Arch. Rational Mech. Anal. 164 (2002) 213-259
Digital Object Identifier (DOI) 10.1007/s00205-002-0208-7

Regularity Results for Stationary
Electro-Rheological Fluids

EMmiL1IO ACERBI & GIUSEPPE MINGIONE

Communicated by V. SVERAK

Abstract

We prove regularity results for weak solutions to systems modelling electro-
rheological fluids in the stationary case, as proposed in [27,31]; a particular case
of the system we consider is

dvu =0,  —div(L+ |EwI?HPD22Ew)) + D = f(x,u, Du),

where £(u) is the symmetric part of the gradient Du and the variable growth
exponent p(x) isaHolder continuous function larger than 3n/(n + 2).

1. Introduction

In recent years increasing attention has been paid to the study of electro-
rheological fluids; these are particul ar fluids of high technological interest, possess-
ing the ability to change, sometimesin a dramatic way, their mechanical properties
when in the presence of an electromagnetic field E (their viscosity may vary by a
factor of 1000). The mathematical modelling of such fluidswasinvestigated by dif-
ferent authors adopting different points of view and involving various mathematical
and numerical approaches (see the introduction of [31] and the references therein).
In the context of continuum mechanics these fluids are seen as non-Newtonian flu-
ids; very recently R0iZicka(following theideasproposed by RAJAGOPAL & RUZICKA
in [27]) developed an interesting mathematical model for such fluids, taking into
account the delicateinteraction between the electromagnetic field E and themoving
liquid. The resulting system (see [31] for a description of the building procedures
and for ageneral analysis) arising from these studiesis:

curlE =0, divE =0,

u, — divS(E, Ew)) + Dr + [Dulu = f + xE[DEJE, (1.2)
divu =0,
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where, according to the notation proposed in [29,31], u : Q(C R3) — R3is
the velocity, E isthe applied electromagnetic field, S the extra stress tensor, 7 the
pressureand x E the constant diel ectric susceptibility; following astandard notation,
& (u) denotes the symmetric part of the gradient.

The constitutive relation proposed in [27,29,31] for the extra stress S is

S(E, z) := g(E)(1+ |z P ®-2/2,
+ terms with the same growth (1.2

for any z € Sz, the space of symmetric 3 x 3 matrices; we remark that the other
terms have a different shape, so system (1.1) has no overall special structure.

Themain new feature of system (1.1) isthat the monotonicity and the ellipticity
properties of the vector field S are strongly influenced by E through a variable
growth exponent dependence: indeed in (1.2) the exponent p is actually afunction
of the quantity |E|2. Since (1.1) is uncoupled, we may first obtain E = E(x), thus
the dependence of p and S on E isindeed adependence on x. With asuitable choice
of the parameters, it turns out that

D, S(x, )L @A 2 v(1+ [z[2)PE=D/23 2,

(L3)
|D,S(x,2)| £ LA+ |z/5)P0-2/2

for any symmetric 3 x 3 matrices z, A, where the function p : RT™ — (1, +00)
reflects the physical properties of the fluid and has in general large oscillations
when |E| changes (with p < 2 when |E| is large). The natural energy associated
with this problem is thus given by

/ IE@)|P™ dx.
Q

The basic existence theory for the system (1.1) has been estabilished by ROZ1CKA
in[31], seedso [29]; thistheory is particularly satifactory in the steady case

—divS + Dr + [Dulu = f + xF[DEJE. (1.4)

Asisclear from (1.3), amajor difficulty to be overcomeisthe fact that S exhibitsa
nonstandard growth (see [23-25, 3] and the references therein), that is, its growth
and coercivity exponents are different:

L7z = 1) < S(x, 20z S L(jz|? + 1),

where

% <yr:=minp(x) < y2 := max p(x). (1.5
In this paper we are interested in the (interior) regularity properties of solutionsto

(1.2) in the stationary case (1.4). A first step in this direction has been performed
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in [31] where the author proves the existence of a W22 solution to (1.4). Here we
arein amore general setting and we analyse systems as

divu =0, divA(x, €(u)) + Dm = B(x, u, Du), (1.6)

wherethevector field A exhibtsan ellipticity property asin (1.3) for afixed function
p(x). Under natural assumptions we shall prove that if u isaloca weak solution
to (1.6), then Du is Holder continuous in an open subset of full measure, Qo, i.e.,
Du € C%*() for some« intherange 0 < « < 1 and with meas (2 \ Qq) = O.

To our knowledge thisis, apart from the higher differentiability result obtained
in [31] (see also [30] for periodic boundary conditions), the first regularity result
for themodel of electro-rheological fluids proposedin[31], and in any casethefirst
in apointwise sense. A further step, based on Theorem 2.1, will be the estimate of
the Hausdorff dimension of the singular set Q \ Qo, aswell asregularity resultsfor
the pressure.

We add some comments; first, note that of special importance in the theory are
the bounds (1.5) allowed for p(x): these reflect the physical properties of afluid.
Of course, the larger the interval [y1, y21, the larger the class of fluids the model
is going to cover. In other words, the amplitude y» — y; relates to the possible
excursions of the viscosity of the fluid when E changes, so it isimportant to prove
results allowing for large values of y» — y1.

In[31] the author proves existence of weak solutionsfor the stationary problem
under the only hypothesis (1.5), and we remark that the same lower bound also
appears when treating non-Newtonian fluids of standard type, that iswhen p isa
constant (for these issues see the book [22]).

Subsequently different bounds (according to the type of problem under consid-
eration) are introduced in [31] on y» in order to prove existence of higher differen-
tiable solutions, for which the single condition on 31 is no longer sufficient, in this
way further restricting the class of fluids under consideration.

On the other hand, the hypotheses we consider here are consistent with, and in
some respect weaker than, the ones considered by Riizicka: in particular the lower
bound (1.5) ony; isthesameasthat found by RUiZicka, whilethereisno upper bound
for y», which is needed in [31] to prove existence of strong solutions: this allows
usto treat a broad class of fluids for which higher excursions of the viscosity (and
consequently of p(x)) are observed. In thisway the existence theorem of R{Zitka,
for which (1.5) suffices, has now aregularity counterpart.

The techniques used to obtain Theorem 2.1 are suitable for obtaining results
for amore general class of systems, including the one of electro-rheological fluids
we considered. Thisis of interest for several reasons; in the paper [38], following
previouswork by BARANGER & MIKELIC [5], ZHIKOV proposed amodel for aclass
of fluids that are influenced in a similar way by the temperature T, rather than by
an external electromagnetic field E. In this model, once again, the stress tensor
satisfies growth conditions of the type (1.3), which we may call “ p(x) type’, and
the underlying energy is | |Du|P™) dx. The exponent function p(x) = p(T (x))
turns out to be aso an unknown of the system (which is highly coupled), thus
minimal regularity assumptions must be considered oniit: in Theorem 2.1 we allow
p(x) to be simply Holder continuous rather than being Lipschitz continuous, as
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in [31]. Although this is not essential in the theory of electro-rheological fluids,
the techniques devel oped here to treat this case could be useful when dealing with
systems like the one proposed by Zhikov.

We remark that since this generalization involves no additional technical dif-
ficulties and is essentialy no different to the three-dimensional physical case, we
develop our resultsin any dimension n; thisis due to the fact that our methods also
alows us to prove regularity results for solutions to general elliptic systems with
nonstandard growth conditions that were not covered by the available regularity
theory, see [23-25]; this may be of interest in itself, judging by the large number
of papers that recently appeared on the subject. For related results, see also [7,9,
32-34].

Finally, we say a few words about the proofs. The starting point is proving a
higher integrability result stating that actually | Du|P™) e L+%1 for some 81 > 0,
rather than just | Du|P™) e L. This gives the manoeuvrability needed to adopt a
blow-up procedure, which is a common tool when proving partial regularity; but
the main point here is that the nonstandard growth conditions of the system force
usto blow up solutions not in the whole €2 but in small open subsets depending on
the solution itself, on the higher integrability exponent §1, and on the size of the
oscillations of p(x). At this stage various higher integrability results are important
to overcome the lack of standard growth conditions of the system, and in particular
a quantitative knowledge of the stability of certain higher integrability exponents
arising from reverse Holder inequalities will be crucial. Moreover, in order to treat
the physically important case inf p(x) < 2, we need to prove a certain form of
Korn inequality for a two-parameter family of Orlicz spaces, paying attention to
the stability of the constants appearing uniformly with respect to the parameters.
The regularity of the solutions is then achieved via a quite delicate localization of
the iteration arguments employed to get partial regularity.

2. Preliminaries and statements

In what follows, 2 denotes an open bounded domain in R”, and B(x, R) the
openbal {y € R" : |x —y| < R}.Ifuisanintegrablefunction definedon B(x, R),

we set 1
W)x,r = ][ u(x)dx = / u(x)dx,
B(x,R) on R" Jp(x,R)

where w, is the Lebesgue measure of B(0, 1). We also adopt the convention of
writing Br and (u) g instead of B(x, R) and (u), r respectively, when the centre
is not relevant, or is clear from the context; moreover, unless otherwise stated,
all balls considered will have the same centre. We denote by S, the set of all
symmetric n x n matrices. Given two vectors x, y € R”", we denote their tensor
product by x ® y = {x;y;}i; € R"* and their symmetric tensor product by
x0y:=1/2xQ@y+y®x) €S,.lfv:Q— R"isan L function, we denote
by £(v) its symmetric distributional derivative:

E) = {EW))ij = (00" + av7) /2.
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Abusing notation, if z € R"z, we denote by £(z) its symmetric part:
E() ={E@}ij = (zij +zji)/2.

If s > 1,thens’ := s/(s — 1) isthe conjugate exponent of s, whileif 1 < s < n,
then s* := ns/(n — s) isthe Sobolev conjugate exponent of s, whereas s* is any
real number if s = n. Finaly, the letter ¢ freely denotes a constant, not necessarily
the same in any two occurrences, while only the relevant dependences will be
highlighted; if need be, we write, e.g., Cy; or Cr, or the like to stress that some
constant depends on M, L etc., and we denote by ¢, C or the like any occurrence
of some particular constant that we will later recall.
We are concerned with the following system:

divu =0, - divA(x, 5(14)) + D = B(x, u, Du), 2.1

where zr isthe pressure, asin (1.1), and the continuous vector fields A : Q@ x S, —
R" and B : @ x R" x R"” — R" satisfy the following growth and ellipticity
assumptions:

Ax, ) € CXS,y), (H1)

IDA(x, 2)| £ L(1+ |23 P®)=2/2,

(H2)
DA, DA @A 2 LHL+ [[2)PW=D/23 2,

|A(x, z) — A(x0, 2)| £ Lo(|x — xo|)
% [(1+ |Z|2)(p(X)—1)/2 + @1+ |Z|2)(P(xo)—l)/2:| (H3)

x (14 1log(1+ |z))),

|B(x,u, )| < L(JullZ] + £ () (H4)

forany z,A € Sy, x,x0 € Qu € R", 7 € R, where L > 1, w : Rt — R*,
f:Q— Rtandp: Q —]1, +oo[ arefunctions such that

+np 3n
feLy” px)zZnz ol 28, (H5)

for some 8 > 0. Moreover, p(x) and w are supposed to be continuous functions
such that

Ip(x) = p(x0)| = @(lx — xol) = L|x — xol*, (H6)

where 0 < o < 1. In view of the definition (2.5) below, it is not restrictive to
assumethat A : @ x S, — S,. We aso remark that (H2) implies the following
growth and coercivity propertiesfor A:

A, Dl S e(zlPD71 41, Alx, 2z = ¢ H(jzPW — 1), (2.2)
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and also, through Lemma2.1in [2],
[A(x,2) — A, )]z — &) = ¢ XA+ 212+ |EHPD=22 g2 (2.3)

for a suitable constant ¢ = ¢(n, L). Except at asingle point, in place of (H6) we
will need only the much weaker form of “logarithmic continuity”

RO® <c=cp,. (2.4)
If p(x) isasabove, we put
WP = (e WHHQRY) 1 [E@)|P™ € LY(Q)},

with its local variant, W=, defined in a similar fashion; we remark that in the
standard case p(x) = p thisdefinition is equivalent to the usua one with |E(u)|?
replaced by | Du|?, by Korn inequality, whereas the two notions might be different
in this case. Moreover we set

C%iv(Q) = {u € C° (R : divu = 0},

1,p(x)

P is a weak solution to

In our setting, according to [31], a function u € W,
system (2.1) if
divu =0,

25
/ A(x, S(Lt))é'((p) dx = / B(x,u, Du)pdx Yo € Cg,odiv(Q)- (29
Q Q

Our main result is the following:

Theorem 2.1. Let u € Wlﬁg’“) be a weak solution to system (2.1) and assume

(H1)—«(H®6) are satisfied. There exists an open set Qo C Q2 such that |2\ Qo] =0
and Du is Holder continuousin Q.

Let us collect some auxiliary results. We shall widely use the function V), : Rf —
R* defined by

V,(2) i= (L+ [z[H)P2/4; (2.6)

for each z € R¥ and for any p > 1. All the properties of V, that we need may be
found in [8], Lemma 2.1, and we restate them here in a way that suits our needs,
together with some other propertiesthat are a straightforward consequence of (2.6).

Lemma22. Letp > 1,andletV =V, : R* — R¥ beasin (2.6); thenthere exist
¢, c(M) depending on p, k such that, for any z, n € R€ and ¢ > 0,

@ |V (t2)| < max{t, 1712}V (2)],

) [VE+nl Zc(IV@I+IVmI),

© V@ =V S|V —n| if |yl <Mandz e R,

@ Ve=ml S eIV () = Vmlifin < Mandz € R,
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(e) max{lzl, 1z|7/?} £ |V (2)| £ emax{lzl, [z|P/2} ifp =2,
cImin{lz], 21772} £ |V (2)] £ minflzl, |21/} ifl<p <2,

-1 V(z)—-V
) Mz —nl = gEapear < clz—l,

(9) if p = 3n/(n + 2), then the function z — |V,,(z)|? is convex,
(h) if p = 2, thenc= (2% + 1217) < |V, (@)% < e(lz]? + [z]P).

Moreover, if 1 < y1 < p < o, all constants ¢, ¢(M) above may be replaced by
constants c(y1, y2), c(M, y1, y2) independent of the particular value of p.

As a consequence of (€) above, we deduce a frequently used bound on V,:
setting, with alittle abuse of notation,

1 _J1ifp>2
(P>2) = ] 0 otherwise,

we have
IV, ()% £ c(z1? + Lp=2)|21P). (2.7)

Young'sineguality is quite a standard tool, but the dependence of the constants
on the exponentsisin general overlooked (and of course, we need to be precisejust
on this point). Itiswell known that if A, B > 0and « > 1, then

AB < 1av g (1 - E)B"‘/(“’l);
o o
inparticular, if P > Q > 0anda, b = 0, thenfor every ¢ intherange0 < ¢ < 1,
setting A = [¢P/Q]19/F and applying Young's inequality with A = 1a?, B =
2~ 1pP=2 o = P/Q, wehave

20pP—0 < ca? + P — Q(Q)Q/(P*Q)<1>Q/(P*Q)b},

P \p &

and setting H = (P/Q) — 1= 0,i.e, P — Q = HQ, we may write

’

H 1 1\VH

OpP—0 < o4P ( P

a =EC T T Ay VA )

1\YH

< sa® + (—) bP. 2.8)
&

&

In particular, if H = Hy > 0, then

1\ 1/H
alhP=C < g4 4 (—) °pP. (2.9)
&
thisistrue as soon as, for some Hp > 0O,
P> (14 HpQ >0 (2.10)

(remark that thecondition O > Omay herebeweakenedinto Q = 0,sinceif Q9 = 0,
then (2.9) istrivially true). We shall make frequent use of Young's inequality (2.8)
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with Q0 = p(x) —1and P = p(x): since we will quickly reduce the problem to
one on compact subsets, by the continuity of p we have

px) 1
p(x) =1~ " maxp(x)—1

i.e., (2.10) is satisfied and the coefficient of »* in (2.8) depends only on .
The following Young-type inequality reveals a useful algebraic feature of the
function V.

Lemma 2.3 (Young's inequatlity for V). Leta, b € R¥, 1 < p < 0, 1 € R. For
every ¢ > Othereexistsc, = ¢, (¢, y2) such that

L+ 12al®» P22 . b < e(1+ 12al®)P72/2|a? + co (1 + [1b]?)P~D/2)p?
= eA 72|V ()2 4 c: A2V (WD) (2.11)

Proof. If A = 0 or p = 2, the inequality reduces to a mixture of the Cauchy-
Schwarz and Young inequalities, and

a-b < lalbl £ (V2elal)(bl/~/2¢) £ elal® + 4_18”"2 : (212)

from now onwetake » £ 0and p # 2. Multiplying both sides of (2.11) by A2 and
applying the Cauchy-Schwarz inegquality, we immediately see that it is enough to
prove

1+ 12al® P22 5a)|b] < e(1+|2al®) P~2/2|ha|? +c, (1+]1b1H) P22 |1b 2,
that is, replacing |Aa|, |Ab| by x, y, we have to prove
(L+x2)P72/2xy < (14 x%)P72/2x2 f e (14 y?)P72/2y2  (2.13)
for x, y 2 0. Thisis straightforward if
1+ xZ)(p—Z)/Z <@+ yz)(p—Z)/Z’

because we may then just use (2.12) to deduce (2.13) again with ¢, = 1/(4¢). We
thus concentrate on the remaining case

1+ yZ)(pr)/Z <1+ XZ)(pr)/2’
which is equivalent to
p>2, y<x or p<2 x<y. (2.14)

We remark that the function x — (1 + x2)“x isincreasing on R* if u > —1/2,
so this happens also for the function x — [(1 4+ x2)*x]" for any v > 0. This
would easily lead to the proof for p = 1, but see below. If p > 1, denoting by
q = p/(p — 1) the conjugate exponent to p we have

(14 x2)P=2/2x — [(1 4 x2)P=2/2052/9] [(1 4 x?)P=2/2P1-(2/9))
=[(1+ xz)(p—Z)/ZXZ]l/q [(1+ xz)—l/zx](Z—[?)/I?'
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In both cases of (2.14) we have
(142?22 @ PP < (14 y?) =2y &0,
thus the last equality gives

(1+x2)(l7—2)/2xy < [(1+x2)(ﬁ—2)/2x2]1/q [(1_|_yz)(P—Z)/Zpyl—(Z/lI)]y
= [(L+ 22 P2 2210 (14 y?) =22y 1P

and applying Young's inequality

(p—prt -
? 1+ y*)P=2/2y2,

1+ xz)(P*Z)/2xy <e(d+ xz)(P*Z)/sz + —
pl’gl’

thus concluding the proof: the case p = 1 follows by taking the limit in the line
above. O

The following lemmais more or less standard and its proof can be easily adapted
from Lemma 2.3 in [1] and Lemma 3.3 in [8], using Lemma 2.1 and Lemma 2.2
from [2], which remain truealsointhecase p = 2.

Lemma 2.4 (Scaling). Let M > 1and xg € Q. Set, for every A > Oandz, P € S,
with |P| < M,
Apy(2) == 2" [A(xo, P+ 22) — A(xo, P)].

where A satisfies (H1),(H2) and y1 < p(xo) < y2: then there exists a constant L
depending on n, y1, y2, L, M such that, for any z, £ € S,
|Ap 2@ S L+ 22|z Pe0=2/2 ),

N (2.15)
Apa(2)z 2 L7HL+ 22|72 (Pe0=2/2 172,

IDAp;.(2)] £ L(L+ 12|z Pe0=2/2,
-1 2,12 2)/2 2 (2'16)
DAp;(2)E ®E 2 L7114 12|z Pe0=2/2 2,

Thefollowing lemmaisawell-known result (commonly referred toin theliterature
as BogovskiT's theorem) which we restate in the form we need (see [6]; a proof
may also be found in [16], Chapter 3, Section 3).

Lemma?2b. Let By C R" andlet f € L9(Bg) with1l < y1 < g < y» besuch
that (f)g = 0. Then there exists v € Wg’q(BR; R™) satisfying

divv=f

/IDv|pdx§c/ | f1P dx
Br Br

for every p € [y1, q], where c = c¢(n, y1, y2) isindependent of R > O; moreover,
if the support of f iscontained in B, with r < R, the same holds for v.

and such that
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Theoperator f € LY(Bg) — v € W4 (Bg; R") defined in the previous lemmais
linear and strongly continuous, so the fact that the constant ¢ above isindependent
of ¢ when y1 < g £ y» follows via a standard interpolation argument, while the
independence of R is obtained via arescaling argument.

We will need some specialized forms of Korn’sinequality, especially asfar as
the stability of the constants is involved; we recall that the set of rigid motionsin
R" is

R:={c+Sx:ceR" SeR>™ Tg=_g)
the set of affine functions with skew-symmetric gradient. It is easy to see that any
distributionu = (ut, ..., u") € [D'(£2)]" inaconnected openset 2  R” satisfies

Eu)=0 & ueR.

Let  be afixed connected open subset of R” and let 1 < p < +o0; for every
u € LP(2;R") we may define R, (1) as the unique point of R (which is a
subspace of finite dimension) of least L7 distance from u:

R, o(u) € R, lu — Rp.o)llLr@;rny = Min{llu —rllLrre) : 7 € R}

if p =1or p = 400 uniqueness may fail, and we may take R and R, to beany
one of the minimum points. Then it is possible to deduce an appropriate form of
Korn'sinequality involving, for every u € W7 (Q; R"), thefunctionu — R, o (u).
Unfortunately this is unsuitable for our purposes, since p will vary with x, soitis
not clear whichfunction R, ; isto bechosen; besides, ingeneral R, o isnotalinear
mapping —except if p = 2 —althoughitisaprojection (i.e., Ry o o Ry o = Ry q)
and it exhibits some linear-like behaviour: for example, R, o(Au) = AR, o(u) for
al » e R,and dso

reRr & Ry +7r)=Rpq()+r.

Let us concentrate on the specia case p = 2, for which an explicit representation
of therigid motion Rz o (u) of least distanceis available.

Let ©2 be abounded open subset of R” and let xg be its barycentre; we define
forevery u € LY(Q; R") andx €

(Pau);(x) = ¢; + Sij(x — x0);, (2.17)
where
ci = (u); = fqui(x)dx,

P follu — )i (x — x0); — [u — W)]j(x — x0); ] dx
v follGr = x0)i 2 + |(x — x0);?] dx

We collect the properties of Pg in the following

Proposition 2.6. Let 2, xo and P, beasin (2.17), and 1 < p < +o0; then

(@) Pgq islinear;
(b) Pqu € R for all u;
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(c) there exist functions c;x (x), s;jx (x) € L°°(R2) depending only on €2 such that

(Pau);(x) =/ ik dy +xj/ Sijruidy ;
Q Q

(d) for every p the operator Po maps L? (2; R") onto R, and its normis indepen-
dent of p: A
IPoullr = C)Nullzr ;

(e) P isinvariant by rescaling, i.e., P:qlu(y/t)] computed at ¢x is the same as
Pau(x);
(f) for all p,

lu—Rpo@)lLr < llu—Poullzr < (1+ @(Q))Ilu — Rpa@)llLr;
(2.18)

(9) ifu € L3(Q; R") and Q issymmetricenoughsothatfg(x—xo),-(x—xo)j dx =
O whenever i # j (as, eg., if Qisaball or acube) then Pou = Rz ().

Thefirst four statementsare obvious, thefifth and sixth are easy and the last reduces
to atedious but simple computation of R q; by (2.18), we may solve the problem
of choosing the projection by always taking the operator Pg, which enjoys good
properties and is equivalent to every R, o as far as the norm of u — R, o(u) is
concerned.

After these preliminary steps, we may state a collection of Korn-type inequali-
ties, most of which wewill need in what follows; most of these are reasonably easy
conseguences of thefirst, whose proof may be found, e.g., in[31], p. 197, and the
dependence of the constants may be deduced as we explained after Lemma 2.5.

Proposition 2.7. Let Q2 be a bounded open set in R with appropriate boundary so
that the Sobolev and Rellich theorems apply, let p > 1 and let u € L1(Q2; R") be

suchthat £(u) € LY(K; R”z). Then thefollowing statementshold (unless otherwise
specified all constants may depend on everything but the function u):

@ if p > 1, then

IDullp < kollu — el + kL IEWIlp < kallu — ey + KLIEW@Ip;

(b) if p > 1andu = 0 on 32, then

IDullp < k2ll€@)llp:

(c) if Qisconnected and p = 1, then

lu — Paullp < k3lE)llp ;
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(d) if @ isconnected and p = 1, thenfor all ¢ € Rwith1 < g < p* we have
q M — Paully < kallE@w)|lp;

(e) asfor the dependence of the constants on the diameter of 2, we have:

1
ko(1€2) = ko(€2),  k1(1€2) = ;kl(Q), ky(12) = k1(S2),

th+1l-n/p
ko(12) = ko(Q),  ka(t2) = tka(Q), ka(t2) = HH/D=0/P) jy (),
(f)ifl <y < p = y2 < 400, the constants ko, k1, k7, k2, k3, ks depend on p

only through y1, y».

Asacorollary, wewrite aversion, valid on balls, of some of the inequalities above,
inwhichl < y1 £ p £y, 1 < g £ p* and the constants depend only on

n, yi, y2:

][ |Du|P dx < k][ |Ew)|P dx ~|—k(][

Br Br Br
1/q 1/p

ﬁlqu <k ][ IEw)|? dx

R B

(2.20)

_ 1/q 1/p
ﬂ‘q dx) < k(][ Ew)|? dx) . 2.21)
Bpr

r/q
(”)R ] dx ) (2.19)

1
u=0 onoBgr = —(
q

R

i,

3. Korn’sinequalitiesin Orlicz spaces

Let G : RT — R be aYoung function (or “ N-function”), i.e., G(0) = 0, G
is convex and increasing, G(¢)/t isincreasing and G(¢)/t — +oo ast — +o0.
We consider the Orlicz space generated by G, that is, the Banach space L¢ =
LY (R"; R¥), equipped with the following L uxemburg norm:

L , 7] <
Il i=infx > 0: | (A>d 1.

(We refer the reader to the monograph [28] for a complete account of the theory.)
Inthecase G(¢t) = t”/p, p > 1the previous quantity is exactly the standard L”
norm. Beside L¢ we shall aso consider the Orlicz-Sobolev space W1-¢ (R"; R¥),
consisting of all the functionsu such that both u and Du arein LY (see again [28]).
LetO < A < 1and p > 1; weshal be particularily interested in theYoung function

G =Gput) =L+ )22 (3.1)

The main result of the section is the following:
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Theorem3.1l. LetB > 0and3n/(n +2) +28 < y1n < p < 2,andletu €

WLGri(R"; R"); there exists a constant ¢ = ¢(n, y1), independent of u, p, A,
such that

IDullG,, < clé@lg,, (32

The previous Korn-typeinequality will be derived viaan interpolation theorem for
singular integralsand will be applied in order to obtain certain strong convergences
in the proof of Theorem 2.1 (see Step 3).

Remark 3.2. Themain pointin Theorem 3.1isthefact that the constant ¢ appearing
in (3.2) isindependent of A (see Step 4). For this reason we will be careful when
proving (3.2) and we will invoke Theorem 3.3 below.

Before proving Theorem 3.1 we recall some terminology that can be found in
[37]. An operator T (called “operation”, in [37]) acting from a subset of the class
of measurable functions defined on R” into itself, is said to be sublinear if the
following three conditions are satisfied:

(i) if T isdefined on f1, f2, thenitisalso defined on f1 + f2;
(“) IT(f1+ f2)(0)] = IT(f) )|+ |T(f2)(x)| forae x € R,
(i) 1T (cf)l = lclIT(f)| forany c € R.
An operator T : L4(R"; R¥) — L4(R"; R") is of type (g, q), with1 < g <
+00, if there exists a constant M such that, for any f € LI (R"; RF),

ITfllLe = M| fllLa.

We shall call the smallest of such numbers M, the g-norm of T'. In the same way,
given an Orlicz space LY (R"; R¥), an operator T will be called of type (G, G) if

ITflc = Mllfllc

forany f € LY (R"; R¥) andfor some M < +oo, the G-norm of T being similarly
defined.

We recall an interpolation result in Orlicz spaces, which is a particular case of
amore general result that can be found, for instance, in [37], Theorem 2.3.

Theorem33.Letk = 1and 1 < 53 < s2 < 400 and suppose that a sublin-
ear operator T is simultaneously of types (s1, s1) and (s2, s2), with s1-norm and
s2-normegqual to M1 and Mo respectively. Let G : Rt — R* bean Orlicz function
such that

G = fo a(®) dt, (33)

wherea : RT — RT isa monotone function. Moreover assume that the function
G (¢)/t*t isincreasing and the function G (¢)/2 is decreasing, and:

‘GE) dE _ GO

< , 34

o &1 & (34

[Tk 00 -
. g2 g T i '
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for any ¢+ > 0. Then the operator T is of type (G, G) with G-norm depending on
51, 52, K1, K2, M1, M>.

Proof of Theorem 3.1. Thebeginning of the proof relies on an argument that allows
us, roughly speaking, to represent Du trough & (1) viaasingular integral operator.
We follow the lines of [4], Theorem 7.4 (which, in turn, uses information from the
second part of Koun'sthesis[19]). Let usfirst suppose that u € C*°(R”; R"). By
the last formula of step 2 in the proof of Theorem 7.4 from [4] it follows that, for
ae x € R,

[Du(x)| £ c(mIE@) ()| + cm)T*(Ew)) (x), (36)

where T* is the singular integral operator, which is homogeneus and sublinear,
defined as follows (according to the terminology of [35], Chapter 2): for any v €

C®R"; R™),

K(v —
T*(v)(x) := SU%ITp(v)(x)I, T,(v)(x) :=/ Koy - x)v(y) dy.
P>

{ly—xI=p) |y —x["

The function K : R" \ {0} — R isa smooth, 0-homogeneus function with
mean val ue zero on the unit sphere S 1. More precisely K (x) = I'(x)/|x|% where
I'x)= {Ff'."} isthefourth-order tensor identified in the second part of [19], Section
5, seedso []4], formula (6.2). See also [26] for similar representation formulas.

By the Calderon-Zygmund theory (see [35], Chapter 2, and [4]) the operator
T* isof type (¢.q) forany 1 < g < ~+oc. In particular it is of types (2, -3%)
and (2 4+ 8,2+ B). As Theorem 3.3 is stated only in the scalar case, we may
make a standard extension by considering for every i = 1,... ,n the operator
T; (v) .= T*(ve), where {g;}; isthe canonical basis of R"; the facts that

ILNSIT I <Y IT. f<g = 1fl6,, < lglle,,
i

imply that we may apply Theorem 3.3 to each 7; and deduce the result for 7*. We
want to use Theorem 3.3 with the following choice:

3n
G =Gy, 51 =

= , =2 , T=T".
n+2 52 TP

Denoteby M1 = M1(n) and M2 = M»(n) the sy and s normsof T*, respectively.
We observe that, since the function G, » is convex, see (g) of Lemma 2.2, (3.3) is
setisfied. Again, by the definition of G, ,, it follows that for each 1 € (0, 1), the
functionsG ;. (t)/t**and G, ;. (¢)/t*2 arerespectively increasing and decreasing. It
remainsto check inequalities(3.4), (3.5) uniformly for A € (0, 1), i.e,, theconstants
K3 and K, must be chosen independent of A. Sincetheargument isvery elementary
weshall only check (3.4), because (3.5) issimilar. Wefirst notethat asimple change
of variable allows usto consider only the case . = 1: indeed, assuming (3.4) when
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A = 1for asuitable K1, then

/t Gp,k(é:) ﬁ _ )\‘51—2 /t Gp’l()\g) %
o &1 & o (&)1t A
ez /xt Gp18) ﬁ < Kl)\sl_zG"’l(M) _ KlG,,,)L(t)‘
0 &1 & (Ar)s 11
Now we check (3.4) for A = 1 and we show that it is possible to take K1 = 1/8.
Indeed, since p < 2 thefunctions — (14 1/s)?~2 isincreasing,

/ (Gpa®) 2 _ / (L 12t
o & & 0

t
< (14 1/nP2 / gralge
0

_ A+ Gpan)
(p—sprst = Bt
As mentioned above, asimilar argument, also showing that it is possible to choose
K2 = 1/8, appliesin order to check (3.5). Now we apply the interpolation The-
orem 3.3. It follows there exists a constant ¢ = ¢(n, y1, B), but independent of v,
p € [y1, 2] and A, such that

IT*W)l6,, < clvllg,,

forany v € C®°(R"; R"z). This estimate, together with the pointwise inequality
(3.6), gives (3.2) inthecaseu € C*°(IR"*; R"). The general case now follows by a
density argument since the function G, satisfies the A, condition and hence the
space C®°(R"; R") isdensein LY (R": R"), see[28]. O

We conclude the section with alemmafrom the theory of Orlicz spaces, which
is standard when a single Young function isinvolved in the statement; since we are
going to deal with a sequence of Young functions we include a dlightly different
proof.

Lemma 3.4. Let A;, — 0 be a sequence of real numbers, and let u;, € LOrn (R™)
for every i. Then |lusllg,,,, — Oif and only if [ Gp.a, (upl) dx — 0.

Proof. Supposethat s, := |unllg,,, — 0. Then by the convexity properties of
Gp,., We have

/ Gp.a, (lun)dx = Sh/ Gpoy (lunl/sn)dx = sp — 0,
R® Rn
by definition of the Luxemburg norm. Conversely, supposethat [, Gp 1, (lunl) dx

— 0O:thenfor every ¢ > Othereexistsv = v(e) such that for every h > v we have
€72 [ou Gp o, (lupl) dx < . Then by the structure of G, 5, for h = v,

/R Gp (lunl/e)dx = E_Z/R Gpa(uphdx = e =1,

which meansthat for 1 = v wehave [|usllG,,, < e thatis, unlg,, — 0. O
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4. Higher integrability results

Inthissection we collect some higher integrability resultsthat will becrucial for
subsequent developments. Since our results are of alocal nature, it isnot restrictive
(upon passing to open subsets, compactly contained in €2 and having an appropriate
boundary, and possibly enlarging or reducing some constants) to assume that

IE@IPP e LYQ), nSpr)<y VreQ 4.1

yi<n, O<B<a< Ifllzn@) + 1 fllpnns) = L. (4.2)

n+2
As a first application of the Korn inequalities stated in Proposition 2.7, and in
particular of (a), we observe that from (4.1) and the Sobolev embedding theorem
it follows that

|Du|” + |u|"t e LY(Q). (4.3)

Remark 4.1. The number 8 is going to be quite small in the applications, and in
casethefunction f is, say, in L, weshall treat f asafunctionin L"+"# only; we
could have been more precise by introducing two different exponents, 81 for the
integrability of f and B8, for the distance of y1 to 3n/(n + 2), but we thought this
was hot worth the complication in the notation.

Theorem 4.2. Letu € W5 beaweak solution to system (2.1) and assume that
the vector fields A and B satisfy (H1)—(H5) and (2.4). Then there exist ¢, §1 > 0,
both depending on n, y1, y2, L, ¢ «, B, suchthat if Bor CC €, then

1/(1+481)
<][B |5(u)|p(x)(l+61) dx) (4.4)
R

<c ]f IE@)|P™ dx + ¢ ][ (IDul™ + |u|"1 + 1) dx.
Bogr Bog

Proof.
Sep1: Localization. Fix62 := 141/n,andlet Rg > Obesuchthatw(Ro) < 6—1,

whichispossiblesincew(R) — 0as R — 0 by (2.4); wewill prove the statement
only for balls Bog cC ©Q with R < Rp, and the result for the remaining (larger)
balls may then be obtained by covering each of them with at most a fixed number
of the smaller balls.

Take Bor CcC Q with R < R, and following Proposition 2.6 let us define
P = Pp,u, the projection of u on the space of rigid displacements R with respect
to the L? norm. Define

p1:=inf p(x), p2 = Sup p(x).
Bpr

Br
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By our choice of Rg we have

n+1
P2§P1< p ) (4.5)
and the Sobolev-Korn inequality (2.21) easily gives
_ 6p2/p1
][ u—Pir, < c(][ |E(u)|P/° dx) . (4.6)
Bgr Bgr

Step 2: Caccioppoli-type inequality. Let n e C5°(Bg) be acut-off function such
that n = 1on Bg2,0< n < 1, |Dn| < cR7L, and take

o :=n"2u—P)+w,
where the function w is defined according to Lemma 2.5 as a solution to
divw = —div(n”2(u — P)) = —(u — P)D(n"?). 4.7
We observe that such aw exists since

divu =0, (u —P)YD(nP?)dx =0,
Bpr

and we remark that w € Wol”’Z(BR; R™) by (4.5) and the summability properties
of u. Again by Lemma 2.5 we have the estimate

~ -P
][ |Dw|? dx §c][ “
Bg Br

R
for every exponent p such that the right-hand side isfinite, and with the constant ¢
stable. We use ¢ as atest function in (2.5) and we obtain

(’; dx (4.8)

) ::/ nPZA(x,é'(u))E(u) dx
Br
= —PZ/ n”z_lA(x, S(u))((u -P)o Dn) dx
Br

—/ A(x,&'(u))é'(w)dx—i—/ nP2B(x, u, Du)(u — P)dx
Bg

Bg

—i—/ B(x,u, Du)wdx := (II) + (1) + AV) + (V).
Br
Now we estimate the terms introduced above. By (2.2),

/ nP21E )P dx < c(l) + cR".
Br

Since po > p(x) for any x € Bg, we have nP2 > nP2=DI(p@)1: thys, for every
O<e <],

(an < 8/ np2|€(u)|p(x)dx+C8/ dx + c¢R",
Bg B

u —P‘p(m

R
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where we used Young's inequality and (2.2). Again using Young's inequality to-
gether with (4.8), we have

(1) §c/ |€(u)|p(x)_1|Dw|dx+c/ |Dw| dx
Bg B

R

< sf IE@)PY dx + Cg/ |Dw|P™ dx + ¢R"
Br Br

< sf IE@)|PY) dx + Cs/
Br Br

Finaly, by (H4) we have

u—"7P

p
’ de + C.R".

(Iv) £ c/ |u||Du||u—73|dx+c/ fx)|u —Pldx,
Br Br

V) = C/ lu||Dullwldx +c [ f)|w|dx.
Bgr Br

In order to estimate theselast four quantities, weintroduce thefoll owing exponents:

. B (n+2 [ n\7
wereg (7)) ] “9

With such achoice, since 28 + 3n/(n +2) < y1 < n < nu and using (4.2) we
obtain

-
A
==
A
=

1\* _ V1
l1<q<qusy, (%)él. (4.10)

Using the Holder and Young inequalities together with the definition of P and
Proposition 2.7, we get (all norms are on Bg)

/ lullDullu —Pldx = [[Dullgllu — Pl el gy
Br

(2.18)

A

cllDullg Nullf,, /.-

)
< c/ |Du|qu+c/ lul\*/ dx.
Br Bg

IN
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Again using the Holder inequality and Proposition 2.6, and observing that 4.10
impliesthat n/(n — 1) = n’ = 1* < (y1/w)*, we have

/f(x)|u—P|dx=cR”][ f(x)|u —Pldx
Br Br

n—1 1
CcR" (][ Iu—PInn—ldx) ( [f(x)]”dx)
BRr Br
. 1vi
cR"—l(][ u — PP dx) 1l
Bpg

1n
< Rl ( ][ S dx)
Br

s/ 1E@)|P™ dx + C,R",
Bpg

[IA

A

A

A

with 0 < ¢ < 1. Next we estimate the terms bounding (V); keeping the previous
notation, and recalling that w € Wol”’Z(BR; R"),

/ lul|Dullwldx = [ Dullgllully/w= lwll g/
Br

cliDullgllwll sy 1Dwllyy

)
cllDullg lull eyl = Pll sy

IAE 1IN

N
[

(218

A

cllDullgllull?,, .-
c/ |Du|qu+c/ |u| /"
Br Bpr

Aswedid for (IV) we estimate the remaining term using Korn’s inequality (2.21):
. 1y 1/n
f@lwldx = cR" (][ lw|"t dX> < Lf (01" dX)
Br Bg

Un 1/n
cR" <][ | Dw|"t dx> <][ [f(x)]"dx)
Br Bpr

4.8 — Py /v
< e ([ ) s,
Bgr R
(2.21) Un
< RSl (][ |6(u>|”dx>
Br

g/ IE)|P™) dx + C.R".
Bg

[IA

Bg

A

A

A
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Connecting the previous estimates and recalling (4.10), we find

][ E@)|PD dx < e ][ IEw)|PW dx + C, ][ u—P
Br2 Br Br

+C, ][ (IDu"Y/™ 4 ju|"1/* + 1) dx ~ (4.11)
Bpg

p2
dx

forany0 < ¢ < 1;if weset g := | Du|"/* + lu|t/* + 1, where u = u(n, B >1
was defined in (4.9), then recalling (4.3), wefind that g € L*(Bg).

Sep 3: Gehring lemma. Using (4.6) we obtain:

f,
0
<c<][ |5(u)|”(x)/9dx) <][ |S(u)|”(x)/6dx> +c
Bgr Br

6
< ¢RTMWP2mpV/P11 4 |5(u)|p(X)||i(lIZ§2;p1)/p1 <][ & (u)|P /e dx) +e
Br

u—"Pp2
X

0(p2—r1)

0
< ¢RI/ (][ |5(u)|p(")/9dx) +ec.
Br

Combining the last estimate with (4.6) and (4.11) and recalling (2.4), we find that,
forevery 0 < ¢ < 1and every Bog CC Q2 suchthat R < Ro = Ro(n, cp.0),

][ 1Eu)|PY) dx
Br2

0
< s][ IE@)|P® dx + C, (]l |E (u) [P0 dx) +C, ][ gdx,
By Bg Bg

with C, dependingalsoonn, y1, y2, L, B, cL «-Atthispoint theconclusionfollows
by applying avariant of Gehring'slemma, see [36]. Again, the precise dependence
of the constants can be deduced from [36], seealso[18]. O

Remark 4.3. The possibility of having (4.10) is the main reason for assuming
the lower bound y1 = 28 + 3n/(n + 2). It is then clear that in (4.4) the higher
integrability exponent §; can be made smaller if need be. For related regularity
results see also [31, 10].

The next lemma seems to be stated in a rather awkward form; indeed, we could
have stated it for avector field A(z) independent of x and afixed power p inaball
Bpg, but we preferred to make it appear exactly in the form that will be used later.

Lemma 4.4. Assume A satisfies (H1) and (H2), let y1 < p,, < y»2 and consider a
ball B(xg, 2R); let v e W1-Pn(B(xq, 2R); R") be a solution of

divv =0, / A(xm, S(U))é’((p) dx =0 Vg e CgGiy(B2r).
B(x0,2R) '



Regularity Results for Stationary Electro-Rheological Fluids 233

There exist a constant ¢ and an exponent § > 0, depending on n, y1, y2, L but
independent of R, v, p,,, xo, such that

5 1/(148)
<][ 1€ (u)|Pm+®) dx> <c ][ IE@)|P" +1dx . (4.12)
B(xo,R) B(x0,2R)

We omit the proof of this result, which can be obtained as Theorem 4.2, being
actually much simpler. Again, the dependence of the constants can be checked by
looking at [36].

Inthe remainder of the section all the ballswe consider are centred at the origin
(except at the very end, but it will be specified), and we will omit the indication of
the centre.

We will later apply the next lemmato avector field A p , aswasintroduced in
Lemma 2.4; to avoid the notation, we assumethat A : S, — S, isof class ! and
satisfies, forsome L > 1, A > Oand p > 1,

1A@)| € LA+ 222D P22,

A(R)z = Z_1(1+KZIZIZ)(”_Z)/2|Z|2,
c|DA(2)| £ L1+ 22zH)P=2/2,

DA()E ®E = L1+ A2|z)H)P~2/2 )2,

(4.13)

(4.14)

Lemma4.5. Let y1 < p < y» beafixed number and let i € W17 (By; R") bea
weak solution to the system

divi =0, f A(E(ﬁ))c‘:(q)) dx =0 Yo € CS,odiv(Bl)v (4.15)
B1

where the vector filld A : S, — S, satisfie;s the assumptions above. Then there
exist ¢, 82 > 0, both depending onn, y1, y2, L butindependent of z and A € (0, 1),
such that

(£..

Proof. We need to distiguishthecasesl < p <2and p = 2.

Vp(AEW))
A

1
~ 2 1+dp
Vo (LE (1)) ‘ (14+52) dy <. ][
A By

2 ~ 2
' dy +c 4 ja2dy.
B1

(4.16)

Casel < p < 2. Thiscaseis more involved, and the full proof will be given in
three steps.

Sep 1: Approximation. This approximation procedure will be based on Minty’'s
argument and a suitable use of a priori estimates. Let {®.}.-o be a family of
standard mollifiers; let us define, for » =2 5and y € Bza,

wp =ik Pun, 8= (L b+ [ Dunlfzgp, )"
Moreover, we define a sequence of vector fields Ay, : S, — S, by

Ap(2) = A(2) +8nz .
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The standard existence theory available (see [21,31]) alows us to consider the
uniquesolutionv, € u,+ W&’Z(B3/4; R™) tothefollowing Stokesproblem (remark
that div uy, = 0):

divv, =0, / Ay (E(Uh))g(go) dy=0 Yo € Cg,odiv(B3/4)' (4.17)
B3ja

Plugging the test function ¢ := v;, — uy, into (4.17) and using (4.13) together with
the Young-type inequality of Lemma 2.3, we deduce:

<) Vp(AE (vp)) ‘2
B3y

5(L) + 8h|€(vh)|2> dy

<c /B An(E@)E@r dy < ¢ / |An(E )€ )| dy
3/4

B3/

< (L) . [(1+?»2|5(vh)l ) 2 |5(vh)||5(uh)|+5h|5(vh)||5(uh)|]
3/4

- Vp(AE
<oy ([ o) ay
B3/a

~ 2
v [ (| i) ay. (418
B3/a

Now we use Jensen's inequality, recalling that by (g) of Lemma 2.2 the function
2+ |V, (2)|2 is convex, and from the definition of u;, we estimate

/ ‘VP(/\E(Mh))‘Zdy é/ Vp()»ci'(ﬁ))‘zdy'
B3a A -~ IBamam A

Finally, connecting this estimate to (4.18) and remembering the value of §;, we
obtain

[ (P2 sgane) av<e [
B3/a B3java/n

whereo;, denotesany quantity vanishingwhen — oo andtheconstant ¢ = ¢(L)
is independent of 7 and of A € (0, 1). By (€) of Lemma 2.2 the sequence £(vy,)
is bounded in L”, thus, up to (not relabelled) subsequences, vy, — w € u +
WS”’(Bg/A,; R") weakly in W17 (Bz;4; R™). Our aim now is to prove that actually
w = i. We preliminarily observe that a standard monotonicity argument (“Minty’s
trick”) showsthat v, isasolutionto (4.17) if and only if thefunction wy, := v, —uy
is such that

Vp(AE(i)) |2
T‘ dy + op,

(4.19)

(Dn + Dy 1=/ A(Eun) + E@))(E(p) — Ewp)) dy

B3/a

5 fB (Eun) + E@)(E@) — Ew))dy 2 0 (4.20)
3/4
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forany ¢ € Cg%;y,(Bs/a). Now, ¢ being a fixed smooth test function, using the
Cauchy-Schwarz inequality we have the following estimate for (11);,:

(D] = C\/Sh/ (14 1E@n)1?) dy x
B3/a

y [1+ \/ah / |5(uh>|2dy+\/ah / |8<vh>|2dyJ;
B34 B34

by (4.19) and by our choice of §; it follows that (1), — 0. Sincew, — w — i
and u;, — u, letting h — 400 in (4.20) yields

/B AEG@) + £@)) (E(@) — Ew — ) dy = 0
3/4

forany ¢ € Cg%;, (€2). Then, again by Minty’s trick, this implies that w € @ +

Wé’p (B3/4; R") is aweak solution to (4.15), and the uniqueness of solutions to
(4.15) yields w = 1.

Sep 2: Apriori estimates. Herewe find uniform higher integrability estimatesfor
the functions vy, . We shall benefit from [13]. Let us put

o == Ap(E(wn))

we note that the vector field A;, has quadratic qrowth, and from our assumptions
it follows that v, € WlfJ’CZ(BgM) and oy, € W,o’CZ(Bg/4; S,): for a proof, see for
instance [12], Theorem 3.1. Moreover there exists a “pressure” function p;, such

that

pn € L%(By/a),  (Pn)Bys =0,
and if we set
Th ‘= O — ph]In, (4.21)
then
| wEwar=0  vpecs sy (4.22)
B34

thus Dp; = divoy, € L .(Bsa) and divy, = 0 (see, eg., [20]). By (4.22) we
have, for every index «,

/ 0uTh E()dy =0 Yo € C80(33/4). (4.23)
B3/a

From now on we shall omit the subscript /4, simply writing o, 7, p, v instead of
on, T, Ph, vy respectively; the full notation will be recovered later. Recalling that
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v e WI%CZ in (4.23) we use as atest function ¢ := %3, v, wherey € C3°(B3ya) is
acut-off function, equal to 1 on By/>. Since divv = 0 we easily get

/ neaaa E(0yv) dy
B3/a

= — f o Tijd0v 8% dy (4.24)
B3/a

—2/ 0u Tij Sia(v)ajnady +/ 0y Tij aiv"‘ajnGdy
Bg/a Bz

= —2(|)1 + (|)2
We estimate the last two terms: using the fact that Dp = div o we obtain

H1= / [3a0ij Eia();1° — B} gia(v)ajﬁ(s] dy
B3/a
= f [3a0ij Eia()3n° — 8y0j0 Ekj (U)3k776] dy
B3y
= 6/ nsaaoS(“) dy ,
B34
where we used permutation of indices and we introduced the tensors Q and S as

0 = Eia )30 — Kia&j)am . @ = 3[0@ +T(Q“)]:

wedenoted (thisistheonly spot whereit appears) by K the Kronecker symbol, since
the standard § is used quite often in this paper. Using Cauchy-Schwarz inequality
we obtain:

(D1l = 63[ n°I DEW)IIE )| Dyl dy
B3/a

+ec f n°DA(E())E () ® S@ dy
B3/a

<c / 5181 DE W) 2 dy f Sn%1E (v) R dy
B3ja B3/a

+c\// nBDA(E(1))E(Bv) ® E(Iv) dy
B3/a

X / n4DA(E(v))S@ & S@ dy
B3/a

(4.19)
< ¢ f n80,0 E(Buv) dy
B3ja

X \// [5I5(v)|2+(1+)»2|5(v)|2)¥|5(v)lz] dy, (4.25)
B3/a
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with ¢ independent of 4. For (1),, since div t = divv = 0 we have

(Dl = / T (90 3O dy| = / 70" 30 dy
B34 B34
= / ;0% 9 jn°dy| < c/ (It + %) dy  (4.26)
B34 B34
“21) 2 2 2 2 2
< c/ (o + Ipl2 + 102 dy < c/ (Io1? + 1v1?) dy
B34 B34
(4.13),p=2

< e /B [(L+A21E@)HP=221E )% + 8IEW)I* + [v|%] dy,
3/4

where we used the estimates of LADYZHENSKAYA for the pressure function (see
[20] Chapter 3 and the remark at the end of this proof) in order to perform the
second-last estimate. Connecting (4.25) and (4.26) to (4.24) and using Young's
inequality, we obtain

/ 18+ 226D P22 (3gv) P dy
B3/

(4.14) .
< c[ n°0u0 E(0qv) dy (4.27)
B34

< e / [BIE@2 + [v]Z]dy + ¢ / L+ 22E@PP22IEW) 2 dy,
B34 B3/a

where ¢ isindependent of 4. Now we set x :=2*/2ifn > 2and x > 1lifn = 2.
Using the Sobolev inequality together with (4.27) we obtain:

1/x
( | [rtasaiewpr-22ewe] dy)
B3/

S c /
B3/

c / A+ 22E@ P P2PME)P +n° ) 1E@v)*] dy
Bz o

2
DI+ 2P P2 4 w)]]

dy (4.28)

A

4.27)
< c/ [BIEW) 12 + ]2 + (L + A%|EW) D P=2/21E(v) %] dy.
B3/

Sep 3: Conclusion. Recovering the full notation and letting 82 := x — 1 > 0, we

get
</Bl/2

(4.19),(4.28) V,(LE(iD)) |2
< c/ (‘p—)‘ +|Uh|2) dy +op ,
B/ay+1/n) A

1/(1+6
V,(AE (vp)) [20+52) /(o)
Y ‘ dy
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with ¢ independent of . Since 2 < p* by (H5), the weak convergence of vy,
to & in Wb implies v, — @ in L2; moreover the first integral above is lower
semicontinuous with respect to weak W7 convergence, since the function z >
|V, (2)|23+%) s convex, again by (H5) and by (g) of Lemma 2.2, so we get (4.16).
We remark that in this case, since the Gehring lemmais not involved, the exponent
82 isexplicitely determined, independent of L.

Casep = 2. Thiscaseissimpler and no approximation procedure isrequired; we
closely follow the proof of Theorem 4.2.

Let Bog CC By beany ball, thus (beware!) not necessarily concentric with By,
and let n € C§°(Bg) be acut-off function such that n = 1 on Bg2, 0 = n = 1,
|Dn| < eR~1. We again define, as for Theorem 4.2, ¢ := n” (il — P) + w, Where
the function w € Wol”’(BR; R™) is defined asin (4.7) with p replaced by p: in
particular, according to Lemma 2.5, it satisfies

PP
/ |Dw|2dy§c/ u_‘ dx, / |Dw|pdy§c/
Bg Bg! R Br B

with ¢ = ¢(n, y1, y2). Using ¢ asatest function in the system, we obtain

i—P
R

d
X
(4.29)

R

f nP A(E@)E (@) dy = —p f nP~rAE @) (i — P) © D) dy

Br Bg

- / AE @) E(w) dy. (4.30)
Bpr

Forany 0 < ¢ < 1, using (4.13), (4.29) and Young's inequality we may bound the
last integral above:

‘ /B A(S(ﬁ))f(w)dy‘

< C/ |5(ﬁ)llDw|dy+c>J’_2/ |E@@) 1P~ Dw| dy
Bgr

Br

< e/ (IE@) + 2P~2|E@)|P) dy
Br

+Cg/BR(u_P‘2

R
Connecting (4.31) to (4.30) and using (4.13) and Young's inequality to deal with
thefirst two termsin (4.30), we obtain

n ;Lp—z‘ u ;7’ "’) dy | (4.31)

][ (IEG@)|? + AP~2|E(@)|7) dy
Bg/2

<e ][ (IE@)2 + 2P~21E@)17) dy
Br

v f (SR o
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Now we may proceed exactly asin Theorem 4.2: using the Sobolev-Korninequality
aswedid to get (4.6), we arrive at

][ (€@ 2+ WP~21E@)P) dy
Brj2

< e][ (€@ + AP~2E (@) |7) dy
B
: 0
+C, (J[ (lg(ﬁ)lz+AP—2|5(ﬁ)|p)l/0dy> ’
Bgr/2

with the same 6 as in Theorem 4.2. The assertion again follows by applying
Gehring’'s lemma, but this time to the function |£(@)|% + A?~2|E(@@)|?, and re-
calling that by (h) of Lemma 2.2 thisfunction is equivalent to A 2|V, (i) |2. We see
that in this case the last term appearing in (4.16) is not present. Lower bounds for
the exponent §; are available also in this case, but they show, in contrast to the first
case, that 8, = 82(n, 1, yo, L) dependsasoon L, see[18,36]. O

Remark 4.6. In (4.26) we used the estimate

/|ph|2dx§c/ lon|? dx,
B B

where B = B34 and the constant ¢ depends on » (and the radius of the ball). Since
the proof of this pressure estimate is scattered through the literature, we sketch
here how it may be obtained: denote by L : H(}(B; R") — L2(B) the divergence
operator Lu = divu, so that its adjoint operator L* : L2(B) — H 1(B;R") is
givenby L* f = Df inthe sense of distributions. We remark that the range of L*
is closed, thus there exists a constant ¢ such that for every f e (KerL*)+

I fllg2 = ellL* fll g1 (4.32)
Since the perturbed vector field A, haslinear growth at infinity (recall that p < 2)

and sincev;, € H1(B; R"), we deducethat Do), € H~1(B; R"); aso, from (4.17)
and the fact that o}, is symmetric we deduce

/ opDpdx =0 Vo € H&(B; R™) such that dive = 0.
B

Then Doy, € (KerL)t. Thus there exists p, € L?(B), which we may take with
average zero, such that Doy, = L* py,: then p;, € (KerL*) and, using (4.32),
Ipullp2 = cllDopll g1 = cllonll 2.

Note that in the previous argument the boundary value of vy, isirrelevant.
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5. Decay estimates

Here we make some preliminary reductions and fix some quantities that will
be important in the remainder of this paper. As we remarked at the beginning of
the previous section, the local nature of our results allows usto suppose, in view of
Theorem 4.2, that

E@)[POE e 11(Q),

where §1 isthe exponent introduced in Theorem 4.2.

Remark 5.1. This point deserves an explanation; in the previous section, and in
particular in Theorem 4.2, we proved a higher integrability result which is only
local, thus a standard covering argument shows that for any Q' ccC Q there ex-
ists 81, depending aso on €/, for which |€(u)|P® @) ¢ L1(QY). It may well
happen that §(2') — 0 when Q' 7 Q, so the assumption above has to be read
as asimplification of the following procedure: take a sequence 2, /' Q and the
corresponding exponents (Sf and continue with the proof; then you will actually get
partial regularity (i.e., upto aset of null measure) only in 2, but thisleadsto partial
regularity in . Since we have already too many indices around, we preferred to
drop this  altogether.

A simple argument based on alocal application of the classical Korn inequality (a)
of Proposition 2.7, together with a standard covering procedure and the fact that
the exponent §1 can be made smaller at will (see Remark 4.3), allow us to suppose
also that

f | Du| PP gy <« 400, 0 <81 <min{ys —1,1/n, 8}, (5.2)
Q

where$ istheexponent definedin Lemmad4.4. Fix M > 1anddenoteby L = L(M)
the constant given by Lemma 2.4: we apply Lemma 4.5 in a situation where the
vector field A considered is exactly as in Lemma 2.4, that is A(z) = Ap.,.(2)
with | P| £ M. Recalling that the statement of Lemma 4.5 is a so independent of
the particular solution v, we come up with a further higher integrability exponent
82 = 82(M). Also this 8> can be made smaller if need be.

We remark that there is a crucial difference in the quantitave behaviour of the
two exponents 8, and §,: indeed, if M — +oo, we have in general L — +o00,
and so it may well happen that 5, — 0, see the second case of Lemma4.5; on the
contrary, 81 isafixed quantity, independent of the value of M and only depending
on thefixed datan, y1, y2, L, B, cL.«, thusit remains bounded away from O when
M — +oo. For this reason, without loss of generality we shall also assume that
82 < 8q.

After fixing M, we select aradius Ry, > 0insuch away that w(Ryy) < 82/4:
fromnow on, © cc 2 will denote an open subset whose diameter does not exceed
Ry. Inthisway if, similarly to what we did in the previous section, we set

p1:=Iinf p(x), p2 = Sup p(x), (5.2)
@ @
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then

p2(1+81/4) < p1(1+681) = p(x)(1+81),

p2(L+62/8) < p1(1+52) < p1)(L+ 52) 63

whenever x € O. We shall often consider balls B(xg, 4R) CcC O, denoting by p,,
anumber such that:

DPm = SUpp(x) = p(xp), for some x,, € Bag .
Byg

According to (5.3),

p2(1+81/4) < pu(1+81) , p2(1+82/4) £ pu(1+82). (54)

We remark that the numbers p;, p» are fixed with O, while p,, changes when
B(x0, 4R) CC O moves. Finally, u € W51 (2; R") is the solution appearing in
Theorem 2.1; without loss of generality we assume al constants ¢, Cjs to be no
smaller than 1. We start with a technical lemma.

Lemma 5.2. Assume (H1)—(H6) and let B(xp, 4R) CcC O, where O CcC Qisan
open subset as described above. For every Cy; = 1, there exist 8, depending on
n, y1, y2, L, B butindependent of M, R and xg € @, andaconstant €y, depending
alsoon Cyy, suchthat if v € u + Wol”””(B(xo, 2R); RN) isthe (unique) solution
to the system,

divv =0, / A(xpy, EW)E(@)dx =0 VYo € Ciyy(B2r) (5.5)
B(x0,2R)

and, if
(I1Du|P2) g ar + (u]"%)xo.48 < Car, (5.6)

then v € WL-P2(B(xq, 2R); RY) and
][ |Du — Dv|P?2dx < Cy RP. (5.7)
B(x0,R)

Thereader may get slightly confused at this point. Indeed we are freezing the vector
field A(x, z) a apoint x,, which is different from the centre xg and may even lie
outside the ball By, athough x,,, € B(xo, 4R).

Proof. Throughout the proof, al balls we consider will be centred at xg; aso,
instead of introducing anew symbol wewill denote by C,, any constant depending
through known, immaterial quantities on the actual Cy, in the statement. Since
by our choice of © we have u € WLPn(Bag; RN), we may test the weak form
(5.5) with the function v — u, and using the monotonicity properties (2.2) of A and
Young's inequality we deduce

(5.6
][ IEW)|Pmdx < ¢ ][ [E@)IPmdx +c < Cy. (5.8)
Bag

Bag
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Using Lemma 4.4 and the previous inequality, and keeping (5.1) in mind, we find

(4.12) (1+41) (5.8)
][ |E) [P gy < c<][ |£'(v)|p’”dx) +¢ £ Cy. (59
Br Bog

Moreover, applying Theorem 4.2 we have:

5.3
][ |Eu) P23 gy < c][ 1E )PP gx 4 ¢ (5.10)
Bag Bar

(4.4) 1+61 . 1+6;
< c(][ |5(u)|p(x)dx) +c<][ (I1Du|” + |u|"t +1)dx>

Bar Bag
(5.6)
< Cuy.

Now we observe that, if ¢ € W&”’"’ (B2g; Ry and div ¢ = 0, then
Iy = ][ [A Gt E©)) — Al E@)] £(g) dx
Bog

= ][ [A(x, EWM)) — A(xm, EW))] E(p)dx — ][ B(x,u, Du)pdx
Bog Bor
= (1) + (I1).

Letting ¢ := v — u in the previous formula and using (2.3) we obtain

Mzt A+HIEWP+IEWPP=2/21Ew) — Ew)Pdx,  (5.11)

Bag
while using (H3) and Young's inequality yields:
(n (5.12)
< co®) § A+IEWPRD™E (og+ W) + 1) (EW)] + 1E@)]) dx

Bag

pm
co® § [@+1£an (10g7 1 @+ @) + 1) + 1€ | d
Bar
(H6) (5.8),(5.10)
S RT 4 AH[E@)P Y fE@) Py S CuR®,
Bar

A

and
|(|||)|§C][ IDullullu—vldX+C][ |f(x)[lu —vldx .
Bog Bar

Remark 5.3. The chain of inequalities (5.12) is the only point in the whole paper
whereweneed thefull strength of (H6) instead of theweaker form (2.4) of continuity
of p; thefact that in the statement of the lemmathe constants do not seem to depend
on « is due to the condition « > g added in (4.2).
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We keep the notation introduced for Theorem 4.2, but this time we take u = 1
and g = (y{/2), sothat again ¢ < y1, asfor (4.10). We apply the Sobolev-Korn
inequality (2.20) and we estimate asin Theorem 3.1:

][ |u||Dul|lu — v|dx
Bag
7 .o\ .o\
<][ | Du|? dx) (][ |71 dx) <][ lu — v|"1 dx)
Bog Bogp Bog

(5.6) . 1/yf n
< Cu (][ lu — v|"1 dx) < CyR <][ |5(u)—5(v)|y1dx>
Bor Bor

A

and

][ [f () [|lu —vldx
Bag

i} 1y} 1/n(1+B8)
<Cu (f lu — v|'t dx) (][ | f ()P dx)
Bogr Bog

< €y RP/BHD.

Connecting the previous estimates with (5.11) and (5.12), in the case p,, = 2 we
immediately find that

][ |Du — Dv|P"dx < ¢ ][ 1EW) — EW)|Pm dx < Cy RP/BHD - (513)
Bg Bog
whereasif p,, < 2 we have, by the Holder ineguality and (5.8),

][ |Du — Dv|P" dx
Br

<c ][ |E(w) — EW)|P dx (5.14)
Bar

< c\/ A+ IEWI? + 1EW) D) Pn=2/21E(v) — E(u)|? dx
Bar

X\/][ (|5(u)|1’m + |5(v)|pm)dx < Cy RP/ABHD
Bar

This estimate is not yet satisfactory, since p,,, changes as xg moves (as we already
remarked). We are amost ready to prove (5.7). Note that (5.1) and Korn-Poincaré
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inequalities (2.19),(2.20) imply

][ |Dv|Pm(1+51) dx
Br

Pm(1+51)
< ¢ ][ |E (v) [P 300 g c(][ v — (v)2r| dx)
Bg Bog
(5.1),(5.9) p2(14+1/n)

< Cut c< ][ e — ()2l dx) (5.15)

Bog

Pm (1481)
+c<][ lu — v|dx)
Bor

(5.6) 1+41 (5.6),(5.8)
< Cy+c (][ IEw) — Ev)|Pm dx) < Cu.

Bog

In much the same way, from (5.10) and (5.4) it also follows that
][ | D[ P2/ gy 4 ][ | Du| 2D gy < Cyy. (5.16)
Bpg Bgr

Using thislast information we finally interpolate as follows: if

5 <i_;>l (i_;>
" \pm p2(l+81/9) p2  p2(l+81/4)
and thus by (5.4)1

p20 81/4 Slt+d 1
pm 14+ G1/BH — (pn/p2) ~ 4+~ 4
then by (5.13)—(5.16)

][ |Du — Dv|P2dx
Br

(p2)/ pm 1+1370/4
< (][ |Du — Dv|Pm dx) <][ |Du — Dy|P2+51/4) dx) !
Bg Bg

< CMR‘Z(ﬂﬁJrl)’;;zT? < Cp RP/BBHD . RE,
and (5.7) followswith g := B/8(8 + 1), since 81 dependsonn, y1, y2, L. O
Now we introduce the numbers g, B, depending on n, y1, y2, L, by:

g:=min{2, pa},  B:=B/ya (5.17)
and we define the fundamental quantity

E(xo, R) := ][ |Vo(Dut) — Vo (Dtt)g.8)?dx + RP
B(x0,R)
whenever B(xo, 4R) CcC O.Roughly speaking, E (usually called excess) provides

an integral measure of the oscillations of the gradient Du in aball Bg. The next
decay estimate for E isthe keystone in the proof of Theorem 2.1.
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Proposition 5.4. Under the assumptions of Theorem2.1,let M > 1andlet O cC
Q2 be an open subset related to M in the way described above. There exists a
constant C (M) such that for every 0 < t < 1/4thereexistse = ¢(t, M) such that
if B(xo,4R) CcC O and

|(Du)xo, ekl [(Du)xo, R, [(DW)xg,ar ], [(W)xo, Rl = M,

E(xg, R) < &, E(xg,4R) < 1,

(5.18)

then
E(x0, TR) < C(M)7P E(x0, R) (5.19)
with B defined in (5.17).

Proof.
Sep 1: Blow-up and limit system. Arguing by contradiction, we suppose that for

acertain t there exists a sequence of balls B(xy,, 4Rj,) CC O such that

|(Du)xh,rRh|a |(Du)xh,Rh|a |(Du)xh,4Rh|’ |(u)xh,Rh| § M,
(5.20)
/,L% = E(xp,, Rp) — 0O, E(xp,4Ry) £ 1,
but
E(xy. TRy) 2 C(M)TP Exy, Ry) (5.21)

for some constant C (M) whose value (independent of t) will be defined later;
without loss of generality we may assumethat R, — 0and u;, > 0. Using (d) and
(e) of Lemma 2.2 we immediately find that there exists Cj; such that

(IDu|P?) 5, ar, + (1), a8, < Cu. (5.22)
Indeed
(IDu|P?)y, ar, < ¢ ][ |Du — (Du)y, ar, "2 dx + Cy
B(xp,4Rp)

< CmE(xp, 4Ry) + Cy < Ci,

and the bound on (Ju|"1 )x,.4r, follows by (5.20). Now we define (obviously not
for h = 1, 2) the numbers p;, asfollows;

phi= Sup  px) = pXnm), Xhm € B(xn, 4Rp) . (5.23)
B(x;,4Ry,)

Remark that in general p, # p(xp). Letuy, € u + Wol"”l(B(xh, 2R;): R") bethe
unique solution to the system

divu, =0, / AQhm, Eun)E(@)dx =0 VYo € Coyy(B2gr,)-
Bag,
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By Lemma5.2 the sequence uy, € u + Wol”’z(B(xh, 2Ry); R™) satisfies
][ \Du — Dup|P2dx < CyR”, (5.24)
B(xp,Rp)

with Cy, B independent of /. Define

Py := (Du)y, r, )»% = ][ |Vp, (Dup) — sz(Ph)|2dX + Rﬂ,
B(xn,Rn)
(5.25)

where A istheexponent introduced in (5.17); weremark that P, isnot the average of
Duy,. Werescale each function uy, intheball B(xy, Ry) inorder to have a sequence
of functions defined on B(0, 1) = B1:

v () := Ovw Ri) " Hun(xn + Riy) — (i), gy — RiPry)

for y € B(0, 1). Applying (d) of Lemma 2.2 yields

Mfz ][ |V, (M Dy (0) P dy = /\;2 ][ |V (D (x) — Py)|? dx
B(0,1) B(xp, Rp)

< Cury? ][ |V,p (Duj(x)) — Vo (P)|?dx < Cy (5.26)
B(xp,Rp)

by (5.25); so, by (5.17) and (€) from Lemma 2.2

-2
DL 1y + Lipo=2) 1Ay 2 1DVl L1,y S Cu

uniformly in 4. Remarking that we also have (vj)o0.1 = 0, by eventually selecting
a subsequence we show that there exists v € Wl*i(Bl; R") suchthat ash — 400

lvp —v|2 — 0 strongly in L1(By),
AZZ_Zlvh —v|”2 -0 strongly in L1(By) if pa > 2,
Dvy, — Dv weakly in LL(By; R™), (5.27)
Xhon = Xoo inR”, withxo € O,
Py — P inR", with|P| < M.

Let us just remark that (5.27)1 follows by the Sobolev embedding theorem since
2 < yf < p3 by (H5). Finally, we prove that

A2 < Cupd, (5.28)
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arelation that will be useful in what follows: in particular it implies that k% — 0.
Using Lemma 2.2 and Jensen’sinequality we get

(©

A2 < Cy ][ |Vo(Dup — Pp) | dx + R,'f
B(xp,Ry)

(b) R
< Cu ][ (|Vp2(Duh — Du)|2 + |V (Du — Ph)|2) dx + R{:
B(xn,Rn)

(d), (e
< CM][ |Duy — Du|P? dx
B(xp,Rp)

2/p2
+CM1(p2>2)<][ |Duy, —Du|p2dx> +CMM%
B(xp,Rp)

(5.24) (5.17)

As we introduced the rescaled functions vy, it is natural to introduced a sequence
of rescaled vector fields:

Ap(@) = Ap,2,(2) = )»,;1 [ACenm: E(P) + An2) — AXpm, E(Pr))]

forany z € S,. Itisclear that each Aj, isof the type considered in Lemma 2.4 and
consequently satisfies the growth and the ellipticity conditions (2.15), (2.16) with
L = L(Cy) = L(M) independently of 1 as was chosen at the beginning of this
section. By the definitions of A;, and vy, it follows that each rescaled function vy, is
a solution to the following rescaled system in Bj:

divv, =0, /B Ap(EWn))E(p)dx =0 VYo e Coy(B1). (5.29)
1

Now, using the fact that p, < p» by (5.2), (5.23), and using the information in
(5.27), we deduce as h — oo that the limit function v satisfies the following limit
system with constant coefficients:
divv =0, / D;A(xeo, E(P)EW) ® E(p)dy =0 Vo € Cqyiy(B).
B
(5.30)

The uniform condition in (H2) implies that the matrix D, A(x, £(P)) satisfies the
following strong L egendre-Hadamard condition, see e.g. [17]:

Cof M1 £ (D A(xoo, E(PYA® 11, A @ 1) < Cag|A?|uf?

for any A, u € R" and for some constant Cy,. Therefore, from the standard regu-
larity theory available for such systems (see[14], Lemma3.0.5) it followsthat v is
smooth and

|Dv — (Dv)|°dy < Cyt? (5.31)
B
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for any < 1/4. Moreover,

sup|Dv| = c(n, y1,v2, L) [ |Dv|dy = Cy. (5:32)
Bi)2 By

Actually, when p, > 2 the previous estimates are an easy consequence of the
arguments developed in [14]; in the case p, < 2itispossible to get (5.31), (5.32)

by combining the argumentsin[14] with thosein [8], Proposition 2.10. We remark
that using (5.31), (5.32) and the estimate (2.7) we have, for every p,

][ |V,(Dv — (Dv),)|?dy

B

<c o IDv— (D) >+ 1(p=2)|Dv — (Dv).|P dy
B:

< ][ (1+ Culip=2)|Dv — (Dv)[>dy < Cyt2. (5.33)
B

Sep 2: Srong convergence(l). Herewearegoingto provethat, up to not-relabelled
subsequences:

imag? [ Wi €)= E@nEdy =0, (5.3
h B1/2
We shall do this by first proving that, again up to not-relabelled subsequences,
Iimk;zf [V, 0 (E@) — Ep)))I2dy = O; (5.35)
h B1/2

then we shall improve (5.35) into (5.34), using the higher integrability estimates
of Lemma4.5. Let n € C3°(B1) be a cut-off function such that » = 1 on By2,
and consider the test functions ¢, := n” (v, — v) + w;, where, by Lemma 2.5,

wy, € Wy”"(By; RY) is such that dive, = O, ptw, C K CC By for afixed
compact set K and

|Dwp|Prdy <c | o, — v|P" dy, |Dwy2dy < ¢ | |op —v[®dy
By By B By

with ¢ independent of /. By (5.29), (5.30) we have

(D :/19 [An(E () — Ap(EWN] E(pn) dy
1

:/B [D:A(xeo, E(P)EW) — AR(EWN] E(pn) dy = (1D
1
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Since v issmooth | D, A(xs0, E(P))E (V) — Ap(E(v))| — 0 uniformly on compact
subsets of By, we have (I1);,, — 0. To deal with (1), we write:

Dy = /1; [AR(Ewn)) — Ap(EN] NP E(vy — v) dy
1
+ P /B [An(E@n)) — Ap(E@N] 7" ((vy — v) © D) dy
1

+ fBl [An(En)) — Ap(EW)] E(wy) dy
= I, + V), + (V).
By the elipticity property in (2.3) it follows that
1y
Ze /l; QL+ IEPD) + ME @D+ IEPD) + MEWP T x
1

x |E(p — v)[Pdy
S -1 2 N N2
=2 Cy (114 [E(PR) + M EW)° + [ApE(vp — V)[F) IE(n —v)|“dy
Bi/2

> Cythy f [V O (E(0) — Eui)))* dy,

B1)2

where to perform the last inequality we used (5.32) and the fact that | P,| < M by
(5.20), (5.25). We estimate the remaining terms:

(V) = C/B [HARE W) + [AR(E @] v — vpl|Dnl dy
1

Ph=2
Se| A+A2EID T 1EWIlvn —vldy +Cum | v —valdy
By B1

-2
<e | @+A21E@0PD T 1E@Rdy (537)
B1

Pp=2
+cg,M/ (@421 — 0D " 10 — w2+ | — val) dy.
By

whereto perform the last estimate we used the Young-type inequality (2.11); inthe
same way we also get

M e [ @+ 22ER T 12 dy (5.38)
By

pp—2
+Con /B (@ + 2R21Ewn D 1€ )+ 1En)]) dy.
1

Now we use (2.7) and both inequalities (5.36) to show that the integrals on the last
linesin (5.37) and (5.38) can be bounded by

/ 2
Cs,M( / lv—vil2dy + [ v —val? + Lippo2) 102 |v—vh|p2dy) -0
B1 By
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ash — oo, by (5.27)1,2. Connecting the estimatesfor theterms (1), . .. , (V);, we
obtain

IimhsupA,jZ/ |V, (i (E) — En)))[* dy

B1/2
< celimsupa; 2 / Vo Gor o)) 2y
h B

(5.26)
Scelimsupr,? | |Vp,(Dup)l?dy < eCa,
h B1

and (5.35) follows by letting ¢ — 0. We are now going to prove (5.34): for this
we rely on Lemma 4.5. We observe that when |z| = 1 then (5.3) and the elemen-
tary properties of the function V,, imply that |V,,,(2)1? < ¢|V,, (z)[23+52) with ¢
independent of /2, and when |z| < 1then |V, (2)| = ¢|V), (2)], thuswe have, using
also (b) of Lemma 2.2 and denoting as usual by o, a quantity that vanishes when
h — o0,

32 / 1V, G (EQ) — Ea))2dy
Bij2

< cth[ / |V, Gt (E0) — E@I) R dy
(AnIE@W)=E(Wp)|<INBy)2

2
/ |VPh A (EW) — 5(Uh)))| (1+382) dy:|
(hlE@)—E@IZLNBY2

(4.16),(5.35) V., (A, Dv) [2014+62)
< o+ e / ph(—h)’ dy
Bi2 M

V., O E 2 1+82
+ C)Liéz </B Ph( )th (vn)) ‘ dy)
1

) 1+52
+ca® (/ |vh|2dy)
B1

< o + CM)»,2152 — 0,
where we used (5.27), (5.32) and (5.26) to perform the last estimate, and (5.34) is
completely proved.

Remark 5.5. The previous estimate, and consequently the proof of (5.34), relies
on the possibility of estimating p» < p,(1+ 82), that is, the function p(x) must
have small oscillations when blowing up the solution. This is the main reason to
blow up minimizersin open subset like O, rather that directly inthewhole Q2. Since
the choice of O dependson M and thus on the solution « itself, thiswill forceusin
the next section to adopt a delicate |ocalization argument in the iteration procedure
when proving Theorem 2.1.

Sep 3: Srong convergence (11). Our aim hereisto establish the stronger statement

|imsupx,;2/ |V, (s (Dv — Dup))|?dy = 0. (5.39)
h

Bia
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We preliminarily observe that in the case pp = 2 this property is an easy con-
sequence of (5.34) viathe standard Korn inequality (2.19) and by (5.27): indeed,
keeping into account (h) of Lemma 2.2, we see that in this case, using the strong
convergencein (5.27) and (5.34),

A2 / Vo (A (DY — Dup)) | dy
B1j2
< c/ (IDv — Duy > + 152*2|Dv — Dy, |P?) dy
B1/2
S CMTZ/ [V, (An (E(v) — Ewm))*dy
B1/2
+ c/ (v - wnl? + k£2_2|v —vy|P?)dy — 0.
B1/2

The case p> < 2 is more delicate and needs the full strength of the arguments
developed in Section 3. We start by defining a new sequence of functions w;, €
whrz(Rm; R™): fix acut-off function n € CS°(B1/2) suchthat n = 10n By, and
set wy, = n(v, — v), extended as zero outside By/2. Then clearly

2,2 / |V A (Dvy, — D)) 2 dy < 2,2 / |V iy Dig) [P dy.  (5.40)

B1/s R~

From Lemma 2.2 we have:

2,2 / [V CinEp)) 12 dy < ey ? f Vo i (E(up) — E@)) P dy

R Bl/2

+en? f Vi e (0 — D)2y
B1
= (V),, + (VI), = 0. (5.41)

Indeed, since p2> < 2 weimmediately have, from (e) of Lemma 2.2,

5.27
Wy <c [ on—vPRay ©2
B

O’

while (V);, — 0Oisjust (5.34). Now we observe that as p, < 2
Gpa(lz) £ 2721V, (02)[% £ 2G5 (12, (5.42)

where G, ;. istheYoung function defined in (3.1). Using Theorem 3.1 and acouple
of times each (5.42) and Lemma 3.4, we find that (5.41) implies

,\,;2/ |V, G D) |? dy — O.
]Rn

This together with (5.40) finally gives (5.39) also inthe case py < 2.
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Sep 4: Comparison and conclusion. We preliminarily observe that, using (2.7),

T ][ |V, (Dup, — Du)|? dx
B(xp,TRp)

< et M;2 ][ (lDuh — Du|P2dx
B(xp,Rp)

2/p2
+ Lppryct ™" M;2<][ |Duj, — Du|P? dX>
B(xp,Rn)

(5.24)

[IA

_ B 28
Ca ity 2IRP + 1y R2P172)
B—p 28 _4. (5.17)
< CulRY P + 2 R 5 0, (5.43)
and also, in asimilar way,

M;z ][ |Vp2((D”h)xh,rR/, - (Du)xh,rRh)|2dx — 0. (5.44)
B(xp,TRp)

Since |(Du)y, «r,| < M by our assumption (5.20), we may use (b) and (c) of
Lemma 2.2 together with the previous estimates to obtain

|imsupM;2E(xh, TRp)
h

©
< Culimsupp;? ][ |Vpo(Du — (Du)y, <&,) % dx
h B(xp,tRp)
+CMr’§ Iimsup,u;zRf
h
® B . 2 2
< Cutf +Cylimsupp;, ][ |Vpy(Du — Duyp)|? dx
h B(xp,TRy)
+Cuy Iimsupu}j2 ][ | Vo (Duj, — (Duh)x,l,fR,,)Izdx
h B(xp,tRp)
+ C limsup 1}, ][ Voo (D, — Dut), 2 ,)|? dix
h B(xp,tRp)
k ~
Syt 4 Cylimsupa;? ][ Yy Gun(Dus, — (Dup) )2 dy
h B,
(b) . . 5 )
< Cutf +Cylimsupar; ][ |Vpy (A (Dvy, — Dv))|2dy
h T
+Culimap? V(D0 - DV )R dy
h B;
+ Cylimsupa; 2 ][ |Via G (DV)e = (Dup)o) 2 dy
h .
(5.33),(5.39)

< Cu+ 1Py < Cyth,

where the estimate denoted by * was performed using (5.28), (5.43), (5.44). Now
the contradiction to (5.21) follows if we choose, for instance, C(M) := 2Cy. O
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6. Regularity

In the case of standard p-growth, i.e., when p(x) is constant, once the decay
estimate in Lemma 4.5 is attained the Holder continuity of Du on an open subset
of full measure follows viaa standard iteration argument, see e.g. [11]. In our case
the situation is different, and a delicate localization argument will be worked out.

Proof of Theorem 2.1.
Sep 1. Construction of Qg. Let Ry > 0 be a radius such that w(Rp) < 81/4,
where §1 is the higher integrability exponent introduced in the higher integrability

Theorem 4.2 and eventually reduced in (5.1); it is possible to cover © with afinite
number k of balls B; = B(x;, Rg). Wel&t:

p = sup p(x),
BN

Q= {xo € B; N Q : limsup [(1Dul?”)g.p + (I1t])xq 5] < +00 and

p—0
lim ][ |Du — (Du)yy |7 dx = O},
p=0JB(x0,p)
and finally
k
Qo= U Qb
i=1

We claim that ¢ is the set we are looking for in order to prove Theorem 2.1. We
begin by remarking that ¢ has full measure: indeed with the choice of Rg made
above it follows that, analogously to what we found in (5.3),

PPA+81/4) < p(x)(1+81) foreveryx € BiN Q. (6.2)

From (6.1), the higher integrability result of Theorem 4.2 and the L ebesgue differ-
entiation theorem, it immediately follows that Qg isaset of full measurein QN B;
for each i, and consequently so is 2. We must now prove that Qg is open and that
Du isHolder continuousin .

Sep 2: Localization. From now onwe shall work on asi ngIle). Fix xo € 526: by
the definition of ) it is possibleto find M > 64 such that

. I M
limsup [(I1Dul? )xg.p + (tDxo.0] < =-
p—0 64
As at the beginning of Section 5 we deduce, viaLemma 4.5, a higher integrability
exponent 8, = 82(M), we determine aradius Ry, such that w(Ry) < 82(M)/4
and we consider the ball B(xg, Rys); without loss of generality we may assume
that B(xp, Ry) C B; N Q. Following the notation introduced at the beginning of
Section 5 we put

p2:= sup px).
B(x0.Ryr)



254 EMiILIO ACERBI & GIUSEPPE MINGIONE

Sep 3: Iteration. Fix M as above and let B(xg, 16R) cC O ccC  where
O = B(xg, Ry) = Oy isasin PropositionA5.4; if Cy isthe constant appearing
in(5.19) and 0 < t < 1/4issuch that Cy;t#/? < 1/4, then aminor modification

of the iteration scheme developed in [15] shows that there exists n = n(M, 1) =
n(M) £ ¢ £ 1, withe asin (5.18), such that if

|(Du)xg,cr| + |(Du)xg r| 4 |(Dt) g ar| + (). | < M /4, 62)
E(xo,R)<n,  E(x0,4R) <1 '

then a standard iteration procedure built upon Lemma 4.5 starts and leads to
) g, kg1 (D) o gl M, E(xo, T"R) < /2 (6.3)

for every k = 1. With this choice of O, we find the two numbers = and ,, which
both depend on M. Again by the definition of €2, it is possibleto determine Ry, <
R /1000 such that if p isany of the numbers t Ry, Ry, 4Ry, we have

(DUl Yxg.p + (uD)sg p] < &
u X0,p0 u X0,p0 32’

; 2 _ p'/p p'/2
é ][ |Du = (Duyso, o dx + pF < minf (1) (2)"7, 21,
B(ro.p) 8 8 4

where ¢ = ¢(M) > 1isaconstant coming up in the next estimate and depending
on the ones in (¢) and (e) of Lemma 2.2. We now remark that these inequalities
hold aso in a neighbourhood of xo, i.e., there exists an open set A C B(xo, Ry)
such that xg € A and that, for every x, € A,

i M
DU e p + (D] < 5. 64)
- i 5 . b2 /NP2
Du — (Du)y |7 dx + P <min{(Z)" 72 (1)"'7. 11 (65
c]i(x*,p)' = (Dt pl” dx 4 p7 < {<8> <8) 4} (6.5)

whenever p isany of the numbers t Ry, Ry, 4Ry

Our goal now isto check that theinequalities (6.2) are satisfied (at the point x,
not only at xp), in order to make the iteration work and obtain

)y, kgl (D) kgl M, E(xy, T"R) < /2, (6.6)

Clearly (6.2); issatisfied by (6.4), while in order to prove (6.2), we use (¢) and (€)
of Lemma 2.2 and the Holder inequality, recalling that p’ > po, to get, again for
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p = TRy, Ry, 4Ry,

E(xs, p) = ][ Vo (Dut) = Vo (Du)s, p)P dx + p”
B(xc.p)

[IA

c(M) |Du — (Du)y,,,|P? dx
B(x4,p)

2/p2 R
+C(M)1(p2>2)<][ |Du — (Du)y,,p|7? dx> +,0‘3
B(x,0)

A

. p2/p'
<5(M) |Du — (Du)y,, o|? dx)
B(xx,p)

=

. 2/p

+ 12 <E(M) |Du — (Du)x*,p|” dx) +p
B(xx,p)

(6.5

S n/2<n<1,

thus all theinequalitiesin (6.2) are satisfied with x, in place of xg and by iteration
we get (6.6).

Sep 4: Conclusion. Now we want to prove that (6.6) implies
][ |Du — (D”)x*,p|p2 dx < CM,0/§/4 (63
B(x4,p)

forany 0 < p < Ry. A simpleinterpolation shows that it suffices to prove (6.7)
only for the numbers p of the type p = ¥Ry, to which case we restrict our
attention henceforth. Starting from (6.6), if p» = 2 then by (€) of Lemma 2.2

][ |Du — (Du)y, p|P? dx
B(x4,p)

< ][ Vo (Du — (Du)y, )12 dx
B(x4,p)

6)

(6. .
< CuE (4, p) £ CHE(xi, p)Y? < CypPl?

(now, ascustomary, C, denotesany constant depending on M inaharmlessway). I
1 < p2 < 2,againusing (€) of Lemma2.2and setting S := {|Du—(Du)., ,| = 1},
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we estimate

][ |Du — (Du)y,, ,|P? dx
B(xx,0)

:wnp—”[f -~-dx+/ ~-~dx]
B,NS B,\S

< w,,p_”/ |Du — (Du)y, o|P?dx + ¢ ][ |V, (Du — (Du)x, p)17? dx
B,NS

P

p2/2
<c ][ |Vyo (D — (D), )| dx + <][ |V, (Du — (Du)x*,,,)|2dx)

B, B,
1/2 1/2 ©5 B/4
< Cut [ ECe p) + B Y] £ CuEr Y2 = CupPl,

and (6.7) is proved. Next we have to prove that

lim ][ |Du — (Du)y, | dx =0, (6.8)
=0 B(x4,p)

and again we restrict our attention to the numbers p of the type p = Ry If
p' = p2, thereis nothing elseto do by (6.7); if instead p> < p', weinterpolate

p2 < p' < p'(1+81/9),

thus for some numbers 04, 6>

][ \Du — (Du)y, | dx
B(x,.p)

01
< <][ |Du — (Du)y,, o |72 dx)
B(xx,p)

. 02
x ( ][ |Du — (Du)y, |7 A+51/9 dx> :
B(x4,p)

Since the first factor tends to zero as p — 0 by (6.7), we only need to prove that
for a suitable constant C

][ |Du — (Du)y, |7 W9/ gx < C. (6.9)
B(xx,p)

We first remark that for all 0 < p < Ry
(|D”|p2)x*,p <c ][ [Du — (Du)x*,p|p2 dx + C|(D”)x*,p|p2 <c (6.10)
B(x4,p)

for some constant ¢ depending only on those in (6.6) and (6.7), and thus only on
thosein (6.4), (6.5). We use (2.19) with p = p’ (1 + §1/4) and Poincaré inequality
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to get
][ |Du — (Du),, |7 E51/Y
B(xx,p)

< ¢ ][ | Du|P +61/4) g
B(xe.p)

c ][ |g(u)|pi(1+51/4)dx+c<][ |Du| dx
B(x,p) B(x«,p)
(6.10)

< c<1 + ][ |E (u)| P A+8D) dx).
B(x«,p)

Now by (4.4)

1
( ][ 1€y P @A+ dx) o
B(x«.p)

< e ][ 1E)|P™) dx
B(x4,2p)

+e ][ (IDul" 4 Ju — W)y, 20|"T + [, 20"t + 1) dx
B(x4,2p)

) . vi/p2
c—l—c][ |Du|P2dx + p" (][ |Du|P2dx>
B(x4,2p) B(xx,2p)

C

)p" (1+81/4)

A

o
(3}

(

I

A

by (6.10), and the proof of (6.9) is finished. We conclude by remarking that from
what we proved we have A C ), thus Q) is open.

From these facts and Campanato integral characterization of Holder continuity,
it finally followsthat Du is Holder continuousin 9. O
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