ R
k ,
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(e) max{|z|, |z|p/2} � |V (z)| � cmax{|z|, |z|p/2} if p � 2,
c−1 min{|z|, |z|p/2} � |V (z)| � min{|z|, |z|p/2} if 1 < p < 2,

(f) c−1|z− η| � |V (z)−V (η)|
(1+|z|2+|η|2)(p−2)/4 � c|z− η|,

(g) if p � 3n/(n+ 2), then the function z �→ |Vp(z)|2 is convex,

(h) if p � 2, then c−1(|z|2 + |z|p) � |Vp(z)|2 � c(|z|2 + |z|p).
Moreover, if 1 � γ1 � p � γ2, all constants c, c(M) above may be replaced by
constants c(γ1, γ2), c(M, γ1, γ2) independent of the particular value of p.

As a consequence of (e) above, we deduce a frequently used bound on Vp:
setting, with a little abuse of notation,

1(p>2) :=
{

1 if p > 2,
0 otherwise,

we have

|Vp(z)|2 � c(|z|2 + 1(p>2)|z|p). (2.7)

Young’s inequality is quite a standard tool, but the dependence of the constants
on the exponents is in general overlooked (and of course, we need to be precise just
on this point). It is well known that if A,B � 0 and α > 1, then

AB � 1

α
Aα +

(
1 − 1

α

)
Bα/(α−1);

in particular, if P > Q > 0 and a, b � 0, then for every ε in the range 0 < ε < 1,
setting λ = [εP/Q]Q/P and applying Young’s inequality with A = λaQ, B =
λ−1bP−Q, α = P/Q, we have

aQbP−Q � εaP + P −Q
P

(Q
P

)Q/(P−Q)(1

ε

)Q/(P−Q)
bP ,

and setting H = (P/Q)− 1 � 0, i.e., P −Q = HQ, we may write

aQbP−Q � εaP + H

1 +H
1

(1 +H)1/H
(1

ε

)1/H
bP

� εaP +
(1

ε

)1/H
bP . (2.8)

In particular, if H � H0 > 0, then

aQbP−Q � εaP +
(1

ε

)1/H0
bP ; (2.9)

this is true as soon as, for some H0 > 0,

P � (1 +H0)Q > 0 (2.10)

(remark that the conditionQ > 0 may here be weakened intoQ � 0, since ifQ = 0,
then (2.9) is trivially true). We shall make frequent use of Young’s inequality (2.8)
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with Q = p(x) − 1 and P = p(x): since we will quickly reduce the problem to
one on compact subsets, by the continuity of p we have

p(x)

p(x)− 1
� 1 + 1

maxp(x)− 1
,

i.e., (2.10) is satisfied and the coefficient of bP in (2.8) depends only on ε.
The following Young-type inequality reveals a useful algebraic feature of the

function V .

Lemma 2.3 (Young’s inequatlity for V ). Let a, b ∈ R
k , 1 � p � γ2, λ ∈ R. For

every ε > 0 there exists cε ≡ cε(ε, γ2) such that

(1 + |λa|2)(p−2)/2a · b � ε(1 + |λa|2)(p−2)/2|a|2 + cε(1 + |λb|2)(p−2)/2|b|2
= ελ−2|V (λa)|2 + cελ−2|V (λb)|2. (2.11)

Proof. If λ = 0 or p = 2, the inequality reduces to a mixture of the Cauchy-
Schwarz and Young inequalities, and

a · b � |a||b| � (
√

2ε|a|)(|b|/√2ε) � ε|a|2 + 1

4ε
|b|2 : (2.12)

from now on we take λ �= 0 and p �= 2. Multiplying both sides of (2.11) by λ2 and
applying the Cauchy-Schwarz inequality, we immediately see that it is enough to
prove

(1+|λa|2)(p−2)/2|λa||λb| � ε(1+|λa|2)(p−2)/2|λa|2+cε(1+|λb|2)(p−2)/2|λb|2,
that is, replacing |λa|, |λb| by x, y, we have to prove

(1 + x2)(p−2)/2xy � ε(1 + x2)(p−2)/2x2 + cε(1 + y2)(p−2)/2y2 (2.13)

for x, y � 0. This is straightforward if

(1 + x2)(p−2)/2 � (1 + y2)(p−2)/2,

because we may then just use (2.12) to deduce (2.13) again with cε = 1/(4ε). We
thus concentrate on the remaining case

(1 + y2)(p−2)/2 < (1 + x2)(p−2)/2,

which is equivalent to

p > 2, y < x or p < 2, x < y. (2.14)

We remark that the function x �→ (1 + x2)µx is increasing on R
+ if µ � −1/2,

so this happens also for the function x �→ [(1 + x2)µx]ν for any ν > 0. This
would easily lead to the proof for p = 1, but see below. If p > 1, denoting by
q = p/(p − 1) the conjugate exponent to p we have

(1 + x2)(p−2)/2x = [(1 + x2)(p−2)/2qx2/q ] [(1 + x2)(p−2)/2px1−(2/q)]
= [(1 + x2)(p−2)/2x2]1/q [(1 + x2)−1/2x](2−p)/p.
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In both cases of (2.14) we have

[(1 + x2)−1/2x](2−p)/p � [(1 + y2)−1/2y](2−p)/p,
thus the last equality gives

(1 + x2)(p−2)/2xy � [(1 + x2)(p−2)/2x2]1/q [(1 + y2)(p−2)/2py1−(2/q)]y
= [(1 + x2)(p−2)/2x2]1/q [(1 + y2)(p−2)/2y2]1/p

and applying Young’s inequality

(1 + x2)(p−2)/2xy � ε(1 + x2)(p−2)/2x2 + (p − 1)p−1

ppεp−1 (1 + y2)(p−2)/2y2,

thus concluding the proof: the case p = 1 follows by taking the limit in the line
above. ��
The following lemma is more or less standard and its proof can be easily adapted
from Lemma 2.3 in [1] and Lemma 3.3 in [8], using Lemma 2.1 and Lemma 2.2
from [2], which remain true also in the case p � 2.

Lemma 2.4 (Scaling). LetM > 1 and x0 ∈ �. Set, for every λ > 0 and z, P ∈ Sn
with |P | � M ,

AP,λ(z) := λ−1 [A(x0, P + λz)− A(x0, P )] ,

where A satisfies (H1),(H2) and γ1 � p(x0) � γ2: then there exists a constant L̃
depending on n, γ1, γ2, L,M such that, for any z, ξ ∈ Sn,

|AP,λ(z)| � L̃(1 + λ2|z|2)(p(x0)−2)/2|z|,
AP,λ(z)z � L̃−1(1 + λ2|z|2)(p(x0)−2)/2|z|2, (2.15)

|DAP,λ(z)| � L̃(1 + λ2|z|2)(p(x0)−2)/2,

DAP,λ(z)ξ ⊗ ξ � L̃−1(1 + λ2|z|2)(p(x0)−2)/2|ξ |2. (2.16)

The following lemma is a well-known result (commonly referred to in the literature
as Bogovskiı̆’s theorem) which we restate in the form we need (see [6]; a proof
may also be found in [16], Chapter 3, Section 3).

Lemma 2.5. Let BR ⊂ R
n and let f ∈ Lq(BR) with 1 < γ1 � q � γ2 be such

that (f )R = 0. Then there exists v ∈ W 1,q
0 (BR;R

n) satisfying

div v = f
and such that ∫

BR

|Dv|p dx � c
∫
BR

|f |p dx

for every p ∈ [γ1, q], where c ≡ c(n, γ1, γ2) is independent of R > 0; moreover,
if the support of f is contained in Br with r < R, the same holds for v.
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The operator f ∈ Lq(BR) �→ v ∈ W 1,q(BR;R
n) defined in the previous lemma is

linear and strongly continuous, so the fact that the constant c above is independent
of q when γ1 � q � γ2 follows via a standard interpolation argument, while the
independence of R is obtained via a rescaling argument.

We will need some specialized forms of Korn’s inequality, especially as far as
the stability of the constants is involved; we recall that the set of rigid motions in
R
n is

R := {c + Sx : c ∈ R
n, S ∈ R

n×n, TS = −S},
the set of affine functions with skew-symmetric gradient. It is easy to see that any
distributionu = (u1, . . . , un) ∈ [D′(�)]n in a connected open set� ⊂ R

n satisfies

E(u) ≡ 0 ⇔ u ∈ R.
Let � be a fixed connected open subset of R

n and let 1 < p < +∞; for every
u ∈ Lp(�;R

n) we may define Rp,�(u) as the unique point of R (which is a
subspace of finite dimension) of least Lp distance from u:

Rp,�(u) ∈ R, ‖u− Rp,�(u)‖Lp(�;Rn) = min{‖u− r‖Lp(�;Rn) : r ∈ R} ;
if p = 1 or p = +∞ uniqueness may fail, and we may take R1 and R+∞ to be any
one of the minimum points. Then it is possible to deduce an appropriate form of
Korn’s inequality involving, for every u ∈ W 1,p(�;R

n), the function u−Rp,�(u).
Unfortunately this is unsuitable for our purposes, since p will vary with x, so it is
not clear which functionRp,� is to be chosen; besides, in generalRp,� is not a linear
mapping – except if p = 2 – although it is a projection (i.e., Rp,� ◦Rp,� = Rp,�)
and it exhibits some linear-like behaviour: for example, Rp,�(λu) = λRp,�(u) for
all λ ∈ R, and also

r ∈ R ⇔ Rp,�(u+ r) = Rp,�(u)+ r.
Let us concentrate on the special case p = 2, for which an explicit representation
of the rigid motion R2,�(u) of least distance is available.

Let � be a bounded open subset of R
n and let x0 be its barycentre; we define

for every u ∈ L1(�;R
n) and x ∈ �
(P�u)i(x) = ci + Sij (x − x0)j , (2.17)

where

ci := (u)i = −∫
�
ui(x) dx,

Sij := −∫
�

[[u− (u)]i (x − x0)j − [u− (u)]j (x − x0)i
]
dx

−∫
�

[|(x − x0)i |2 + |(x − x0)j |2
]
dx

.

We collect the properties of P� in the following

Proposition 2.6. Let �, x0 and P� be as in (2.17), and 1 � p � +∞; then

(a) P� is linear;
(b) P�u ∈ R for all u;
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(c) there exist functions cik(x), sijk(x) ∈ L∞(�) depending only on � such that

(P�u)i(x) =
∫
�

cikuk dy + xj
∫
�

sijkuk dy ;

(d) for every p the operator P� maps Lp(�;R
n) onto R, and its norm is indepen-

dent of p:
‖P�u‖Lp � Ĉ(�)‖u‖Lp ;

(e) P is invariant by rescaling, i.e., Pt�[u(y/t)] computed at tx is the same as
P�u(x);

(f) for all p,

‖u− Rp,�(u)‖Lp � ‖u− P�u‖Lp �
(
1 + Ĉ(�))‖u− Rp,�(u)‖Lp ;

(2.18)

(g) if u ∈ L2(�;R
n) and� is symmetric enough so that

∫
�
(x−x0)i(x−x0)j dx =

0 whenever i �= j (as, e.g., if � is a ball or a cube) then P�u ≡ R2,�(u).

The first four statements are obvious, the fifth and sixth are easy and the last reduces
to a tedious but simple computation of R2,�; by (2.18), we may solve the problem
of choosing the projection by always taking the operator P�, which enjoys good
properties and is equivalent to every Rp,� as far as the norm of u − Rp,�(u) is
concerned.

After these preliminary steps, we may state a collection of Korn-type inequali-
ties, most of which we will need in what follows; most of these are reasonably easy
consequences of the first, whose proof may be found, e.g., in [31], p. 197, and the
dependence of the constants may be deduced as we explained after Lemma 2.5.

Proposition 2.7. Let� be a bounded open set in R
n with appropriate boundary so

that the Sobolev and Rellich theorems apply, let p � 1 and let u ∈ L1(�;R
n) be

such that E(u) ∈ L1(�;R
n2
). Then the following statements hold (unless otherwise

specified all constants may depend on everything but the function u):

(a) if p > 1, then

‖Du‖p � k0‖u− (u)�‖1 + k′1‖E(u)‖p � k1‖u− (u)�‖p + k′1‖E(u)‖p;

(b) if p > 1 and u = 0 on ∂�, then

‖Du‖p � k2‖E(u)‖p;

(c) if � is connected and p � 1, then

‖u− P�u‖p � k3‖E(u)‖p ;
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(d) if � is connected and p � 1, then for all q ∈ R with 1 � q � p∗ we have

q−1‖u− P�u‖q � k4‖E(u)‖p;

(e) as for the dependence of the constants on the diameter of �, we have:

k0(t�) = 1

tn+1−n/p k0(�), k1(t�) = 1

t
k1(�), k′1(t�) = k′1(�),

k2(t�) = k2(�), k3(t�) = t k3(�), k4(t�) = t1+(n/q)−(n/p) k4(�);

(f) if 1 < γ1 � p � γ2 < +∞, the constants k0, k1, k
′
1, k2, k3, k4 depend on p

only through γ1, γ2.

As a corollary, we write a version, valid on balls, of some of the inequalities above,
in which 1 < γ1 � p � γ2, 1 � q � p∗ and the constants depend only on
n, γ1, γ2:

−
∫
BR

|Du|p dx � k −
∫
BR

|E(u)|p dx + k
(
−
∫
BR

∣∣∣u− (u)R
R

∣∣∣q dx)p/q (2.19)

u = 0 on ∂BR ⇒ 1

q

(
−
∫
BR

∣∣∣ u
R

∣∣∣q dx)1/q

� k
(
−
∫
BR

|E(u)|p dx
)1/p

(2.20)

1

q

(
−
∫
BR

∣∣∣u− PBRu
R

∣∣∣q dx)1/q

� k
(
−
∫
BR

|E(u)|p dx
)1/p

. (2.21)

3. Korn’s inequalities in Orlicz spaces

Let G : R
+ → R

+ be a Young function (or “N -function”), i.e., G(0) = 0, G
is convex and increasing, G(t)/t is increasing and G(t)/t → +∞ as t → +∞.
We consider the Orlicz space generated by G, that is, the Banach space LG ≡
LG(Rn;R

k), equipped with the following Luxemburg norm:

‖h‖G := inf{λ > 0 :
∫

Rn

G
( |h|
λ

)
dx � 1}.

(We refer the reader to the monograph [28] for a complete account of the theory.)
In the case G(t) = tp/p, p > 1 the previous quantity is exactly the standard Lp

norm. Beside LG we shall also consider the Orlicz-Sobolev spaceW 1,G(Rn;R
k),

consisting of all the functions u such that both u andDu are inLG (see again [28]).
Let 0 < λ < 1 and p > 1; we shall be particularily interested in theYoung function

G ≡ Gp,λ(t) := (1 + λt)p−2t2. (3.1)

The main result of the section is the following:
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Theorem 3.1. Let β > 0 and 3n/(n + 2) + 2β � γ1 � p � 2, and let u ∈
W 1,Gp,λ(Rn;R

n); there exists a constant c ≡ c(n, γ1), independent of u, p, λ,
such that

‖Du‖Gp,λ � c‖E(u)‖Gp,λ . (3.2)

The previous Korn-type inequality will be derived via an interpolation theorem for
singular integrals and will be applied in order to obtain certain strong convergences
in the proof of Theorem 2.1 (see Step 3).

Remark 3.2. The main point in Theorem 3.1 is the fact that the constant c appearing
in (3.2) is independent of λ (see Step 4). For this reason we will be careful when
proving (3.2) and we will invoke Theorem 3.3 below.

Before proving Theorem 3.1 we recall some terminology that can be found in
[37]. An operator T (called “operation”, in [37]) acting from a subset of the class
of measurable functions defined on R

n into itself, is said to be sublinear if the
following three conditions are satisfied:

(i) if T is defined on f1, f2, then it is also defined on f1 + f2;
(ii) |T (f1 + f2)(x)| � |T (f1)(x)| + |T (f2)(x)| for a.e. x ∈ R

n;
(iii) |T (cf )| = |c||T (f )| for any c ∈ R.

An operator T : Lq(Rn;R
k) → Lq(Rn;R

h) is of type (q, q), with 1 � q �
+∞, if there exists a constantM such that, for any f ∈ Lq(Rn;R

k),

‖Tf ‖Lq � M‖f ‖Lq .
We shall call the smallest of such numbers M , the q-norm of T . In the same way,
given an Orlicz space LG(Rn;R

k), an operator T will be called of type (G,G) if

‖Tf ‖G � M‖f ‖G
for any f ∈ LG(Rn;R

k) and for someM < +∞, theG-norm of T being similarly
defined.

We recall an interpolation result in Orlicz spaces, which is a particular case of
a more general result that can be found, for instance, in [37], Theorem 2.3.

Theorem 3.3. Let k = 1 and 1 < s1 < s2 < +∞ and suppose that a sublin-
ear operator T is simultaneously of types (s1, s1) and (s2, s2), with s1-norm and
s2-norm equal toM1 andM2 respectively. LetG : R

+ → R
+ be an Orlicz function

such that

G(t) =
∫ t

0
a(ξ) dξ, (3.3)

where a : R
+ → R

+ is a monotone function. Moreover assume that the function
G(t)/ts1 is increasing and the function G(t)/ts2 is decreasing, and:∫ t

0

G(ξ)

ξ s1

dξ

ξ
� K1

G(t)

ts1
, (3.4)∫ +∞

t

G(ξ)

ξ s2

dξ

ξ
� K2

G(t)

ts2
, (3.5)
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for any t > 0. Then the operator T is of type (G,G) with G-norm depending on
s1, s2,K1,K2,M1,M2.

Proof of Theorem 3.1. The beginning of the proof relies on an argument that allows
us, roughly speaking, to representDu trough E(u) via a singular integral operator.
We follow the lines of [4], Theorem 7.4 (which, in turn, uses information from the
second part of Kohn’s thesis [19]). Let us first suppose that u ∈ C∞(Rn;R

n). By
the last formula of step 2 in the proof of Theorem 7.4 from [4] it follows that, for
a.e. x ∈ R

n,

|Du(x)| � c(n)|E(u)(x)| + c(n)T ∗(E(u))(x), (3.6)

where T ∗ is the singular integral operator, which is homogeneus and sublinear,
defined as follows (according to the terminology of [35], Chapter 2): for any v ∈
C∞(Rn;R

n2
),

T ∗(v)(x) := sup
ρ>0

|Tρ(v)(x)|, Tρ(v)(x) :=
∫
{|y−x|�ρ}

K(y − x)
|y − x|n v(y) dy.

The function K : R
n \ {0} → R

n4
is a smooth, 0-homogeneus function with

mean value zero on the unit sphere Sn−1. More preciselyK(x) = ?(x)/|x|2 where
?(x) = {?lmij } is the fourth-order tensor identified in the second part of [19], Section
5, see also [4], formula (6.2). See also [26] for similar representation formulas.

By the Calderón-Zygmund theory (see [35], Chapter 2, and [4]) the operator
T ∗ is of type (q, q) for any 1 < q < +∞. In particular it is of types ( 3n

n+2 ,
3n
n+2 )

and (2 + β, 2 + β). As Theorem 3.3 is stated only in the scalar case, we may
make a standard extension by considering for every i = 1, . . . , n the operator
Ti(v) := T ∗(vei ), where {ei}i is the canonical basis of R

n; the facts that

‖Ti‖ � ‖T ∗‖ �
∑
i

‖Ti‖, f � g ⇒ ‖f ‖Gp,λ � ‖g‖Gp,λ

imply that we may apply Theorem 3.3 to each Ti and deduce the result for T ∗. We
want to use Theorem 3.3 with the following choice:

G ≡ Gp,λ, s1 ≡ 3n

n+ 2
, s2 ≡ 2 + β, T ≡ T ∗.

Denote byM1 ≡ M1(n) andM2 ≡ M2(n) the s1 and s2 norms of T ∗, respectively.
We observe that, since the function Gp,λ is convex, see (g) of Lemma 2.2, (3.3) is
satisfied. Again, by the definition of Gp,λ, it follows that for each λ ∈ (0, 1), the
functionsGp,λ(t)/ts1 andGp,λ(t)/ts2 are respectively increasing and decreasing. It
remains to check inequalities (3.4), (3.5) uniformly for λ ∈ (0, 1), i.e., the constants
K1 andK2 must be chosen independent of λ. Since the argument is very elementary
we shall only check (3.4), because (3.5) is similar. We first note that a simple change
of variable allows us to consider only the case λ = 1: indeed, assuming (3.4) when
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λ = 1 for a suitable K1, then∫ t

0

Gp,λ(ξ)

ξ s1

dξ

ξ
= λs1−2

∫ t

0

Gp,1(λξ)

(λξ)s1

λdξ

λξ

= λs1−2
∫ λt

0

Gp,1(ξ)

ξ s1

dξ

ξ
� K1λ

s1−2Gp,1(λt)

(λt)s1
= K1

Gp,λ(t)

ts1
.

Now we check (3.4) for λ = 1 and we show that it is possible to take K1 = 1/β.
Indeed, since p � 2 the function s → (1 + 1/s)p−2 is increasing,∫ t

0

Gp,1(ξ)

ξ s1

dξ

ξ
=
∫ t

0
(1 + 1/ξ)p−2ξp−s1−1 dξ

� (1 + 1/t)p−2
∫ t

0
ξp−s1−1 dξ

= (1 + t)p−2t2

(p − s1)ts1 � Gp,1(t)

βts1
.

As mentioned above, a similar argument, also showing that it is possible to choose
K2 = 1/β, applies in order to check (3.5). Now we apply the interpolation The-
orem 3.3. It follows there exists a constant c ≡ c(n, γ1, β), but independent of v,
p ∈ [γ1, 2] and λ, such that

‖T ∗(v)‖Gp,λ � c‖v‖Gp,λ
for any v ∈ C∞(Rn;R

n2
). This estimate, together with the pointwise inequality

(3.6), gives (3.2) in the case u ∈ C∞(Rn;R
n). The general case now follows by a

density argument since the function Gp,λ satisfies the #2 condition and hence the
space C∞(Rn;R

n) is dense in LGλ(Rn;R
n), see [28]. ��

We conclude the section with a lemma from the theory of Orlicz spaces, which
is standard when a single Young function is involved in the statement; since we are
going to deal with a sequence of Young functions we include a slightly different
proof.

Lemma 3.4. Let λh → 0 be a sequence of real numbers, and let uh ∈ LGp,λh (Rn)
for every h. Then ‖uh‖Gp,λh → 0 if and only if

∫
Rn
Gp,λh(|uh|) dx → 0.

Proof. Suppose that sh := ‖uh‖Gp,λh → 0. Then by the convexity properties of
Gp,λh we have∫

Rn

Gp,λh(|uh|) dx � sh
∫

Rn

Gp,λh(|uh|/sh) dx � sh → 0 ,

by definition of the Luxemburg norm. Conversely, suppose that
∫

Rn
Gp,λh(|uh|) dx

→ 0: then for every ε > 0 there exists ν ≡ ν(ε) such that for every h � ν we have
ε−2

∫
Rn
Gp,λh(|uh|) dx � ε. Then by the structure of Gp,λ, for h � ν,∫

Rn

Gp,λh(|uh|/ε) dx � ε−2
∫

Rn

Gp,λh(|uh|) dx � ε � 1 ,

which means that for h � ν we have ‖uh‖Gp,λh � ε, that is, ‖uh‖Gp,λh → 0. ��
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4. Higher integrability results

In this section we collect some higher integrability results that will be crucial for
subsequent developments. Since our results are of a local nature, it is not restrictive
(upon passing to open subsets, compactly contained in� and having an appropriate
boundary, and possibly enlarging or reducing some constants) to assume that

|E(u)|p(x) ∈ L1(�), γ1 � p(x) � γ2 ∀x ∈ � (4.1)

γ1 < n , 0 < β < α <
1

n+ 2
, ‖f ‖Ln(�) + ‖f ‖Ln+nβ(�) � L. (4.2)

As a first application of the Korn inequalities stated in Proposition 2.7, and in
particular of (a), we observe that from (4.1) and the Sobolev embedding theorem
it follows that

|Du|γ1 + |u|γ ∗1 ∈ L1(�). (4.3)

Remark 4.1. The number β is going to be quite small in the applications, and in
case the function f is, say, in L∞, we shall treat f as a function in Ln+nβ only; we
could have been more precise by introducing two different exponents, β1 for the
integrability of f and β2 for the distance of γ1 to 3n/(n+ 2), but we thought this
was not worth the complication in the notation.

Theorem 4.2. Let u ∈ W 1,p(x)
loc be a weak solution to system (2.1) and assume that

the vector fields A and B satisfy (H1)–(H5) and (2.4). Then there exist c, δ1 > 0,
both depending on n, γ1, γ2, L, cL,α, β, such that if B2R ⊂⊂ �, then

(
−
∫
BR

|E(u)|p(x)(1+δ1) dx
)1/(1+δ1)

(4.4)

� c −
∫
B2R

|E(u)|p(x) dx + c −
∫
B2R

(|Du|γ1 + |u|γ ∗1 + 1
)
dx.

Proof.
Step 1: Localization. Fix θ2 := 1+1/n, and letR0 > 0 be such thatω(R0) � θ−1,

which is possible since ω(R)→ 0 as R→ 0 by (2.4); we will prove the statement
only for balls B2R ⊂⊂ � with R < R0, and the result for the remaining (larger)
balls may then be obtained by covering each of them with at most a fixed number
of the smaller balls.

Take B2R ⊂⊂ � with R < R0, and following Proposition 2.6 let us define
P ≡ PBRu, the projection of u on the space of rigid displacements R with respect
to the L2 norm. Define

p1 := inf
BR
p(x), p2 := sup

BR

p(x).
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By our choice of R0 we have

p2 � p1

(
n+ 1

n

)
, (4.5)

and the Sobolev-Korn inequality (2.21) easily gives

−
∫
BR

∣∣∣u− P
R

∣∣∣p2
dx � c

(
−
∫
BR

|E(u)|p1/θ dx

)θp2/p1

. (4.6)

Step 2: Caccioppoli-type inequality. Let η ∈ C∞
0 (BR) be a cut-off function such

that η ≡ 1 on BR/2, 0 � η � 1, |Dη| � cR−1, and take

ϕ := ηp2(u− P)+ w,
where the function w is defined according to Lemma 2.5 as a solution to

divw = − div
(
ηp2(u− P)) = −(u− P)D(ηp2). (4.7)

We observe that such a w exists since

div u = 0,
∫
BR

(u− P)D(ηp2) dx = 0,

and we remark that w ∈ W 1,p2
0 (BR;R

n) by (4.5) and the summability properties
of u. Again by Lemma 2.5 we have the estimate

−
∫
BR

|Dw|p̃ dx � c −
∫
BR

∣∣∣u− P
R

∣∣∣p̃ dx (4.8)

for every exponent p̃ such that the right-hand side is finite, and with the constant c
stable. We use ϕ as a test function in (2.5) and we obtain

(I) :=
∫
BR

ηp2A
(
x, E(u))E(u) dx

= −p2

∫
BR

ηp2−1A
(
x, E(u))((u− P)�Dη) dx

−
∫
BR

A
(
x, E(u))E(w) dx + ∫

BR

ηp2B(x, u,Du)(u− P) dx

+
∫
BR

B(x, u,Du)w dx := (II)+ (III)+ (IV)+ (V).

Now we estimate the terms introduced above. By (2.2),∫
BR

ηp2 |E(u)|p(x) dx � c(I)+ cRn.

Since p2 � p(x) for any x ∈ BR , we have ηp2 � η(p2−1)[(p(x))′]; thus, for every
0 < ε < 1,

(II) � ε

∫
BR

ηp2 |E(u)|p(x) dx + Cε
∫
BR

∣∣∣u− P
R

∣∣∣p(x) dx + cRn,
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where we used Young’s inequality and (2.2). Again using Young’s inequality to-
gether with (4.8), we have

(III) � c
∫
BR

|E(u)|p(x)−1|Dw| dx + c
∫
BR

|Dw| dx

� ε
∫
BR

|E(u)|p(x) dx + Cε
∫
BR

|Dw|p(x) dx + cRn

� ε
∫
BR

|E(u)|p(x) dx + Cε
∫
BR

∣∣∣u− P
R

∣∣∣p2
dx + CεRn.

Finally, by (H4) we have

(IV) � c

∫
BR

|u||Du||u− P| dx + c
∫
BR

f (x)|u− P| dx,

(V) � c

∫
BR

|u||Du||w| dx + c
∫
BR

f (x)|w| dx.

In order to estimate these last four quantities, we introduce the following exponents:

µ := 1 + β

2

(
n+ 2

n

)
, q :=

[
1

2

(
γ1

µ

)∗]′
. (4.9)

With such a choice, since 2β + 3n/(n + 2) � γ1 < n < nµ and using (4.2) we
obtain

1 � γ1

µ
< n, 1 < q < qµ � γ1,

(γ1

µ

)∗
� γ ∗1
µ
. (4.10)

Using the Hölder and Young inequalities together with the definition of P and
Proposition 2.7, we get (all norms are on BR)

∫
BR

|u||Du||u− P| dx � ‖Du‖q‖u− P‖(γ1/µ)∗‖u‖(γ1/µ)∗

(2.18)
� c‖Du‖q ‖u‖2

(γ1/µ)∗

� c

∫
BR

|Du|q dx + c
∫
BR

|u|
(
γ1
µ

)∗
dx.



Regularity Results for Stationary Electro-Rheological Fluids 231

Again using the Hölder inequality and Proposition 2.6, and observing that 4.10
implies that n/(n− 1) = n′ = 1∗ � (γ1/µ)

∗, we have

∫
BR

f (x)|u− P| dx = cRn −
∫
BR

f (x)|u− P| dx

� cRn
(
−
∫
BR

|u− P| n
n−1 dx

) n−1
n
(
−
∫
BR

[f (x)]n dx
) 1
n

� cRn−1
(
−
∫
BR

|u− P|γ ∗1 dx
)1/γ ∗1 ‖f ‖n

� cRn‖f ‖n
(
−
∫
BR

|E(u)|γ1 dx

)1/γ1

� ε

∫
BR

|E(u)|p(x) dx + CεRn,

with 0 < ε < 1. Next we estimate the terms bounding (V); keeping the previous
notation, and recalling that w ∈ W 1,p2

0 (BR;R
n),

∫
BR

|u||Du||w| dx � ‖Du‖q‖u‖(γ1/µ)∗‖w‖(γ1/µ)∗

� c‖Du‖q‖u‖(γ1/µ)∗‖Dw‖γ1/µ

(4.8)
� c‖Du‖q‖u‖(γ1/µ)∗‖u− P‖(γ1/µ)∗

(2.18)
� c‖Du‖q‖u‖2

(γ1/µ)∗

� c

∫
BR

|Du|q dx + c
∫
BR

|u|(γ1/µ)
∗
dx.

As we did for (IV) we estimate the remaining term using Korn’s inequality (2.21):

∫
BR

f (x)|w| dx � cRn
(
−
∫
BR

|w|γ ∗1 dx
)1/γ ∗1 (−

∫
BR

[f (x)]n dx
)1/n

� cRn+1
(
−
∫
BR

|Dw|γ1 dx

)1/γ1
(
−
∫
BR

[f (x)]n dx
)1/n

(4.8)
� cRn

(
−
∫
BR

∣∣∣u− P
R

∣∣∣γ1
dx

)1/γ1

‖f ‖n
(2.21)
� cRn‖f ‖Ln

(
−
∫
BR

|E(u)|γ1 dx

)1/γ1

� ε

∫
BR

|E(u)|p(x) dx + CεRn.
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Connecting the previous estimates and recalling (4.10), we find

−
∫
BR/2

|E(u)|p(x) dx � ε −
∫
BR

|E(u)|p(x) dx + Cε −
∫
BR

∣∣∣u− P
R

∣∣∣p2
dx

+Cε −
∫
BR

(|Du|γ1/µ + |u|γ ∗1 /µ + 1
)
dx (4.11)

for any 0 < ε < 1; if we set g := |Du|γ1/µ+|u|γ ∗1 /µ+ 1, where µ ≡ µ(n, β) > 1
was defined in (4.9), then recalling (4.3), we find that g ∈ Lµ(BR).
Step 3: Gehring lemma. Using (4.6) we obtain:

−
∫
BR

∣∣∣u− P
R

∣∣∣p2
dx

� c

(
−
∫
BR

|E(u)|p(x)/θ dx
) θ(p2−p1)

p1
(
−
∫
BR

|E(u)|p(x)/θ dx
)θ

+ c

� cR−nθ(p2−p1)/p1‖1 + |E(u)|p(x)‖θ(p2−p1)/p1
L1(�)

(
−
∫
BR

|E(u)|p(x)/θ dx
)θ

+ c

� cR−nω(R)θ/p1

(
−
∫
BR

|E(u)|p(x)/θ dx
)θ

+ c.

Combining the last estimate with (4.6) and (4.11) and recalling (2.4), we find that,
for every 0 < ε < 1 and every B2R ⊂⊂ � such that R � R0 ≡ R0(n, cL,α),

−
∫
BR/2

|E(u)|p(x) dx

� ε −
∫
BR

|E(u)|p(x) dx + Cε
(
−
∫
BR

|E(u)|p(x)/θ dx
)θ

+ Cε −
∫
BR

g dx,

withCε depending also on n, γ1, γ2, L, β, cL,α .At this point the conclusion follows
by applying a variant of Gehring’s lemma, see [36]. Again, the precise dependence
of the constants can be deduced from [36], see also [18]. ��
Remark 4.3. The possibility of having (4.10) is the main reason for assuming
the lower bound γ1 � 2β + 3n/(n + 2). It is then clear that in (4.4) the higher
integrability exponent δ1 can be made smaller if need be. For related regularity
results see also [31,10].

The next lemma seems to be stated in a rather awkward form; indeed, we could
have stated it for a vector field A(z) independent of x and a fixed power p in a ball
BR , but we preferred to make it appear exactly in the form that will be used later.

Lemma 4.4. Assume A satisfies (H1) and (H2), let γ1 � pm � γ2 and consider a
ball B(x0, 2R); let v ∈ W 1,pm(B(x0, 2R);R

n) be a solution of

div v = 0,
∫
B(x0,2R)

A
(
xm, E(v)

)E(ϕ) dx = 0 ∀ϕ ∈ C∞
0,div(B2R).
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There exist a constant c and an exponent δ̃ > 0, depending on n, γ1, γ2, L but
independent of R, v, pm, x0, such that

(
−
∫
B(x0,R)

|E(u)|pm(1+δ̃) dx
)1/(1+δ̃)

� c −
∫
B(x0,2R)

|E(u)|pm + 1 dx . (4.12)

We omit the proof of this result, which can be obtained as Theorem 4.2, being
actually much simpler. Again, the dependence of the constants can be checked by
looking at [36].

In the remainder of the section all the balls we consider are centred at the origin
(except at the very end, but it will be specified), and we will omit the indication of
the centre.

We will later apply the next lemma to a vector field AP,λ as was introduced in
Lemma 2.4; to avoid the notation, we assume that Ã : Sn → Sn is of class C1 and
satisfies, for some L̃ > 1, λ > 0 and p > 1,

|Ã(z)| � L̃(1 + λ2|z|2)(p−2)/2|z|,
Ã(z)z � L̃−1(1 + λ2|z|2)(p−2)/2|z|2, (4.13)

c|DÃ(z)| � L̃(1 + λ2|z|2)(p−2)/2,

DÃ(z)ξ ⊗ ξ � L̃−1(1 + λ2|z|2)(p−2)/2|ξ |2. (4.14)

Lemma 4.5. Let γ1 � p � γ2 be a fixed number and let ũ ∈ W 1,p(B1;R
n) be a

weak solution to the system

div ũ = 0,
∫
B1

Ã
(E(ũ))E(ϕ) dx = 0 ∀ϕ ∈ C∞

0,div(B1), (4.15)

where the vector field Ã : Sn → Sn satisfies the assumptions above. Then there
exist c, δ2 > 0, both depending on n, γ1, γ2, L̃ but independent of ũ and λ ∈ (0, 1),
such that(

−
∫
B1/2

∣∣∣Vp(λE(ũ))
λ

∣∣∣2(1+δ2) dy
) 1

1+δ2
� c −

∫
B1

∣∣∣Vp(λE(ũ))
λ

∣∣∣2 dy + c −
∫
B1

|ũ|2 dy.
(4.16)

Proof. We need to distiguish the cases 1 < p < 2 and p � 2.

Case 1 < p < 2. This case is more involved, and the full proof will be given in
three steps.

Step 1: Approximation. This approximation procedure will be based on Minty’s
argument and a suitable use of a priori estimates. Let {Dε}ε>0 be a family of
standard mollifiers; let us define, for h � 5 and y ∈ B3/4,

uh := ũ ∗D1/h, δh := (1 + h+ ‖Duh‖3
L2(B3/4)

)−1 .

Moreover, we define a sequence of vector fields Ah : Sn → Sn by

Ah(z) := Ã(z)+ δhz .
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The standard existence theory available (see [21,31]) allows us to consider the
unique solution vh ∈ uh+W 1,2

0 (B3/4;R
n) to the following Stokes problem (remark

that div uh = 0):

div vh = 0,
∫
B3/4

Ah
(E(vh))E(ϕ) dy = 0 ∀ϕ ∈ C∞

0,div(B3/4). (4.17)

Plugging the test function ϕ := vh − uh into (4.17) and using (4.13) together with
the Young-type inequality of Lemma 2.3, we deduce:

ν̃(L̃)

∫
B3/4

(∣∣∣Vp(λE(vh))
λ

∣∣∣2 + δh|E(vh)|2
)
dy

� c

∫
B3/4

Ah
(E(vh))E(vh) dy � c

∫
B3/4

|Ah
(E(vh))E(uh)| dy

� c(L̃)

∫
B3/4

[
(1 + λ2|E(vh)|2) p−2

2 |E(vh)||E(uh)| + δh|E(vh)||E(uh)|
]
dy

� ν̃(L̃)/4
∫
B3/4

(∣∣∣Vp(λE(vh))
λ

∣∣∣2 + δh|E(vh)|2
)
dy

+c(L̃)
∫
B3/4

(∣∣∣Vp(λE(uh))
λ

∣∣∣2 + δh|E(uh)|2
)
dy. (4.18)

Now we use Jensen’s inequality, recalling that by (g) of Lemma 2.2 the function
z �→ |Vp(z)|2 is convex, and from the definition of uh we estimate∫

B3/4

∣∣∣Vp(λE(uh))
λ

∣∣∣2 dy �
∫
B(3/4)+(1/h)

∣∣∣Vp(λE(ũ))
λ

∣∣∣2 dy.
Finally, connecting this estimate to (4.18) and remembering the value of δh, we
obtain∫
B3/4

(∣∣∣Vp(λE(vh))
λ

∣∣∣2 + δh|E(vh)|2
)
dy � c

∫
B3/4+1/h

∣∣∣Vp(λE(ũ))
λ

∣∣∣2 dy + oh,
(4.19)

where oh denotes any quantity vanishing whenh→ +∞ and the constant c ≡ c(L̃)
is independent of h and of λ ∈ (0, 1). By (e) of Lemma 2.2 the sequence E(vh)
is bounded in Lp, thus, up to (not relabelled) subsequences, vh ⇀ w ∈ ũ +
W

1,p
0 (B3/4;R

n) weakly inW 1,p(B3/4;R
n). Our aim now is to prove that actually

w ≡ ũ. We preliminarily observe that a standard monotonicity argument (“Minty’s
trick”) shows that vh is a solution to (4.17) if and only if the functionwh := vh−uh
is such that

(I)h + (II)h :=
∫
B3/4

A
(E(uh)+ E(ϕ))(E(ϕ)− E(wh)

)
dy

+δh
∫
B3/4

(E(uh)+ E(ϕ))(E(ϕ)− E(wh)
)
dy � 0 (4.20)
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for any ϕ ∈ C∞
0,div(B3/4). Now, ϕ being a fixed smooth test function, using the

Cauchy-Schwarz inequality we have the following estimate for (II)h:

|(II)h| � c

√
δh

∫
B3/4

(
1 + |E(uh)|2

)
dy ×

×
[

1 +
√
δh

∫
B3/4

|E(uh)|2 dy +
√
δh

∫
B3/4

|E(vh)|2 dy
]
;

by (4.19) and by our choice of δh it follows that (II)h → 0. Since wh ⇀ w − ũ
and uh → ũ, letting h→ +∞ in (4.20) yields∫

B3/4

A
(E(ũ)+ E(ϕ))(E(ϕ)− E(w − ũ)) dy � 0

for any ϕ ∈ C∞
0,div(�). Then, again by Minty’s trick, this implies that w ∈ ũ +

W
1,p
0 (B3/4;R

n) is a weak solution to (4.15), and the uniqueness of solutions to
(4.15) yields w ≡ ũ.

Step 2: A priori estimates. Here we find uniform higher integrability estimates for
the functions vh. We shall benefit from [13]. Let us put

σh := Ah
(E(vh)) ;

we note that the vector field Ah has quadratic growth, and from our assumptions
it follows that vh ∈ W 2,2

loc (B3/4) and σh ∈ W 1,2
loc (B3/4;Sn): for a proof, see for

instance [12], Theorem 3.1. Moreover there exists a “pressure” function ph such
that

ph ∈ L2(B3/4), (ph)B3/4 = 0,

and if we set

τh := σh − phIn, (4.21)

then ∫
B3/4

τhE(ϕ) dy = 0 ∀ϕ ∈ C∞
0 (B3/4); (4.22)

thus Dph = div σh ∈ L2
loc(B3/4) and div τh = 0 (see, e.g., [20]). By (4.22) we

have, for every index α,∫
B3/4

∂ατh E(ϕ) dy = 0 ∀ϕ ∈ C∞
0 (B3/4). (4.23)

From now on we shall omit the subscript h, simply writing σ, τ, p, v instead of
σh, τh, ph, vh respectively; the full notation will be recovered later. Recalling that
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v ∈ W 2,2
loc , in (4.23) we use as a test function ϕ := η6∂αv, where η ∈ C∞

0 (B3/4) is
a cut-off function, equal to 1 on B1/2. Since div v = 0 we easily get∫

B3/4

η6∂ασ E(∂αv) dy

= −
∫
B3/4

∂ατij ∂αv
i∂j η

6 dy (4.24)

= −2
∫
B3/4

∂ατij Eiα(v)∂jη6 dy +
∫
B3/4

∂ατij ∂iv
α∂jη

6 dy

:= −2(I)1 + (I)2.
We estimate the last two terms: using the fact that Dp = div σ we obtain

(I)1 =
∫
B3/4

[
∂ασij Eiα(v)∂jη6 − ∂jσjα Eiα(v)∂jη6

]
dy

=
∫
B3/4

[
∂ασij Eiα(v)∂jη6 − ∂ασjα Ekj (v)∂kη6

]
dy

= 6
∫
B3/4

η5∂ασS
(α) dy ,

where we used permutation of indices and we introduced the tensorsQ and S as

Q
(α)
ij := Eiα(v)∂jη − KiαElj (v)∂lη , S(α) := 1

2

[
Q(α) + T (Q(α))

] :
we denoted (this is the only spot where it appears) by K the Kronecker symbol, since
the standard δ is used quite often in this paper. Using Cauchy-Schwarz inequality
we obtain:

|(I)1| � c δ
∫
B3/4

η5|DE(v)||E(v)||Dη| dy

+ c
∫
B3/4

η5DÃ
(E(v))E(∂αv)⊗ S(α) dy

� c
√∫

B3/4

δη6|DE(v)|2 dy
√∫

B3/4

δη4|E(v)|2 dy

+ c
√∫

B3/4

η6DÃ
(E(v))E(∂αv)⊗ E(∂αv) dy

×
√∫

B3/4

η4DÃ
(E(v))S(α) ⊗ S(α) dy

(4.14)
� c

√∫
B3/4

η6∂ασ E(∂αv) dy

×
√∫

B3/4

[
δ|E(v)|2 + (1 + λ2|E(v)|2) p−2

2 |E(v)|2] dy, (4.25)



Regularity Results for Stationary Electro-Rheological Fluids 237

with c independent of h. For (I)2, since div τ = div v = 0 we have

|(I)2| �
∣∣∣∣∣
∫
B3/4

τij ∂α(∂iv
α ∂jη

6) dy

∣∣∣∣∣ =
∣∣∣∣∣
∫
B3/4

τij ∂iv
α ∂αjη

6 dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
B3/4

τij v
α∂αij η

6 dy

∣∣∣∣∣ � c

∫
B3/4

(|τ |2 + |v|2) dy (4.26)

(4.21)
� c

∫
B3/4

(|σ |2 + |p|2 + |v|2) dy � c

∫
B3/4

(|σ |2 + |v|2) dy
(4.13),p�2

� c

∫
B3/4

[
(1 + λ2|E(v)|2)(p−2)/2|E(v)|2 + δ|E(v)|2 + |v|2] dy,

where we used the estimates of Ladyzhenskaya for the pressure function (see
[20] Chapter 3 and the remark at the end of this proof) in order to perform the
second-last estimate. Connecting (4.25) and (4.26) to (4.24) and using Young’s
inequality, we obtain∫

B3/4

η6(1 + λ2|E(v)|2)(p−2)/2|E(∂αv)|2 dy
(4.14)
� c

∫
B3/4

η6∂ασ E(∂αv) dy (4.27)

� c

∫
B3/4

[
δ|E(v)|2 + |v|2] dy + c ∫

B3/4

(1 + λ2|E(v)|2)(p−2)/2|E(v)|2 dy,

where c is independent of h. Now we set χ := 2∗/2 if n > 2 and χ > 1 if n = 2.
Using the Sobolev inequality together with (4.27) we obtain:(∫

B3/4

[
η6(1 + λ2|E(v)|2)(p−2)/2|E(v)|2

]χ
dy

)1/χ

� c

∫
B3/4

∣∣∣D[η3(1 + λ2|E(v)|2)(p−2)/4E(v)]
∣∣∣2 dy (4.28)

� c

∫
B3/4

(1 + λ2|E(v)|2)(p−2)/2[η4|E(v)|2 + η6
∑
α

|E(∂αv)|2
]
dy

(4.27)
� c

∫
B3/4

[
δ|E(v)|2 + |v|2 + (1 + λ2|E(v)|2)(p−2)/2|E(v)|2] dy.

Step 3: Conclusion. Recovering the full notation and letting δ2 := χ − 1 > 0, we
get (∫

B1/2

∣∣∣Vp(λE(vh))
λ

∣∣∣2(1+δ2) dy
)1/(1+δ2)

(4.19),(4.28)
� c

∫
B(3/4)+(1/h)

(∣∣∣Vp(λE(ũ))
λ

∣∣∣2 + |vh|2
)
dy + oh ,
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with c independent of h. Since 2 < p∗ by (H5), the weak convergence of vh
to ũ in W 1,p implies vh → ũ in L2; moreover the first integral above is lower
semicontinuous with respect to weak W 1,p convergence, since the function z �→
|Vp(z)|2(1+δ2) is convex, again by (H5) and by (g) of Lemma 2.2, so we get (4.16).
We remark that in this case, since the Gehring lemma is not involved, the exponent
δ2 is explicitely determined, independent of L̃.

Case p � 2. This case is simpler and no approximation procedure is required; we
closely follow the proof of Theorem 4.2.

Let B2R ⊂⊂ B1 be any ball, thus (beware!) not necessarily concentric with B1,
and let η ∈ C∞

0 (BR) be a cut-off function such that η ≡ 1 on BR/2, 0 � η � 1,
|Dη| � cR−1. We again define, as for Theorem 4.2, ϕ := ηp(ũ− P)+ w, where
the function w ∈ W 1,p

0 (BR;R
n) is defined as in (4.7) with p2 replaced by p: in

particular, according to Lemma 2.5, it satisfies∫
BR

|Dw|2 dy � c
∫
BR

∣∣∣ ũ− P
R

∣∣∣2 dx, ∫
BR

|Dw|p dy � c
∫
BR

∣∣∣ ũ− P
R

∣∣∣p dx
(4.29)

with c ≡ c(n, γ1, γ2). Using ϕ as a test function in the system, we obtain∫
BR

ηpÃ(E(ũ))E(ũ) dy = −p
∫
BR

ηp−1Ã(E(ũ))((ũ− P)�Dη) dy

−
∫
BR

Ã(E(ũ))E(w) dy. (4.30)

For any 0 < ε < 1, using (4.13), (4.29) and Young’s inequality we may bound the
last integral above:∣∣∣∣

∫
BR

Ã(E(ũ))E(w) dy
∣∣∣∣

� c

∫
BR

|E(ũ)||Dw| dy + cλp−2
∫
BR

|E(ũ)|p−1|Dw| dy

� ε

∫
BR

(|E(ũ)|2 + λp−2|E(ũ)|p) dy
+ Cε

∫
BR

(∣∣∣u− P
R

∣∣∣2 + λp−2
∣∣∣u− P
R

∣∣∣p) dy . (4.31)

Connecting (4.31) to (4.30) and using (4.13) and Young’s inequality to deal with
the first two terms in (4.30), we obtain

−
∫
BR/2

(|E(ũ)|2 + λp−2|E(ũ)|p) dy
� ε −

∫
BR

(|E(ũ)|2 + λp−2|E(ũ)|p) dy
+ Cε −

∫
BR

(∣∣∣u− P
R

∣∣∣2 + λp−2
∣∣∣u− P
R

∣∣∣p) dy.
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Now we may proceed exactly as in Theorem 4.2: using the Sobolev-Korn inequality
as we did to get (4.6), we arrive at

−
∫
BR/2

(|E(ũ)|2 + λp−2|E(ũ)|p) dy
� ε −

∫
BR

(|E(ũ)|2 + λp−2|E(ũ)|p) dy
+ Cε

(
−
∫
BR/2

(|E(ũ)|2 + λp−2|E(ũ)|p)1/θ dy
)θ
,

with the same θ as in Theorem 4.2. The assertion again follows by applying
Gehring’s lemma, but this time to the function |E(ũ)|2 + λp−2|E(ũ)|p, and re-
calling that by (h) of Lemma 2.2 this function is equivalent to λ−2|Vp(ũ)|2. We see
that in this case the last term appearing in (4.16) is not present. Lower bounds for
the exponent δ2 are available also in this case, but they show, in contrast to the first
case, that δ2 ≡ δ2(n, γ1, γ2, L̃) depends also on L̃, see [18,36]. ��

Remark 4.6. In (4.26) we used the estimate

∫
B

|ph|2 dx � c
∫
B

|σh|2 dx,

where B = B3/4 and the constant c depends on n (and the radius of the ball). Since
the proof of this pressure estimate is scattered through the literature, we sketch
here how it may be obtained: denote by L : H 1

0 (B;R
n)→ L2(B) the divergence

operator Lu = div u, so that its adjoint operator L∗ : L2(B) → H−1(B;R
n) is

given by L∗f = Df in the sense of distributions. We remark that the range of L∗
is closed, thus there exists a constant c such that for every f ∈ (KerL∗)⊥

‖f ‖L2 � c‖L∗f ‖H−1 . (4.32)

Since the perturbed vector field Ah has linear growth at infinity (recall that p < 2)
and since vh ∈ H 1(B;R

n), we deduce thatDσh ∈ H−1(B;R
n); also, from (4.17)

and the fact that σh is symmetric we deduce

∫
B

σhDϕ dx = 0 ∀ϕ ∈ H 1
0 (B;R

n) such that div ϕ = 0.

Then Dσh ∈ (KerL)⊥. Thus there exists ph ∈ L2(B), which we may take with
average zero, such that Dσh = L∗ph: then ph ∈ (KerL∗)⊥ and, using (4.32),

‖ph‖L2 � c‖Dσh‖H−1 � c‖σh‖L2 .

Note that in the previous argument the boundary value of vh is irrelevant.
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5. Decay estimates

Here we make some preliminary reductions and fix some quantities that will
be important in the remainder of this paper. As we remarked at the beginning of
the previous section, the local nature of our results allows us to suppose, in view of
Theorem 4.2, that

|E(u)|p(x)(1+δ1) ∈ L1(�),

where δ1 is the exponent introduced in Theorem 4.2.

Remark 5.1. This point deserves an explanation; in the previous section, and in
particular in Theorem 4.2, we proved a higher integrability result which is only
local, thus a standard covering argument shows that for any �′ ⊂⊂ � there ex-
ists δ1, depending also on �′, for which |E(u)|p(x)(1+δ1) ∈ L1(�′). It may well
happen that δ(�′) → 0 when �′ ↗ �, so the assumption above has to be read
as a simplification of the following procedure: take a sequence �h ↗ � and the
corresponding exponents δh1 and continue with the proof; then you will actually get
partial regularity (i.e., up to a set of null measure) only in�h, but this leads to partial
regularity in �. Since we have already too many indices around, we preferred to
drop this h altogether.

A simple argument based on a local application of the classical Korn inequality (a)
of Proposition 2.7, together with a standard covering procedure and the fact that
the exponent δ1 can be made smaller at will (see Remark 4.3), allow us to suppose
also that∫

�

|Du|p(x)(1+δ1) dx < +∞, 0 < δ1 � min{γ1 − 1, 1/n, δ̃} , (5.1)

where δ̃ is the exponent defined in Lemma 4.4. FixM > 1 and denote by L̃ ≡ L̃(M)
the constant given by Lemma 2.4: we apply Lemma 4.5 in a situation where the
vector field Ã considered is exactly as in Lemma 2.4, that is Ã(z) ≡ AP,λ(z)

with |P | � M . Recalling that the statement of Lemma 4.5 is also independent of
the particular solution v, we come up with a further higher integrability exponent
δ2 ≡ δ2(M). Also this δ2 can be made smaller if need be.

We remark that there is a crucial difference in the quantitave behaviour of the
two exponents δ1 and δ2: indeed, if M → +∞, we have in general L̃ → +∞,
and so it may well happen that δ2 → 0, see the second case of Lemma 4.5; on the
contrary, δ1 is a fixed quantity, independent of the value ofM and only depending
on the fixed data n, γ1, γ2, L, β, cL,α , thus it remains bounded away from 0 when
M → +∞. For this reason, without loss of generality we shall also assume that
δ2 � δ1.

After fixingM , we select a radius RM > 0 in such a way that ω(RM) � δ2/4:
from now on, O ⊂⊂ �will denote an open subset whose diameter does not exceed
RM . In this way if, similarly to what we did in the previous section, we set

p1 := inf
O
p(x), p2 := sup

O
p(x), (5.2)
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then

p2(1 + δ1/4) � p1(1 + δ1) � p(x)(1 + δ1),
p2(1 + δ2/4) � p1(1 + δ2) � p(x)(1 + δ2) (5.3)

whenever x ∈ O. We shall often consider balls B(x0, 4R) ⊂⊂ O, denoting by pm
a number such that:

pm := sup
B4R

p(x) = p(xm), for some xm ∈ B4R .

According to (5.3),

p2(1 + δ1/4) � pm(1 + δ1) , p2(1 + δ2/4) � pm(1 + δ2). (5.4)

We remark that the numbers p1, p2 are fixed with O, while pm changes when
B(x0, 4R) ⊂⊂ O moves. Finally, u ∈ W 1,1

loc (�;R
n) is the solution appearing in

Theorem 2.1; without loss of generality we assume all constants c, CM to be no
smaller than 1. We start with a technical lemma.

Lemma 5.2. Assume (H1)–(H6) and let B(x0, 4R) ⊂⊂ O, where O ⊂⊂ � is an
open subset as described above. For every CM � 1, there exist β̄, depending on
n, γ1, γ2, L, β but independent ofM,R and x0 ∈ O, and a constant ČM , depending
also on CM , such that if v ∈ u +W 1,pm

0 (B(x0, 2R);R
N) is the (unique) solution

to the system,

div v = 0,
∫
B(x0,2R)

A(xm, E(v))E(ϕ) dx = 0 ∀ϕ ∈ C∞
0,div(B2R) (5.5)

and, if

(|Du|p2)x0,4R + (|u|γ ∗1 )x0,4R � CM, (5.6)

then v ∈ W 1,p2(B(x0, 2R);R
N) and

−
∫
B(x0,R)

|Du−Dv|p2 dx � ČMRβ̄ . (5.7)

The reader may get slightly confused at this point. Indeed we are freezing the vector
field A(x, z) at a point xm which is different from the centre x0 and may even lie
outside the ball B2R , although xm ∈ B(x0, 4R).

Proof. Throughout the proof, all balls we consider will be centred at x0; also,
instead of introducing a new symbol we will denote byCM any constant depending
through known, immaterial quantities on the actual CM in the statement. Since
by our choice of O we have u ∈ W 1,pm(B4R;R

N), we may test the weak form
(5.5) with the function v− u, and using the monotonicity properties (2.2) of A and
Young’s inequality we deduce

−
∫
B2R

|E(v)|pm dx � c −
∫
B2R

|E(u)|pm dx + c
(5.6)
� CM. (5.8)
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Using Lemma 4.4 and the previous inequality, and keeping (5.1) in mind, we find

−
∫
BR

|E(v)|pm(1+δ1) dx
(4.12)
� c

(
−
∫
B2R

|E(v)|pm dx
)(1+δ1)

+ c
(5.8)
� CM. (5.9)

Moreover, applying Theorem 4.2 we have:

−
∫
B2R

|E(u)|p2(1+δ1/4) dx
(5.3)
� c −

∫
B2R

|E(u)|p(x)(1+δ1) dx + c (5.10)

(4.4)
� c

(
−
∫
B4R

|E(u)|p(x) dx
)1+δ1

+ c
(
−
∫
B4R

(|Du|γ1 + |u|γ ∗1 + 1
)
dx

)1+δ1

(5.6)
� CM.

Now we observe that, if ϕ ∈ W 1,pm
0 (B2R;R

n) and div ϕ = 0, then

(I) := −
∫
B2R

[A(xm, E(v))− A(xm, E(u))] E(ϕ) dx

= −
∫
B2R

[A(x, E(u))− A(xm, E(u))] E(ϕ) dx − −
∫
B2R

B(x, u,Du)ϕ dx

:= (II)+ (III).
Letting ϕ := v − u in the previous formula and using (2.3) we obtain

(I) � c−1 −
∫
B2R

(1 + |E(u)|2 + |E(v)|2)(pm−2)/2|E(v)− E(u)|2 dx, (5.11)

while using (H3) and Young’s inequality yields:

(II) (5.12)

� c ω(R) −
∫
B2R

(1 + |E(u)|2) pm−1
2 (log(1 + |E(u)|)+ 1) (|E(v)| + |E(u)|) dx

� c ω(R) −
∫
B2R

[
(1 + |E(u)|)pm

(
log

pm
pm−1 (1 + |E(u)|)+ 1

)
+ |E(v)|pm

]
dx

(H6)
� cRα −

∫
B2R

(1 + |E(u)|pm(1+δ1/4) + |E(v)|pm) dx
(5.8),(5.10)

� CMR
α,

and

|(III)| � c −
∫
B2R

|Du||u||u− v| dx + c −
∫
B2R

|f (x)||u− v| dx .

Remark 5.3. The chain of inequalities (5.12) is the only point in the whole paper
where we need the full strength of (H6) instead of the weaker form (2.4) of continuity
of p; the fact that in the statement of the lemma the constants do not seem to depend
on α is due to the condition α > β added in (4.2).
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We keep the notation introduced for Theorem 4.2, but this time we take µ = 1
and q = (γ ∗1 /2)′, so that again q � γ1, as for (4.10). We apply the Sobolev-Korn
inequality (2.20) and we estimate as in Theorem 3.1:

−
∫
B2R

|u||Du||u− v| dx

�
(
−
∫
B2R

|Du|q dx
) 1
q
(
−
∫
B2R

|u|γ ∗1 dx
)1/γ ∗1 (−

∫
B2R

|u− v|γ ∗1 dx
)1/γ ∗1

(5.6)
� CM

(
−
∫
B2R

|u− v|γ ∗1 dx
)1/γ ∗1

� CMR
(
−
∫
B2R

|E(u)− E(v)|γ1 dx

)1/γ1

(5.8)
� CMR

and

−
∫
B2R

|f (x)||u− v| dx

� CM

(
−
∫
B2R

|u− v|γ ∗1 dx
)1/γ ∗1 (−

∫
B2R

|f (x)|n(1+β) dx
)1/n(1+β)

� CMR
β/(β+1).

Connecting the previous estimates with (5.11) and (5.12), in the case pm � 2 we
immediately find that

−
∫
BR

|Du−Dv|pm dx � c −
∫
B2R

|E(u)− E(v)|pm dx � CMRβ/(β+1), (5.13)

whereas if pm � 2 we have, by the Hölder inequality and (5.8),

−
∫
BR

|Du−Dv|pm dx

� c −
∫
B2R

|E(u)− E(v)|pm dx (5.14)

� c

√
−
∫
B2R

(1 + |E(u)|2 + |E(v)|2)(pm−2)/2|E(v)− E(u)|2 dx

×
√
−
∫
B2R

(|E(u)|pm + |E(v)|pm) dx � CMRβ/2(β+1) .

This estimate is not yet satisfactory, since pm changes as x0 moves (as we already
remarked). We are almost ready to prove (5.7). Note that (5.1) and Korn-Poincaré
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inequalities (2.19),(2.20) imply

−
∫
BR

|Dv|pm(1+δ1) dx

� c −
∫
BR

|E(v)|pm(1+δ1) dx + c
(
−
∫
B2R

|v − (v)2R| dx
)pm(1+δ1)

(5.1),(5.9)
� CM + c

(
−
∫
B2R

|u− (u)2R| dx
)p2(1+1/n)

(5.15)

+ c
(
−
∫
B2R

|u− v| dx
)pm(1+δ1)

(5.6)
� CM + c

(
−
∫
B2R

|E(u)− E(v)|pm dx
)1+δ1 (5.6),(5.8)

� CM.

In much the same way, from (5.10) and (5.4) it also follows that

−
∫
BR

|Dv|p2(1+δ1/4) dx + −
∫
BR

|Du|p2(1+δ1/4) dx � CM. (5.16)

Using this last information we finally interpolate as follows: if

ϑ :=
(

1

pm
− 1

p2(1 + δ1/4)
)−1 ( 1

p2
− 1

p2(1 + δ1/4)
)

and thus by (5.4)1

p2ϑ

pm
= δ1/4

1 + (δ1/4)− (pm/p2)
� 1 + δ1

4 + δ1 � 1

4
,

then by (5.13)–(5.16)

−
∫
BR

|Du−Dv|p2 dx

�
(
−
∫
BR

|Du−Dv|pm dx
)(p2ϑ)/pm

(
−
∫
BR

|Du−Dv|p2(1+δ1/4) dx
) 1−ϑ

1+δ1/4

� CMR
β

2(β+1)
p2ϑ
pm � CMRβ/8(β+1) := Rβ̄,

and (5.7) follows with β̄ := β/8(β + 1), since δ1 depends on n, γ1, γ2, L. ��
Now we introduce the numbers q, β̂, depending on n, γ1, γ2, L, by:

q := min{2, p2}, β̂ := β̄/γ2, (5.17)

and we define the fundamental quantity

E(x0, R) := −
∫
B(x0,R)

|Vp2(Du)− Vp2((Du)x0,R)|2dx + Rβ̂

wheneverB(x0, 4R) ⊂⊂ O. Roughly speaking,E (usually called excess) provides
an integral measure of the oscillations of the gradient Du in a ball BR . The next
decay estimate for E is the keystone in the proof of Theorem 2.1.
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Proposition 5.4. Under the assumptions of Theorem 2.1, letM > 1 and let O ⊂⊂
� be an open subset related to M in the way described above. There exists a
constant C(M) such that for every 0 < τ < 1/4 there exists ε ≡ ε(τ,M) such that
if B(x0, 4R) ⊂⊂ O and

|(Du)x0,τR|, |(Du)x0,R|, |(Du)x0,4R|, |(u)x0,R| � M,

E(x0, R) < ε, E(x0, 4R) � 1,
(5.18)

then

E(x0, τR) � C(M)τ β̂E(x0, R) (5.19)

with β̂ defined in (5.17).

Proof.
Step 1: Blow-up and limit system. Arguing by contradiction, we suppose that for

a certain τ there exists a sequence of balls B(xh, 4Rh) ⊂⊂ O such that

|(Du)xh,τRh |, |(Du)xh,Rh |, |(Du)xh,4Rh |, |(u)xh,Rh | � M,

µ2
h := E(xh, Rh)→ 0, E(xh, 4Rh) � 1,

(5.20)

but

E(xh, τRh) � C(M)τ β̂E(xh, Rh) (5.21)

for some constant C(M) whose value (independent of τ ) will be defined later;
without loss of generality we may assume that Rh → 0 and µh > 0. Using (d) and
(e) of Lemma 2.2 we immediately find that there exists CM such that

(|Du|p2)xh,4Rh + (|u|γ
∗
1 )xh,4Rh � CM. (5.22)

Indeed

(|Du|p2)xh,4Rh � c −
∫
B(xh,4Rh)

|Du− (Du)xh,4Rh |p2 dx + CM
� CME(xh, 4Rh)+ CM � CM,

and the bound on (|u|γ ∗1 )xh,4Rh follows by (5.20). Now we define (obviously not
for h = 1, 2) the numbers ph as follows:

ph := sup
B(xh,4Rh)

p(x) = p(xh,m), xh,m ∈ B(xh, 4Rh) . (5.23)

Remark that in general ph �= p(xh). Let uh ∈ u+W 1,ph
0 (B(xh, 2Rh);R

n) be the
unique solution to the system

div uh = 0,
∫
B2Rh

A(xh,m, E(uh))E(ϕ) dx = 0 ∀ϕ ∈ C∞
0,div(B2Rh).
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By Lemma 5.2 the sequence uh ∈ u+W 1,p2
0 (B(xh, 2Rh);R

n) satisfies

−
∫
B(xh,Rh)

|Du−Duh|p2 dx � ČMRβ̄h , (5.24)

with ČM, β̄ independent of h. Define

Ph := (Du)xh,Rh, λ2
h := −

∫
B(xh,Rh)

|Vp2(Duh)− Vp2(Ph)|2dx + Rβ̂h ,
(5.25)

where β̂ is the exponent introduced in (5.17); we remark thatPh is not the average of
Duh. We rescale each function uh in the ball B(xh, Rh) in order to have a sequence
of functions defined on B(0, 1) ≡ B1:

vh(y) := (λhRh)−1[uh(xh + Rhy)− (uh)xh,Rh − RhPhy]

for y ∈ B(0, 1). Applying (d) of Lemma 2.2 yields

λ−2
h −
∫
B(0,1)

|Vp2(λhDvh(y))|2 dy = λ−2
h −
∫
B(xh,Rh)

|Vp2(Duh(x)− Ph)|2 dx

� CMλ
−2
h −
∫
B(xh,Rh)

|Vp2(Duh(x))− Vp2(Ph)|2 dx � CM (5.26)

by (5.25); so, by (5.17) and (e) from Lemma 2.2

‖|Dvh|q‖L1(B1)
+ 1(p2>2)‖λp2−2

h |Dvh|p2‖L1(B1)
� CM

uniformly in h. Remarking that we also have (vh)0,1 = 0, by eventually selecting
a subsequence we show that there exists v ∈ W 1,q(B1;R

n) such that as h→ +∞

|vh − v|2 → 0 strongly in L1(B1),

λ
p2−2
h |vh − v|p2 → 0 strongly in L1(B1) if p2 > 2,

Dvh ⇀ Dv weakly in Lq(B1;R
n),

xh,m → x∞ in R
n, with x∞ ∈ O,

Ph → P in R
n2
, with |P | � M.

(5.27)

Let us just remark that (5.27)1 follows by the Sobolev embedding theorem since
2 < γ ∗1 � p∗2 by (H5). Finally, we prove that

λ2
h � CMµ2

h, (5.28)
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a relation that will be useful in what follows: in particular it implies that λ2
h → 0.

Using Lemma 2.2 and Jensen’s inequality we get

λ2
h

(c)
� CM −

∫
B(xh,Rh)

|Vp2(Duh − Ph)|2 dx + Rβ̂h
(b)
� CM −

∫
B(xh,Rh)

(|Vp2(Duh −Du)|2 + |Vp2(Du− Ph)|2
)
dx + Rβ̂h

(d),(e)
� CM −

∫
B(xh,Rh)

|Duh −Du|p2 dx

+CM1(p2>2)

(
−
∫
B(xh,Rh)

|Duh −Du|p2 dx

)2/p2

+ CMµ2
h

(5.24)
� CM [Rβ̂h + R(2β̄)/p2

h + µ2
h]
(5.17)
� CMµ

2
h.

As we introduced the rescaled functions vh, it is natural to introduced a sequence
of rescaled vector fields:

Ah(z) ≡ APh,λh(z) := λ−1
h

[
A(xh,m, E(Ph)+ λhz)− A(xh,m, E(Ph))

]
for any z ∈ Sn. It is clear that each Ah is of the type considered in Lemma 2.4 and
consequently satisfies the growth and the ellipticity conditions (2.15), (2.16) with
L̃ ≡ L̃(CM) ≡ L̃(M) independently of h as was chosen at the beginning of this
section. By the definitions of Ah and vh it follows that each rescaled function vh is
a solution to the following rescaled system in B1:

div vh = 0,
∫
B1

Ah(E(vh))E(ϕ) dx = 0 ∀ϕ ∈ C∞
0,div(B1). (5.29)

Now, using the fact that ph � p2 by (5.2), (5.23), and using the information in
(5.27), we deduce as h→ ∞ that the limit function v satisfies the following limit
system with constant coefficients:

div v = 0,
∫
B1

DzA(x∞, E(P ))E(v)⊗ E(ϕ) dy = 0 ∀ϕ ∈ C∞
0,div(B1).

(5.30)

The uniform condition in (H2) implies that the matrix DzA(x, E(P )) satisfies the
following strong Legendre-Hadamard condition, see e.g. [17]:

C−1
M |λ|2|µ|2 � 〈DzA(x∞, E(P ))λ⊗ µ, λ⊗ µ〉 � CM |λ|2|µ|2

for any λ,µ ∈ R
n and for some constant CM . Therefore, from the standard regu-

larity theory available for such systems (see [14], Lemma 3.0.5) it follows that v is
smooth and

−
∫
Bτ

|Dv − (Dv)τ |2 dy � CMτ 2 (5.31)
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for any τ � 1/4. Moreover,

sup
B1/2

|Dv| � c(n, γ1, γ2, L)

∫
B1

|Dv| dy � CM. (5.32)

Actually, when p2 � 2 the previous estimates are an easy consequence of the
arguments developed in [14]; in the case p2 � 2 it is possible to get (5.31), (5.32)
by combining the arguments in [14] with those in [8], Proposition 2.10. We remark
that using (5.31), (5.32) and the estimate (2.7) we have, for every p,

−
∫
Bτ

|Vp(Dv − (Dv)τ )|2 dy

� c −
∫
Bτ

|Dv − (Dv)τ |2 + 1(p>2)|Dv − (Dv)τ |p dy

� −
∫
Bτ

(1 + CM1(p>2))|Dv − (Dv)τ |2 dy � CMτ 2. (5.33)

Step 2: Strong convergence (I). Here we are going to prove that, up to not-relabelled
subsequences:

lim
h
λ−2
h

∫
B1/2

|Vp2(λh(E(v)− E(vh)))|2 dy = 0. (5.34)

We shall do this by first proving that, again up to not-relabelled subsequences,

lim
h
λ−2
h

∫
B1/2

|Vph(λh(E(v)− E(vh)))|2 dy = 0; (5.35)

then we shall improve (5.35) into (5.34), using the higher integrability estimates
of Lemma 4.5. Let η ∈ C∞

0 (B1) be a cut-off function such that η = 1 on B1/2,
and consider the test functions ϕh := ηph(vh − v) + wh where, by Lemma 2.5,
wh ∈ W 1,ph

0 (B1;R
N) is such that div ϕh = 0, sptwh ⊂ K ⊂⊂ B1 for a fixed

compact set K and

∫
B1

|Dwh|ph dy � c
∫
B1

|vh − v|ph dy,
∫
B1

|Dwh|2 dy � c
∫
B1

|vh − v|2 dy
(5.36)

with c independent of h. By (5.29), (5.30) we have

(I)h :=
∫
B1

[Ah(E(vh))− Ah(E(v))] E(ϕh) dy

=
∫
B1

[
DzA(x∞, E(P ))E(v)− Ah(E(v))

] E(ϕh) dy := (II)h.
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Since v is smooth |DzA(x∞, E(P ))E(v)−Ah(E(v))| → 0 uniformly on compact
subsets of B1, we have (II)h → 0. To deal with (I)h we write:

(I)h :=
∫
B1

[Ah(E(vh))− Ah(E(v))] ηphE(vh − v) dy

+ ph
∫
B1

[Ah(E(vh))− Ah(E(v))] ηph−1((vh − v)�Dη) dy

+
∫
B1

[Ah(E(vh))− Ah(E(v))] E(wh) dy
:= (III)h + (IV)h + (V)h.

By the ellipticity property in (2.3) it follows that

(III)h

� c−1
∫
B1

ηph(1 + |E(Ph)+ λhE(vh)|2 + |E(Ph)+ λhE(v)|2)
ph−2

2 ×

× |E(vh − v)|2 dy
� C−1

M

∫
B1/2

(|1 + |E(Ph)+ λhE(v)|2 + |λhE(vh − v)|2)
ph−2

2 |E(vh − v)|2 dy

� C−1
M λ

−2
h

∫
B1/2

|Vph(λh(E(v)− E(vh)))|2 dy,

where to perform the last inequality we used (5.32) and the fact that |Ph| � M by
(5.20), (5.25). We estimate the remaining terms:

(IV)h � c

∫
B1

[|Ah(E(vh))| + |Ah(E(v))|] |v − vh||Dη| dy

� c

∫
B1

(1 + λ2
h|E(vh)|2)

ph−2
2 |E(vh)||vh − v| dy + CM

∫
B1

|v − vh| dy

� ε

∫
B1

(1 + λ2
h|E(vh)|2)

ph−2
2 |E(vh)|2 dy (5.37)

+ Cε,M
∫
B1

(
(1 + λ2

h|v − vh|2)
ph−2

2 |v − vh|2 + |v − vh|
)
dy,

where to perform the last estimate we used the Young-type inequality (2.11); in the
same way we also get

(V)h � ε

∫
B1

(1 + λ2
h|E(vh)|2)

ph−2
2 |E(vh)|2 dy (5.38)

+ Cε,M
∫
B1

(
(1 + λ2

h|E(wh)|2)
ph−2

2 |E(wh)|2 + |E(wh)|
)
dy.

Now we use (2.7) and both inequalities (5.36) to show that the integrals on the last
lines in (5.37) and (5.38) can be bounded by

Cε,M

(√∫
B1

|v − vh|2 dy +
∫
B1

|v − vh|2 + 1(p2>2)λ
p2−2
h |v − vh|p2 dy

)
→ 0
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as h→ ∞, by (5.27)1,2. Connecting the estimates for the terms (I)h, . . . , (V)h we
obtain

lim sup
h

λ−2
h

∫
B1/2

|Vph(λh(E(v)− E(vh)))|2 dy

� cε lim sup
h

λ−2
h

∫
B1

|Vp2(λhE(vh))|2 dy

� cε lim sup
h

λ−2
h

∫
B1

|Vp2(λhDvh)|2 dy
(5.26)
� εCM,

and (5.35) follows by letting ε → 0. We are now going to prove (5.34): for this
we rely on Lemma 4.5. We observe that when |z| � 1 then (5.3) and the elemen-
tary properties of the function Vp imply that |Vp2(z)|2 � c|Vph(z)|2(1+δ2) with c
independent of h, and when |z| � 1 then |Vp2(z)| � c|Vph(z)|, thus we have, using
also (b) of Lemma 2.2 and denoting as usual by oh a quantity that vanishes when
h→ ∞,

λ−2
h

∫
B1/2

|Vp2(λh(E(v)− E(vh)))|2 dy

� cλ−2
h

[∫
{λh|E(v)−E(vh)|<1}∩B1/2

|Vph(λh(E(v)− E(vh)))|2 dy

+
∫
{λh|E(v)−E(vh)|�1}∩B1/2

∣∣Vph(λh(E(v)− E(vh)))
∣∣2(1+δ2) dy]

(4.16),(5.35)
� oh + cλ2δ2

h

∫
B1/2

∣∣∣Vph(λhDv)
λh

∣∣∣2(1+δ2) dy
+ cλ2δ2

h

(∫
B1

∣∣∣Vph(λhE(vh))
λh

∣∣∣2 dy)1+δ2

+ cλ2δ2
h

(∫
B1

|vh|2 dy
)1+δ2

� oh + CMλ2δ2
h → 0,

where we used (5.27), (5.32) and (5.26) to perform the last estimate, and (5.34) is
completely proved.

Remark 5.5. The previous estimate, and consequently the proof of (5.34), relies
on the possibility of estimating p2 � ph(1 + δ2), that is, the function p(x) must
have small oscillations when blowing up the solution. This is the main reason to
blow up minimizers in open subset like O, rather that directly in the whole�. Since
the choice of O depends onM and thus on the solution u itself, this will force us in
the next section to adopt a delicate localization argument in the iteration procedure
when proving Theorem 2.1.

Step 3: Strong convergence (II). Our aim here is to establish the stronger statement

lim sup
h

λ−2
h

∫
B1/4

|Vp2(λh(Dv −Dvh))|2 dy = 0. (5.39)
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We preliminarily observe that in the case p2 � 2 this property is an easy con-
sequence of (5.34) via the standard Korn inequality (2.19) and by (5.27): indeed,
keeping into account (h) of Lemma 2.2, we see that in this case, using the strong
convergence in (5.27) and (5.34),

λ−2
h

∫
B1/2

|Vp2(λh(Dv −Dvh))|2 dy

� c

∫
B1/2

(|Dv −Dvh|2 + λp2−2
h |Dv −Dvh|p2

)
dy

� cλ−2
h

∫
B1/2

|Vp2(λh(E(v)− E(vh)))|2 dy

+ c
∫
B1/2

(|v − vh|2 + λp2−2
h |v − vh|p2

)
dy → 0.

The case p2 < 2 is more delicate and needs the full strength of the arguments
developed in Section 3. We start by defining a new sequence of functions w̃h ∈
W 1,p2(Rn;R

n): fix a cut-off function η ∈ C∞
0 (B1/2) such that η ≡ 1 on B1/4, and

set w̃h := η(vh − v), extended as zero outside B1/2. Then clearly

λ−2
h

∫
B1/4

|Vp2(λh(Dvh −Dv))|2 dy � λ−2
h

∫
Rn

|Vp2(λhDw̃h)|2 dy. (5.40)

From Lemma 2.2 we have:

λ−2
h

∫
Rn

|Vp2(λhE(w̃h))|2 dy � cλ−2
h

∫
B1/2

|Vp2(λh(E(vh)− E(v)))|2 dy

+ cλ−2
h

∫
B1

|Vp2(λh(vh − v))|2 dy
:= (V)h + (VI)h → 0. (5.41)

Indeed, since p2 < 2 we immediately have, from (e) of Lemma 2.2,

(VI)h � c
∫
B1

|vh − v|2 dy (5.27)1→ 0,

while (V)h → 0 is just (5.34). Now we observe that as p2 < 2

Gp,λ(|z|) � λ−2|Vp(λz)|2 � 2Gp,λ(|z|), (5.42)

whereGp,λ is theYoung function defined in (3.1). Using Theorem 3.1 and a couple
of times each (5.42) and Lemma 3.4, we find that (5.41) implies

λ−2
h

∫
Rn

|Vp2(λhDw̃h)|2 dy → 0.

This together with (5.40) finally gives (5.39) also in the case p2 < 2.
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Step 4: Comparison and conclusion. We preliminarily observe that, using (2.7),

µ−2
h −
∫
B(xh,τRh)

|Vp2(Duh −Du)|2 dx

� cτ−n µ−2
h −
∫
B(xh,Rh)

(|Duh −Du|p2 dx

+ 1(p2>2)cτ
−n µ−2

h

(
−
∫
B(xh,Rh)

|Duh −Du|p2 dx

)2/p2

(5.24)
� CMµ

−2
h [Rβ̄h + 1(p2>2)R

2β̄/p2
h ]

� CM [Rβ̄−β̂h + 1(p2>2)R
(2β̄/p2)−β̂
h ] (5.17)→ 0, (5.43)

and also, in a similar way,

µ−2
h −
∫
B(xh,τRh)

|Vp2

(
(Duh)xh,τRh − (Du)xh,τRh

)|2 dx → 0. (5.44)

Since |(Du)xh,τRh | � M by our assumption (5.20), we may use (b) and (c) of
Lemma 2.2 together with the previous estimates to obtain

lim sup
h

µ−2
h E(xh, τRh)

(c)
� CM lim sup

h

µ−2
h −
∫
B(xh,τRh)

|Vp2(Du− (Du)xh,τRh)|2 dx

+CMτ β̂ lim sup
h

µ−2
h R

β̂
h

(b)
� CMτ

β̂ + CM lim sup
h

µ−2
h −
∫
B(xh,τRh)

|Vp2(Du−Duh)|2 dx

+ CM lim sup
h

µ−2
h −
∫
B(xh,τRh)

|Vp2(Duh − (Duh)xh,τRh)|2 dx

+ CM lim sup
h

µ−2
h −
∫
B(xh,τRh)

|Vp2((Duh −Du)xh,τRh)|2 dx
∗
� CMτ

β̂ + CM lim sup
h

λ−2
h −
∫
Bτ

|Vp2(λh(Dvh − (Dvh)τ ))|2 dy
(b)
� CMτ

β̂ + CM lim sup
h

λ−2
h −
∫
Bτ

|Vp2(λh(Dvh −Dv))|2 dy

+ CM lim sup
h

λ−2
h −
∫
Bτ

|Vp2(λh(Dv − (Dv)τ ))|2 dy

+ CM lim sup
h

λ−2
h −
∫
Bτ

|Vp2(λh((Dv)τ − (Dvh)τ ))|2 dy
(5.33),(5.39)

� CM(τ
2 + τ β̂) � ĈMτ β̂ ,

where the estimate denoted by ∗ was performed using (5.28), (5.43), (5.44). Now
the contradiction to (5.21) follows if we choose, for instance, C(M) := 2ĈM . ��
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6. Regularity

In the case of standard p-growth, i.e., when p(x) is constant, once the decay
estimate in Lemma 4.5 is attained the Hölder continuity of Du on an open subset
of full measure follows via a standard iteration argument, see e.g. [11]. In our case
the situation is different, and a delicate localization argument will be worked out.

Proof of Theorem 2.1.
Step 1: Construction of �0. Let R0 > 0 be a radius such that ω(R0) � δ1/4,

where δ1 is the higher integrability exponent introduced in the higher integrability
Theorem 4.2 and eventually reduced in (5.1); it is possible to cover � with a finite
number k of balls Bi ≡ B(xi, R0). We let:

pi := sup
Bi∩�

p(x),

�i0 := {x0 ∈ Bi ∩� : lim sup
ρ→0

[
(|Du|pi )x0,ρ + (|u|)x0,ρ

]
< +∞ and

lim
ρ→0

−
∫
B(x0,ρ)

|Du− (Du)x0,ρ |p
i

dx = 0},

and finally

�0 :=
k⋃
i=1

�i0.

We claim that �0 is the set we are looking for in order to prove Theorem 2.1. We
begin by remarking that �0 has full measure: indeed with the choice of R0 made
above it follows that, analogously to what we found in (5.3),

pi(1 + δ1/4) � p(x)(1 + δ1) for every x ∈ Bi ∩�. (6.1)

From (6.1), the higher integrability result of Theorem 4.2 and the Lebesgue differ-
entiation theorem, it immediately follows that�i0 is a set of full measure in�∩Bi
for each i, and consequently so is�0. We must now prove that�0 is open and that
Du is Hölder continuous in �0.

Step 2: Localization. From now on we shall work on a single�i0. Fix x0 ∈ �i0: by
the definition of �i0 it is possible to findM > 64 such that

lim sup
ρ→0

[
(|Du|pi )x0,ρ + (|u|)x0,ρ

]
<
M

64
.

As at the beginning of Section 5 we deduce, via Lemma 4.5, a higher integrability
exponent δ2 ≡ δ2(M), we determine a radius RM such that ω(RM) � δ2(M)/4
and we consider the ball B(x0, RM); without loss of generality we may assume
that B(x0, RM) ⊂ Bi ∩ �. Following the notation introduced at the beginning of
Section 5 we put

p2 := sup
B(x0,RM)

p(x).
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Step 3: Iteration. Fix M as above and let B(x0, 16R) ⊂⊂ O ⊂⊂ � where

O ≡ B(x0, RM) ≡ OM is as in Proposition 5.4; if CM is the constant appearing

in (5.19) and 0 < τ < 1/4 is such that CMτ β̂/2 < 1/4, then a minor modification
of the iteration scheme developed in [15] shows that there exists η ≡ η(M, τ) ≡
η(M) � ε � 1, with ε as in (5.18), such that if

|(Du)x0,τR| + |(Du)x0,R| + |(Du)x0,4R| + |(u)x0,R| � M/4,
E(x0, R) � η, E(x0, 4R) � 1

(6.2)

then a standard iteration procedure built upon Lemma 4.5 starts and leads to

|(u)x0,τ kR
|, |(Du)x0,τ kR

| � M, E(x0, τ
kR) � τ kβ̂/2 (6.3)

for every k � 1. With this choice of O, we find the two numbers τ and η, which
both depend onM . Again by the definition of�i0, it is possible to determine R̃M <
RM/1000 such that if ρ is any of the numbers τ R̃M, R̃M, 4R̃M , we have

[(|Du|pi )x0,ρ + (|u|)x0,ρ] <
M

32
,

c̃ −
∫
B(x0,ρ)

|Du− (Du)x0,ρ |p
i

dx + ρβ̂ < min
{(η

8

)pi/p2
,
(η

8

)pi/2
,
η

4

}
,

where c̃ ≡ c̃(M) > 1 is a constant coming up in the next estimate and depending
on the ones in (c) and (e) of Lemma 2.2. We now remark that these inequalities
hold also in a neighbourhood of x0, i.e., there exists an open set A ⊂ B(x0, RM)

such that x0 ∈ A and that, for every x∗ ∈ A,

[(|Du|pi )x∗,ρ + (|u|)x∗,ρ] <
M

32
, (6.4)

c̃ −
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i

dx + ρβ̂ < min
{(η

8

)pi/p2
,
(η

8

)pi/2
,
η

4

}
(6.5)

whenever ρ is any of the numbers τ R̃M, R̃M, 4R̃M .
Our goal now is to check that the inequalities (6.2) are satisfied (at the point x∗,

not only at x0), in order to make the iteration work and obtain

|(u)x∗,τ kR|, |(Du)x∗,τ kR| � M, E(x∗, τ kR) � τ kβ̂/2. (6.6)

Clearly (6.2)1 is satisfied by (6.4), while in order to prove (6.2)2 we use (c) and (e)
of Lemma 2.2 and the Hölder inequality, recalling that pi � p2, to get, again for
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ρ = τ R̃M, R̃M, 4R̃M ,

E(x∗, ρ) = −
∫
B(x∗,ρ)

|Vp2(Du)− Vp2((Du)x∗,ρ)|2 dx + ρβ̂

� c(M) −
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p2 dx

+ c(M)1(p2>2)

(
−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p2 dx

)2/p2

+ ρβ̂

�
(
c̃(M) −

∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i

dx

)p2/p
i

+ 1(p2>2)

(
c̃(M) −

∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i

dx

)2/pi

+ ρβ̂

(6.5)
� η/2 < η < 1,

thus all the inequalities in (6.2) are satisfied with x∗ in place of x0 and by iteration
we get (6.6).

Step 4: Conclusion. Now we want to prove that (6.6) implies

−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p2 dx � CMρβ̂/4 (6.7)

for any 0 < ρ � R̃M . A simple interpolation shows that it suffices to prove (6.7)
only for the numbers ρ of the type ρ = τ kR̃M , to which case we restrict our
attention henceforth. Starting from (6.6), if p2 � 2 then by (e) of Lemma 2.2

−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p2 dx

� −
∫
B(x∗,ρ)

|Vp2

(
Du− (Du)x∗,ρ

)|2 dx
� CME(x∗, ρ) � CME(x∗, ρ)1/2

(6.6)
� CMρ

β̂/4

(now, as customary,CM denotes any constant depending onM in a harmless way). If
1 < p2 < 2, again using (e) of Lemma 2.2 and setting S := {|Du−(Du)x∗,ρ | � 1},
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we estimate

−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p2 dx

= ωnρ−n
[∫
Bρ∩S

· · · dx +
∫
Bρ\S

· · · dx
]

� ωnρ
−n
∫
Bρ∩S

|Du− (Du)x∗,ρ |p2 dx + c −
∫
Bρ

|Vp2(Du− (Du)x∗,ρ)|p2 dx

� c −
∫
Bρ

|Vp2(Du− (Du)x∗,ρ)|2 dx +
(
−
∫
Bρ

|Vp2(Du− (Du)x∗,ρ)|2 dx
)p2/2

� CM

[
E(x∗, ρ)+ E(x∗, ρ)1/2

]
� CME(x∗, ρ)1/2

(6.6)
� CMρ

β̂/4,

and (6.7) is proved. Next we have to prove that

lim
ρ→0

−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i

dx = 0, (6.8)

and again we restrict our attention to the numbers ρ of the type ρ = τ kR̃M . If
pi = p2, there is nothing else to do by (6.7); if instead p2 < p

i , we interpolate

p2 < p
i < pi(1 + δ1/4),

thus for some numbers θ1, θ2

−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i

dx

�
(
−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p2 dx

)θ1

×
(
−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i(1+δ1/4) dx

)θ2
.

Since the first factor tends to zero as ρ → 0 by (6.7), we only need to prove that
for a suitable constant C

−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i(1+δ1/4) dx � C. (6.9)

We first remark that for all 0 < ρ < R̃M

(|Du|p2)x∗,ρ � c −
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p2 dx + c|(Du)x∗,ρ |p2 � c (6.10)

for some constant c depending only on those in (6.6) and (6.7), and thus only on
those in (6.4), (6.5). We use (2.19) with p = pi(1+ δ1/4) and Poincaré inequality
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to get

−
∫
B(x∗,ρ)

|Du− (Du)x∗,ρ |p
i(1+δ1/4) dx

� c −
∫
B(x∗,ρ)

|Du|pi(1+δ1/4) dx

� c −
∫
B(x∗,ρ)

|E(u)|pi(1+δ1/4) dx + c
(
−
∫
B(x∗,ρ)

|Du| dx
)pi(1+δ1/4)

(6.10)
� c

(
1 + −

∫
B(x∗,ρ)

|E(u)|p(x)(1+δ1) dx
)
.

Now by (4.4)

(
−
∫
B(x∗,ρ)

|E(u)|p(x)(1+δ1) dx
) 1

1+δ1

� c −
∫
B(x∗,2ρ)

|E(u)|p(x) dx

+ c −
∫
B(x∗,2ρ)

(|Du|γ1 + |u− (u)x∗,2ρ |γ
∗
1 + |(u)x∗,2ρ |γ

∗
1 + 1

)
dx

(6.6)
� c + c −

∫
B(x∗,2ρ)

|Du|p2 dx + ργ ∗1
(
−
∫
B(x∗,2ρ)

|Du|p2 dx

)γ ∗1 /p2

� C

by (6.10), and the proof of (6.9) is finished. We conclude by remarking that from
what we proved we have A ⊂ �i0, thus �i0 is open.

From these facts and Campanato integral characterization of Hölder continuity,
it finally follows that Du is Hölder continuous in �0. ��
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