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Gradient estimates for the p(x)-Laplacean system

By Emilio Acerbi and Giuseppe Mingione at Parma

Abstract. We prove Calderon and Zygmund type estimates for a class of elliptic
problems whose model is the non-homogeneous p(x)-Laplacean system

—div(|Du’™ 7 Du) = —div(|F|"™2F).
Under optimal continuity assumptions on the function p(x) > 1 we prove that

= |Du”™ e LY

loc

‘F|P(x) e L1

loc

Vg > 1.

Our estimates are motivated by recent developments in non-Newtonian fluidmechanics and
elliptic problems with non-standard growth conditions, and are the natural, “non-linear”
counterpart of those obtained by Diening and Ruzicka [12] in the linear case.

1. Introduction

In recent years, increasing attention has been paid to the study of the so called gen-
eralized Lebesqgue spaces L™ (Q; RV), that is

(1) L' RY) = {f :Q — R": f is measurable and [ /"™ dx < oo}
o)

where Q < R” is a bounded domain and p : Q — (1, +00) is in general taken to be a con-
tinuous function (there is no obstruction in taking a more general p(x), but the resulting
space has very few properties if no geometric condition on p is imposed). The Luxemburg
type norm

p(x)

S/
p

||f||L‘“('\‘)<Q;RN) = inf{)& > O : Jﬂ dx é 1}
Q

makes L”"Y) a Banach space. Accordingly, the generalized WP (Q; RY) spaces are de-
fined by

WP RY) = {ue L’ (Q;RY) : Due LY (Q; R™)]},
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where Du denotes the gradient of the function u. These also become Banach spaces with

el 2y 2= 1l oy + 1Dl o ey

see [30], [17], [10], [14] for more details and references. Apart from the basic theoretical is-
sues, such spaces are relevant in the study of non-Newtonian fluids. Indeed, the underlying
integral energy appearing in the modelling of the so called electrorheological fluids, as
conceived by RuZzicka, and Rajagopal and Ruzicka (28], [30], [31] in the contest of contin-
uum mechanics, is

(2) [ [DulP™ dx.
Q

The analysis of such fluids is performed in the space W17 (Q; RY). Moreover, energies of
the previous type occur in Homogenization [35], Image Restoration [24] and, more gener-
ally, in the modelling of strongly inhomogeneous physical behaviours. Therefore a great
deal of work has been developed around variational and elliptic problems with “p(x)-
growth” that is, involving the energy (2); see also [3], [4] and related references. Very re-
cently, Diening and Rtizicka [12] established estimates of Calderén and Zygmund type for
Singular integrals in the spaces L™ . This eventually led them to give L”"™ versions of a
class of results that can be obtained through the use of singular integrals, as e.g. the clas-
sical Korn’s inequality and some classical estimates for linear problems as, for instance, the
so called Bogowsky’s lemma: for the equation divu = f, they are able to prove the exis-
tence of a solution u € W 7™ provided f e L? ) has null mean value. Such analysis allows
to give estimates for problems involving second order linear operator with constant co-
efficients as, for instance, Au = f.

In this paper we are going to treat another basic issue concerning the integrability of
the gradient, adopting a viewpoint which is ““dual” to that in [12]: instead of seeking esti-
mates in the spaces L” ™) for solutions to linear elliptic problems with constant coefficients,
we consider classical Lebesgue spaces but we look at the differential operator coming up
when considering the energy (2), and therefore the model of electrorheological fluids. Our
investigation will involve the non-homogeneous p(x)-Laplacean system

(3) —div(|Dul"™ 2 Du) = —div(|F|"™%F) in Q,

whose weak solutions (see Section 2 for precise definitions) are taken in the natural space
Ww1p@)(Q; RV); the vector field F is initially taken in the natural space L*™(Q; R"V) and
the function p(x) is supposed to be continuous and to satisfy (which is not restrictive for
local results)

(4) <y, = px) =<y, < 0.
We remark that, even in the case p(x) = constant, the approach via singular integrals
cannot be used to prove L?-estimates for solutions; our results and techniques are indeed in

the framework of nonlinear potential theory. If w : Rt — R" denotes the modulus of con-
tinuity of the function p(x)

(5) Ip(x) = p(¥)| £ o(]x — y|)
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then the main assumption on the function p(x) will be
(6) lim w(R)1 1) 0
Rop WV OB R ) T

This slightly reinforces the condition considered by Diening and Ruzicka [12], where the
right hand side of (6) is supposed to be a finite number rather than zero, see (18), and plays
a central role in the regularity analysis of solutions of this kind of problems; it is essentially
optimal in order to obtain the results we are going to present, see Remark 2 where our re-
sults are restated in the weaker version that can be deduced when (6) is weakened into the
condition used by Diening and Ruzicka. Both conditions have become customary when
dealing with the energy (2), see [2], [36]. Here we shall prove integrability results for a class
of elliptic problems, that in the model case (3) will lead to establish that for all ¢ > 1

(Q) = |Du’™ e LY

loc

(7) |F|p(X) eL?

loc (Q)

(Theorems 1 and 3). In the case p(x) = constant, this type of result has been established, in
the case of the p-Laplacean equation, in the fundamental paper by T. Iwaniec [19]. As far
as we know, our result is the first of Calderén and Zygmund type valid for elliptic operators
under non-standard growth conditions, see Remark 1 below. Let us remark that such kind
of estimate is relevant for the numerical treatment of problems modelled by energies like
(2), as e.g. electrorheological fluids: the a priori knowledge of higher integrability of the
gradient allows to implement better finite element schemes.

Finally, about the techniques. The main difficulty is the interplay of the nonlinearity
and the fact that the system we consider exhibits the so called non-standard growth con-
ditions, see Remark 1 below. In order to deal with such a peculiarity, we shall rely on a new
and beautiful method to prove L estimates introduced by Caffarelli and Peral [7], [8], and
based on Calderén and Zygmund type covering arguments and iteration of level sets; this
will be combined with a careful localization technique tailored to the non-standard struc-
ture of the p(x)-Laplacean operator, fine estimates in Llog” L spaces and the use of certain
restricted Maximal Operators. We explicitly observe that a consistent part of our efforts
here is put in the task of deriving natural local estimates for the gradient of solutions, as
similar as possible to those available for the case p(x) = constant: what we shall come up
with is a sort of reverse Holder inequality for Du (14), that keeps into account the non-
standard growth conditions exhibited by the p(x)-Laplacean system. As mentioned above,
we shall prove gradient estimates for more general elliptic operators whose degenerate
structure is similar to (3). We finally remark that we confined our analysis to right-hand
side structures as in (3), in order to have the possibility to formulate the regularizing
properties of the p(x)-Laplacean system in the neat way (7), as customary in the case when
p(x) is a constant function [19], [23]. Anyway the arguments presented in this paper allow
the treatment of different equations and systems such as

—div(|Du|/’™2Du) = —divF, —div(|Du|’*Du) = F,

provided suitable integrability assumptions are made on F'; the proofs have to be suitably
modified according to the different structure coming into the play.
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2. Results

General notation. In the sequel Q < R” will be a bounded domain; by “cube” we
will always mean an open cube with edges parallel to the coordinate axes; when relevant,
we will mention the side length, denoting e.g. by Qg a cube with side length equal to 2R:
with a slight abuse, we will call R the radius of such cube. Moreover, for y > 0, we will
adopt the convention that yQ or Q,r denote cubes with the same centre as Q or Qg, and
radius multiplied by y. Adopting a usual convention, ¢ will denote a constant whose value
may change in any two occurrences, and only the relevant dependences will be specified, as
e.g. in ¢(y, p); particular constants will be denoted by ¢, ¢ and the like. For the Lebesgue
measure of a measurable set A we shall employ either of the notations

|A| = meas(A4);

then we define the mean value on a cube Qg = Q of a locally integrable function
ve L] .(Q) by

1
(v) 0, = (V)& Eindx ::@Qj;vdx.

Structure conditions. For the case of equations (N = 1) we shall consider a vector
field a: Q x R" — R" such that z s a(-,z) belongs to C°(R")~ C'(R"\{0}) and the
following growth, ellipticity and continuity assumptions, inspired by the energy density
(12 + | Du*)?™7? are satisfied:

(8)  v(i+ [P £ Doalx 2)2 @ 4 = L + [21P) TR,

©)  lax,2) — a(y,2)| < Lo(lx - yl)llog( + |2)| (4 + [23) * -2

for every x,y € Q, z,2 € R", where v-!, L € [1, o) and the parameter u € [0, 1] appears to
deal simultaneously with the degenerate and the non-degenerate cases (and will be only
briefly seen in the remainder of the paper). The function p: Q — (1, c0) is supposed to
satisfy (4), (5), where the modulus of continuity w : Rt — R satisfies (6); without loss of
generality, we assume o(-) to be non-decreasing. Observe also that, eventually enlarging L
and decreasing v, by (8) we can suppose that

(10) la(x,z)| < L(1 + |z|?)P0-172
and

(11) vl + |22 — L < a(x,z),z) VxeQ, zeR".
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Weak solutions. Let F e L? (X)(Q; R"™) be a vector field; if N = 1, we define as a
weak solution to the equation

(12) —diva(x, Du) = —div(|F(x)|""72F(x))
a function u € W) (Q) such that

(13) [ a(x, Du)yDpdx = [|F(x)["™?F(x)Dp dx
Q Q

for every test function ¢ e W?((Q) with compact support in Q. In the same way,
in N =1, a function u e WH?M(Q; RY) is defined to be a weak solution to the ““p(x)-
Laplacean system” (3) with F e LP*™)(Q; R"V), if and only if

[1DulP™ 2 DuDg dx = [ |F(x)|"™*F(x)Dg dx
Q Q

holds for every test function ¢ € W12 (Q; RY) with compact support in Q. For existence
results concerning weak solutions we refer to [30].

Theorem 1. Let u e W'Y (Q) be a weak solution to (12) under the assumptions (4),
(6), (8), (9) and let |F|P™ € L1 (Q) for some q > 1. Then

loc

|Du|p(x) e L1

loc

().

This result is necessarily complemented by the following estimate (which is indeed the
proof of Theorem 1).

Theorem 2. Under the assumptions of Theorem 1, if Q' == Q is an open subset and

|F|? Sy X (Q') then for every ¢ € (0,q — 1) there exists a positive radius Ry > 0, depending
on

1,71, 72, 7, L&, ¢, o), | 1Du )| iy | IF )]

Li1(Q")
such that, whenever Qs =< Q' and R < Ry,

1
(14) ( f [ Dul™) dx) "< cK* f | DulP™ dx
Or O4r

1
+ cK8< fFPP9 dx 4 1)4
Qur

where ¢ = c(n,yy,7,,v,L,q) and

(15) K= [ |Dul"™ + [F]P) gy 41,

Osr

The previous results extend to weak solutions to the p(x)-Laplacean system (3):
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Theorem 3.  Assume (4), (6) hold and let u e WHP™)(Q; RYN) be a weak solution to the
p(x)-Laplacean system (3) such that |F|"™ e L (Q) for some q > 1; then

loc

|Du|p(x) e L4

loc

().

Moreover, estimate (14) holds as for Theorem 1, with K as in (15) and Ry and ¢ depending
also on N.

Now that the statements have been given with all the appropriate localizations, we
make an assumption to improve the readability of the proofs: we suppose rightaway that

|F|PY) e LI(Q):
it would be a boring but very easy task to rewrite the proofs without this assumption.

Remark 1. Comments on the estimate (14). The appearance of K¢, which prevents
(14) to be a classical reverse Holder inequality with increasing support, is essentially due to
the fact that the operators we consider are anisotropic with respect to growth and ellipticity
exponents; this fact is best framed when set in the following more general context. Let us
recall that a vector field a : Q x R” — R” satisfies non-standard growth conditions of (p, ¢)
type when the ellipticity and growth conditions

(16)  v(u? + 272 < Daa(x,2)2 @ A < L + |21 2P,

hold for all z, A e R", x € Q, where 1 < p < g and v~!, L € [1, c0). Under a suitable small-
ness assumption on the ratio ¢/ p, solutions to the elliptic equation div a(x, Du) = 0 satisfy
an estimate of the type

| Du|

o < cllDul 5 y> 1.

Li(Q L7(Qyn)’

In this case ¢ is a fixed, positive quantity depending on p, ¢ in such a way that ¢ — 0

when ¢/p — 1. The reader may look at [15], [26] and related references. The estimates we

find here obey this general principle: indeed the vector field ¢ we consider in (12) satisfies

locally (p, ¢)-growth conditions where p := nglin p(x) and ¢ := néax p(x). Since p(x) is a
4R 4R

continuous function and the results in Theorems 1, 2 and 3 are local in nature, taking R
small enough we may take ¢ small at will. We shall give an asymptotic estimate on R in
Remark 5 below. []

Remark 2. On the sharpness of (6). Assumption (6) is essentially optimal. Indeed
the occurrence of

(17) EE%)CO(R) log (%) = o0

rules out the possibility to prove that |Dul|’ ™) e Ls for any s > 1, even in the case F = 0;
this fact can be inferred from the counterexamples in [36], [27], [18]. On the other hand, just
supposing that

(18) lim sup w(R) log(i> SM< o
R—0 R
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leads to establishing that there exists a ¢ = g(M) > 1 such that Theorems 1 and 2 hold
whenever ¢ < g; this is essentially the content of Theorem 5 below: a purposeful inspection
of the proof reveals that everything works just assuming (18) instead of (6), and that the use
of (6) may be clarified as follows: for any ¢ > 1 there exists 0 = d(¢) > 0 such that if

(19) lim sup w(R) log <l> <o
R—0 R

then Theorems 1 and 2 hold for the chosen ¢. This fact can be deduced from the choice of
the quantities made in (85). More precisely, once n, y;, 75, v, L and also the norms
I |Du(-)|”<'>||L1(Q), I |F(-)|”(')||L,,<Q), that is the data of the problem, are fixed, the quantity &
depends on ¢g. As a consequence, the possibility of getting L9 estimates essentially depends
on the smallness assumption in (19). Clearly (6) ensures that (19) is satisfied for any choice
ofg>1. [

3. Preliminary material

In this section we are going to collect a list of preliminary results for later use. Let us
start from a restatement of the classical Calderoén and Zygmund covering argument; at the
same time we shall take the opportunity to add more notation about cubes.

Calderon and Zygmund coverings. Let Oy = R” be a cube; we shall denote with
2(Qp) the class of all dyadic cubes obtained from Qy, that is the class of those cubes, with
sides parallel to those of Oy, that have been obtained by a positive, finite number of dyadic
subdivisions of the cube Qy; therefore in particular Qp ¢ Z(Qy). Let us recall a few simple
properties of the class Z2(Qy). If Q1,02 € Z(Qy) then either the two cubes are disjoint:
01 N O, = 0, or one of the cubes contains the other: Q1 = 0, or O, = Q. We shall call 0,
“a” predecessor of Q if Q has been obtained from the cube Q, through a finite number of
subsequent dyadic subdivision; we shall call Q € Z(Qy) “the” predecessor of Q if Q has
been obtained by exactly one dyadic subdivision from the original cube Q.

Proposition 1. Let Qg = R” be a cube. Assume that X < Y < Qqy are measurable sets
satisfying the following conditions: (i) there exists 0 > 0 such that

| X| <0|Qo
and: (ii) if Q € 2(Qy) then
XN Ql>d0/=0cY
where Q denotes the predecessor of Q. Then
|X| <d|Y|.

The (simple) proof of the previous lemma is a consequence of a Calderén and Zyg-
mund type covering argument and its proof can be found, for instance, in [8].

Maximal operators. Let Q) = R” be a cube. We shall consider, in the following, the
Restricted Maximal Function Operator relative to Qy. This is defined as
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Mo ()= s 1]

whenever f € L'(Qp), where Q denotes any cube contained in Qp, not necessarily with the
same centre, as long as it contains the point x. In the same way, if s > 1 we define

Mo (N = sup (firordy)”

0c0p,xeQ *Q

whenever f € L*(Qp). We recall the following weak type (1,1) estimate for M :
(20)  HxeQo: MG (M) ZAH S S [If )y V>0,
Qo

which is valid for any f € L'(Qy); the constant ¢y depends only on #; for this and related
issues we refer to [32]. A standard consequence of the previous inequality is then

1) [V (< 4 T, g1

The similar estimate for the M, operator is

c(n)q’ . )
s(q_S)QJ;!f(y)l dy, q>s,

(22) QJ"!MY o, (YW dy =

which can be deduced from (21), compare [20], Section 7.
The spaces Llog? L. The Orlicz space Llog? L(Q;R") is defined via

Llogl L(Q; R") := {f e LY(Q;R") : [|f]log’(e+ |f])dx < oo}
Q
and it becomes a Banach space with the Luxemburg norm

J % logﬁ<e+ %D dx < 1}.

This space embeds in any L”(Q; R"), for p > 1; more precisely, for any p > 1 the following
inequality takes place:

1110y o= it

(23) 1oyt iy  €(£171 &) W e Llog! L@ RY)

where the constant ¢ only depends on p, and blows up when p — 1 (see (30) below). Here
we want to recall a fact, basically due to T. Iwaniec [20], [22], [5]; let us put

(24) U L10g? 10 = émlogﬁ (e+ ||’/{|‘|1> dx
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where, here and in the following, we adopt the notation

(25) 1Al = f1f1dx.
Q

The quantity [f] Llog L) is comparable to the Luxemburg norm in Llog? L(Q;R") in the
sense that there exists a constant ¢ = ¢(f) = 1, independent of Q and f', such that

(26) NS N progf i) = o i) = € N Liog? Loy

for all e Llog” L(Q;R"). We shall need these inequalities for the range

V2 Y1
27 —— =S ——,
27) 72— 1 =1

therefore, since the constant appearing in (26) is continuous with respect to f > 0 [22], [5],
we shall assume that the constant ¢ appearing in (26) only depends on y; and y,, and is
valid for the full range in (27). Taking into account this fact and combining (23) and (26)
we find that

(28) J171 log” <e + ﬁ) dx < ¢(p, ) (éf 1£17 dx)‘l”

for every f € Llog? L(Q; R") and f as in (27); since the integrals are averaged, the previous
constant does not depend on |Q|. More precisely, from the elementary inequality

B
(29) tloght < [L} P ovt=1,p>1

e(p—1)

we infer (see [29] for details) the following asymptotic behaviour as p \, 1:

(30) (p.B)~ (ﬁ)ﬂ

In particular,
(31) (e+)logl(e+1) < c(yy,p0)0 Fle+ )" viz0

for every f satisfying (27) and every 0 < o < 1. Finally, let us record another elementary
inequality that will be useful later on. The concavity of the logarithm gives

log(e + ab) < log(e + a) + log(e + b)
whenever a and b are positive real numbers. Therefore
"
(32) log’ (e + ab) < 2777 (log’ (e + a) + logP (e + b)),

whenever f satisfies the right hand side inequality in (27).
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Gehring’s lemma restated. We shall later need the following version of Gehring’s
lemma; the dependence of the constants we state below can be inferred from the various
proofs reported in the literature, in particular adapting that from [6], Section 4, where the
dependence on the constants is carefully exploited (see also [21]).

Theorem 4. Let Qug, < R" be a cube and s,q>1; let f € L(Qsr,;R"),
¢ € L*1(Qur,; R") be two functions such that

s o\ oo\
<Q£2|f| dx) éKQ£|f|dx+H<Q{|¢| a’x)

for every (not necessarily concentric) cube Qr S Qugr,, where K, H > 1. Then the following
holds:

s(1+o ﬁ cn,s K cn,s HY\’ s(l4+o ﬁ
P N R )
Ory2 (s — 1) 0r (s — 1)Te Or

Sor all Qr S Oug,, where o > 0 is any number such that

- oS mnf D )

and c(n, s) is a positive constant.

We remark that the previous result falls far from picking the best possible constant in
(33)—indeed the presence of c(n, s) makes the constants not explicit; anyway the estimate
above is sufficient for our later purposes.

We conclude the section with the following elementary lemma, whose proof can be
promptly adapted from Lemma 2.2 in [11].

Lemma 1. Let p €[y, 7,] and p € (0,1]; there exists a constant ¢ = c(k,y,,y,) such
that if v,w € R¥ then:

P P p—2
(6 4 PR = e+ DR + (i + 1ol + Do) Flo - w?.

4. Proof of the results

General setting, I. Here we begin the proof by fixing some objects and notations
that will apply to the end of the paper. We consider a “large” cube Q4r, =< €; during the
developement of the section we shall make several restrictions on the size of Ry. Using (6)
for the second inequality, we shall initially take R, small enough in order to have

n+1

w(8nRy) < —1

I’

(34)

1
0 < w(R)log (E) <L VR <8R
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We start with a preliminary version of Theorem 1, which rests on an application of Geh-
ring’s lemma in the spirit of [3], [36]; we need the following exact statement, emphasizing
the precise dependence of the constants.

Theorem 5. Letue W1 PN (Q) be a weak solution to (12) under the assumptions (4),
(6), (10), (11) and let F € Lp q(Q R") with q > 1. There exist constants ¢ = c(n,yy,,,v, L)
and c; = c4(n, 1,75, v, L) such that the following is true: assume R satisfies (34), let
Qar, =< Q, set

(35) Ko:= [ [Dul"™dx+1
Our,,

and let ¢ > 0 be any number such that

(36) o < min

g
2qo(8nR ) ,qd —

71
KO

Then for every Qr < Qag, it holds

1
(37) ( f |Du|l’ )(140) 4 )Ho gcleul” dx+c(:]f|F|p (140) gy 4 1>1+a'
Or/2 Or

Proof. If Qr S Q4r, We set
pr:=inf p(x),  py:=sup p(x);
Ok Or
then p; — p; < w(2R\/n) < w(2nR), and by the first inequality in (34) we have

P o_ n+1:

(38) Pr n

Now take a cut-off function 7 e Cj°(Qg) such that 0 = <1, =1 on Qg and
Dn < 4/R. We test (13) with ¢ = 7”2 (u — (u),) and we estimate the various terms using
(10), (11) and Young’s inequality:

v [ 97 Dul’™ dx < ¢ [ n7{a(x, Du), Duy + 1 dx,
Or Or

Iﬂprl |<a(x, Du), Dn ® (u - (”)R)>| dx

Or

P2
< ¢ [ 0P Dul’™ dx + ¢ f%—i—ldx,
Or Or )

[ |KIFIPY72F, Duy|dx < ¢ [ 77| Dul™ dx + ¢ [ |F|P'™ dx,
Or Or Or
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QI 171’2_1}<|F|1’(X)’2F,D17 ® (u— (u)g))|dx

_ P2
§cf—‘u (1)l —|—1dx—|—cf|F|p(x)dx
Rp2
Or Or

where { € (0,1) and ¢ = ¢(n,y,,7,,v, L). Observe that we used the definition of p, to de-
duce

__p(x)(p2—1)
P'—W =py VxeQg

and to estimate #” < #” in the second inequality. Choosing { = {(n,7,,7,,v,L) small
enough and connecting the previous estimates we obtain the following Caccioppoli type
inequality:

_ D2
i |Du|"™ dx < cfw—i—ldx—i—c“ﬂp(x)dx.
Orp2 Or Rp: Or

Averaging and eventually applying Poincaré’s inequality by virtue of (38) yields

.Vp_z
| Dul?™ dx < C( f |DM|p_v1 dx) e fIFIPY £ 1dx
Or)2 Or Or

sw(2nR)

N

< cR—an(ZnR)( J" |Du| S dx> Py
Or

(x) N
pde> +cf[FIPY £ 1dx
Or

x<f|Du

Or

20(8nR()
- IR .
<cK," < jf|Du|]»v dx) +cf |F|P™ 4 1dx,
Or Or

where ¢ = ¢(n,y,,7,,v,L) and Ky is as in (35), and in particular Ky =1 so we could
increase its exponent; we also used the fact that R-“("R) < ¢(n, L) as 0 < R < 8nR,, by
(34). The assertion now follows via Theorem 5 applied with the choice f = |Du|"*/* and
¢ = (|F|"™ + 1)'/%, keeping into account (33). []

Remark 3. A4 milder assumption. We explicitly remark that we applied Gehring’s
lemma only with the exponent s = s(n) described in (38); in particular the constant ¢, above
does not in any way depend on Ry, Ky, g. Moreover, to avoid adding another constant to
our already overburdened list, we stated Theorem 5 under the assumption (6); indeed, the
result holds as soon as we assume the weaker (18) instead, but then the general-purpose
letter L in the second inequality of (34) should be replaced by, say, M + 1, and the constant
¢ (but not c,) would depend also on M. [

General setting, II. ' We remark that since Ky = 1 we have for every K = K|

2qw(8nR())

(39) oo Z2min{l,g—1,¢,}K 7
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Now let us set

Ky = [1Duf’™ + |F|P™ 4 2dx + 1
o)

(this will be larger than all the different versions of K we have met or will meet) and

c qg—1
g
2(-71) ? ) 1 > 0’ oM =Gy +q.

K,"

O, = min

Clearly, with K < K,;, we will always have
(40) Om é ag é aM.

Now we are going to bound the maximal size of a quantity, ¢ > 0, that we shall later use as
a higher integrability exponent. We shall pick o of the form

(41) o:=d0y, 0<¢&<min{y, —1,1/2},

where gy is the one appearing in (36). In particular by (39) for all f satisfying (27) and all
K = K,

2qw(8nR) 2qw(8nR)

(42) 0-7ﬁ g C67ﬁKﬂ g é C(”? VY1725 Vs L7 q)a-iﬂK et

We also remark that by (36) and (41)

(43) o< —.

Before proceeding we describe the plot of what will follow, introducing some characters: we
feel that this is necessary at this time, because we will proceed with an estimate containing
several quantities labeled as “to be determined later,” and we will make restrictions on
some of them based on the size of some others, and only at the very end the values will be
actually determined in order to make everything work. The suspect might arise that in all
this reciprocal influence some bug could be creeping, so we show our cards in advance: the
proof should be read backwards, but of course it would be totally unreadable should the
estimates be derived from the end back. We will take the number ¢ in the statement of
Theorem 2, then, see (98), we will determine the value of & depending on ¢ (and the data of
the problem, such as n, y; and so on), small enough as to satisfy a condition depending
on y;, see (98). Therefore the quantities o,,, g3 and especially ¢ should not be regarded as
unknown or to be determined. In the next lemma we will determine, see (77), a quantity A4
depending only on the data of the problem and later, see (83), we will meet a quantity J,
which only depends on the data and K; this ; will in turn determine a radius Ry, see (79),
which we use to further bound Ry; from Ry, thus bounded, we will deduce the values of K
and of gy, which will complete the determination of o; finally from all the above we will
deduce, see (84), the value of a quantity that will be called 0, and which will provide us a
value for &, see (81). We are now ready to proceed with the proof.
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With the size of ¢ initially bounded by (41), let us come back to the “large” cube
Osr,, making further restrictions on the size of Ry, in addition to those already considered
in (34). We shall require that

2 R G

(44) max{2qw(8nR0), W} 9%m.

-

Note that such restriction leaves Ry only depending on n, y;, 75, v, L, ¢, the norms
I |Du(-)|”<'>||L1(Q>, I |F(~)|p(')||Lq(Q) and the smallness parameter . From (41), (44) and the

definition of g,, it immediately follows that

2 R o m 9
(45) w(snRo)gmax{zqw(gnRo),‘M(SW} Go, _ 60y

7n—1

We finally remark that since o < (¢ — 1)/2 then F(x) € L™ (0, :R"). As a conse-
quence of the previous choices we can apply Theorem 5 in order to deduce that

(46) [ 1Dl gy < oo,
Oar,

a higher integrability property that we shall use several times in the following. Moreover,
we shall always use Theorem 5 under the previous restrictions on Ry and o; further re-
strictions will be done on the size of Ry, starting right now: the complexity of the statement
reflects the interplay of constants which we unveiled above.

Lemma 2. Let ue W'™(Q) be a weak solution to (12) under the assumptions
6), 8), (9), and let A =1 and 0 <6 <1 as in (41). There exists a constant
A(n,yy, 2, v, L) = 2, independent of A, &, u, a, F, such that for every 6, > 0 there exists

4)
A

Rl = Rl(n7y17y27v7L7Q70-751) >0
such that: if Ry < R, satisfies (34), (44) and Ky, oy are as in (35), (36), setting o = 6oy and

(47) K= [ [Du™ +|FP0) gy 41
Oar,,

then for every 6 = J) there exists &€ > 0, independent of A, such that the following holds:
If O € 2(Qg,) satisfies

(48) meas(Q N {x € Or, : M*(|Du(-)|"")) (x) > AK),

M (FC)PY + 1) (x) < &}) > dl0]
then its predecessor Q satisfies

(49) 0 < {xe Qg : M*(IDu()")(x) > A},
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where

j— *
= M Oury l+¢ = M

140, Our,

denote the restricted Maximal Function Operators relative to Qug,.

Proof- Step 1: beginning. We warn that we increased in places the values of some
constants, e.g. replacing \/n by n, for clearness of reading (and as long as it does not in-
validate the estimates): we could have been more accurate, but the result (Theorems 1 and
2) would still be the same, only the exponents we would have gotten have now a much
better look, see Remark 6. We also repeatedly use the fact that for a,b = 0

1
E(a“ +b%) £ (a+b)* £ c(a*+ b%)

with ¢ = 1 +2%°1,

The proof goes by contradiction; the constants 4, & and R; will be chosen towards the
end, see (77), (79), (81) and Remark 4 below. The only restrictions on R, at this stage are
(34) and (44). Suppose (49) is not satisfied although (48) holds; in this case there exists
Xo € O such that

(50) f|DulP™ dx < 2
C

for all cubes C < Qug, such that xo € C. Let us set S := 2Q; observe that Q was obtained

from Qg, by at least one subdivision, thus Q = Qg, and S < Og,: as a consequence
s := diam(2S) < 8nR,,

a fact that we shall use in the following. We observe that (50) gives

(51) F1Du|P™ dx < 4
28

because 2S5 = Qug, and xo € 2S. Moreover, since (48) is in force we have that

(52) Hxe0: M{ (IFO)IPY +1)(x) <&} >0

*

Iy 1t follows

and therefore the last set is not empty, thus by the definition of M
e n
(53)  (JUFPY + 1) ax) T <an (JOFPY 1) ax) T <@
S 28
Let us derive some useful preparatory estimates; let

(54) pLi= n%n p(x), p2:=p(xy)=max p(x), xu €28,
25

observe that the numbers p; and p, depend on the selected cube Q and vary when Q varies
in 2(Qg,). Since 25 = 40 < Qup, We get
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p2=(p2—p1)+ i
= ofs) +
< pi(1+ o))
(55) < p(x) (1 + o(s))
p)(1 +o(s) +0/4)
p(x)(1+0) Vxe2S,

lIA

(56)

lIA

where we used (45) in the last estimate. Also, since (41) implies ¢ < p; — 1,
1+0/4) < (p1+o(s)(1+a/4)
(57) < pi(l+0/4+(s))
< p(x)(l +a/4+ a)(s))

(58)

lIA

p(x)(1+0).

Now, since w(s) < /4 by (45), we can use Theorem 5 and formula (37) as follows:

(59) §|Du|” dx < {|Dul” + 1dx
s s

(2)2 ﬂDu\p(x>(l+w(S)> + ldx
S

(37),(45) o)
c<2f|Du|p(x> + ldx) o 4 CZJC(|F|p(x) + 1>l+w(s) dx
S s

(s)
< c<f|Du|p(x) + 1dx> §T0) Jf|Du|p + ldx
28

ol —no(s)

_|_C(I|F|P(x)(l+ws 4+ 1dx )H( ST
28

X(Jf|F|p( )(14w(s)) +1d)1+w
28

s . 1+0) e
gCKKJf\Du\p(X)—F1dx+cK3(Jf]F|p(x>( 7 +1dx)
28 28

(51),(53) o
= C(l’l, yl)y%V)L)KZ}“

We crucially used the fact that s~ stays bounded as 0 < s < 8nRy, by (34); in the last
estimates we used Holder’s inequality, since w(s) < /4, and the facts that 1 > 1 and & < 1.
A rewriting of the previous estimates with a different aim gives
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() ) )
(60) [|Du|* dx < c(f|Du|" Y41 dx) s78) [ |Dul”™ + 1.dx
N 28 28
+e [|F[POITe) 4 gy
28
< K [ [DulP™ 4 |F|POUH) 1 dx
28
g C(l’l, Y172, Vs L)KlJr%

Step 2: a comparison function. By (59) it follows that u € W12(S), therefore we are
able to define w e (u+ W, ”(S)) n W' (S) as the unique solution to the following Di-
richlet problem:

(61) Ja(xMa D‘V)D¢ dx=0 V(p c Wola]h(S)’
N

w=u on 08§,

where the point x;; € 28 was found according to (54); it is harmless that it may happen that
xyu ¢ S. The vector field z — a(xyy,z) satisfies the following growth and coercivity con-
ditions (with respect to the z variable)

P2

2
(62) M+ |z + |2) T |22 — 21l £ <alxar, 22) — alxar, 21), 22 — 210

and

py—1
2

(63) ja(ear, 2)] £ L1+ |2) vzl = <a(xar, 2),2> + (L)

for every z,z1,z € R™ and ¢* = ¢*(n,y,, 7,,v) > 0. The first inequality is a standard con-
sequence of (8) and of Lemmas 2.1 and 2.2 from [1], which work for any p = 1; a bit of
care is required here, since z — a(xys,z) is only C!'(R"\{0}). The inequalities in (63) trivi-
ally follow from (10) and (11), respectively. Since u € W!72(S), by (62), (63) the existence
of w follows from the standard theory of Leray-Lions operators; uniqueness follows from
strong monotonicity, (62). As a consequence of the standard regularity theory for degen-
erate elliptic equations of the type in (61), recalling that S = 20, the following estimate
holds true:

P P2
(64) Sup(” + [Dwl*)® < e(n, 71, 72,v, L)f (1 + | D) d.
20 S

The validity of the previous estimate, and in particular the fact that the constant ¢ can be
chosen independent of p,, specifying its dependence only on the bounds y;, y,, can be de-
duced e.g. looking at [25]; although cubes are replaced by balls in [25], the previous in-
equality can be easily proved by using cubes instead of balls everywhere in the proofs. Also
observe that such estimate is usually obtained for the case when the supremum at the left

Sy 1 ~ .
hand side is computed over a smaller subset, namely ES = (; by an easy covering argu-

ment one sees that the supremum in estimate (64) may be computed over any subset of the
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type 7S, for any y < 1, the constant ¢ appearing on the right hand side eventually depend-
ing on y and blowing up when y — 1.

Let us test (61) with ¢ := u — w; by (62) and (63) we get

v [|Dw|P dx < ¢ [{a(xpr, Dw), Dw) + 1 dx
s S
= ¢ [<a(xy,Dw), Duy + 1 dx
S

< ¢ [(1+[Dw))” " |Du| + 1 dx
5

and observing that y; < p, < y, and applying Young’s inequality we conclude with

(65) :HDW|p2 dx é C(I’l, V15725 va)J["Dl’dpz + 1 dx.
S s

Combining this last estimate with (64) and then with (59), and using the fact that A > 1, we
also infer

(66) Sup lu + ’DW‘ 72 é C(I’l, Y1572,V L):F’Du’pz + 1dx
50 S
2

=< C1K0/4j. =< C]KUJV,

where ¢; = ¢1(n,y,,7,, v, L); this constant ¢; will play a central role in the determination of
the constant A4, see (77).

Step 3: a comparison estimate. Our next aim is to derive an estimate for the quantity
__ 2 2 222 2
I:= [(u° + |Du|” + |Dw|") > |Du — Dw|" dx.
s

Using (62) and the fact that both u and w are weak solutions, of (12) and (61) respectively,
while u = w on 05, we get

(67) I < g"(a(xM, Du) — a(xp, Dw), Du — Dw) dx
= £<a(xM, Du), Du — Dw) dx
= [<a(xp, Du) — a(x, Du), Du — Dw) dx
s
+ £<|F|”(X)_2F, Du— Dwydx =: 11 + 111,

where ¢* is the constant appearing in (62). We will estimate the quantities /7 and III; since
we use (9), where we find the logarithm of an elaborate quantity which may be less than 1,
we employ in this estimate (and in a single line further on) the notation |log|”x instead of
llog x|*. Using (9) and Hélder’s inequality we have, still with s = diam(2S),
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(68) 11 < cox(s) [(u + |Dul ) log|(u + | Dul)| Du — Dw| dx
S

a1

. -
< cor(s) ( J(su+ | Dul)*[log (s + | Du) v
N

1

X (J"\Du — Dw|™ a’x)p_z
s

(65) o 7
< coo(s) ([(ue+ | Dul) log}" (e + | Du) dx)
S

X <I|Du|p2 + 1dx>é
s

where ¢ = ¢(n,y;,7,, v, L). We remark that by (46) and (58) it also follows that
-
-

(4 + | Dul)" llog=" (1 + | Dul) € L'(S)

and therefore the last quantity in (68) is finite; this fact will be exploited in a few lines. Be-
fore continuing with estimate (68) let us point out a preliminary inequality; we have

(69) ( Jf |F|p(x)(1+a/4+w(s)) dx) ﬁ
28

(s)
é C( f |F|p(x)(1+o/4+w(s)) dx) (1+6/4) (140 /4+(s))
A

—nw(s)

[ S
% Sm( :':‘ |F|p(x)(l+(;/4+w(s)) dx) 1+6/4+w(s)
28

€
< cKE(FPI0 ax)
28

where ¢ = ¢(n, L). Again, we used that s7"“¢) stays bounded as 0 < s < 8nRy by (34), and
we used that w(s) < g/4 to apply Holder’s inequality in the last estimate. Now we set

P2 V2 71
70 = € ) .
(70) 4 pr—1 [Vz—lyl—l}

Observe that f satisfies (27) and therefore (32) is available. In the same range for f and with
y1 < p2 <y, we also have

t”|logl"t < ¢(y1.;), O<iZe.
We recall that by our definition (25)

1Dl [y := §|Dul™ dx.
S

Still with s = diam(2S), we now estimate the term
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J (e + | Dul)™ log” (1 + | Dul) dx
N

appearing in (68); we may assume that |Du(x)| = e on a set of positive measure in S,
otherwise the term is estimated simply by ¢|S| < ¢s”. Then, we have:

[(u+ [Du))™ log’ (1 + | Dul) dx

s
< | (u+|Dup)™ log! (1 + |Dul™) dx + cs”
{x:|Du| = e}
< cs" f|Du|” logf (e + | Du|™) dx + cs"
s
(32) |Du|p2
< ¢s" §|Du|” log? <e + 7> dx
! 10w,
+es" §1Du|” logh (e + || |Dul?||,) dx + cs”
s
1
(28),§(30) o (JE ’Du|p2(1+a/4) dx) T+o/4
S
+ clog” (s’”e + 57" [|Du| dx)ﬂDu]pz dx + cs”
s s
(37) (x)(14a/4+w(s)) %6/4
< ca_ﬁs"(l + | Du|"" dx)
S
1
+ clog’ <—> ' |Dul” dx
S/s
+ c(e + [|Du|? dx) log” (e + [|Dul” a’x) + cs”
s S
(31),(37), (42), (56) 2qa(8nRy) (Lhottal)
< c(q)&*ﬂK et g ( { \Du\p(x) dx) trolt
28
B () pp /A0l g\ T
+c(q)ePK T s"( fI|F]| dx
28
1
+ clog? (—) s" f|Du|"* dx
S/ s
2qo(8nR() %
+c(g)ePK s"(l + [|Dul? dx) §|Dul” dx
s S
2qw(8nR)
+clg) e PR T g
(45).(69) . e
< ca_—[fKZS—nw(s) ( I |Du|17(x) dx>l+rr/4 « J"|Du|[7(x) dx
28 28

1
+ e PR fIFPO0 ax)
28
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B 1\ 2!
+ clog”( = )s" §|Du|" dx
S/ s
+ e PKis" (1 + [|Dul” cl>c>43f|Du|p2 dx
S S

+ e PKs"

(see below)

< 5 PK3s"

N

1 a g, 0 o o
+ clogﬁ< )s”KZ/I NS G G I ) e P

1
= c(n, 71,72, Y, L) logﬁ (E) K?s")

+ C(”? Y1:725 Vs Lu 4])0‘ 'b]K(;Sni.

In the second-last and last estimates we used (45), (51), (53), (59) and (60); as before, we
used that s7“¢) stays bounded as 0 < s < 8nRy by (34), and also (several times) that
J, K = 1. Before proceeding, let us point out that the use of the quantity [f] Liog 1(5) in (24),

and of the inequality (24), is essential to get the right dependence of the constant in the last
estimate. Combining the previous inequalities with (59) and (68) we get

(71) II < c(n,yy, 75, v, L)K w(s) log(l)s"}u

s
+ C(l’l, Y1572,V L7 q)&_lng(S)snA'
We now estimate //7; let us note that since p» = p(x) in S, then

D2 (P(x) - 1)

(72) r 1

<p(x) VxeS.

Therefore, again by Hoélder’s inequality we get

(73) a1 < [|F1P7! Du — Dw| dx
S

-l 1

"2 (Jf|Du — Dw|™ dx)p_2
s

Pa(p¥)-1)
§cs"(}|F| DS dx)
s

(65),(72) P! L
cs” <f|F|p(x) + ldx) 2 <Jf|Du|p2 + 1dx)p2
3 S

[IANZ

ry-1 1

<cs" (f(]F|p<x) + I)HU dx)”z(”“) (}\Du]pz + ldx)p_2
S S

(53),(59) o m
é C(n7y17y2)v7L)nK4p28 2L
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Combining in sequel (67), (71) and (73) and passing to averages yields

(74) jt(,u2 + |Du|2 + |Dw|2)p2%|Du — DW|2dX
S

e Pyl

1 o nl
< 2K’w(s) log <> J+ K6 \w(s)A + ;K28 7 ),
s

1

< &Ko(s)log <§> ht+ enK6 o(s)h+ K78 7 2

where ¢; = ¢2(n, 91,72, v, L), ¢22 = ca(n, 1,75, v, L,q), and s = diam(2S). This is the esti-
mate we needed (here is one of the points where we increase something for the sake of
readability: as one sees from (73), the K close to & in (74) is indeed a K7/4").

Step 4: estimate at the higher level. We shall use the Restricted Maximal Operator

. 3 : .
with respect to 7 Q, which for cleanliness we shall denote by

Instead, we shall denote by M* = M, the maximal operator appearing in the statement
. Ro. . ~
of the lemma we are proving. Lemma 1 implies that for all x e S = 2Q

)25} P2
(75) (12 +|Du)?)™ < e3(i® + |Dw|?)?

-2
+ e3(@® + |Du)® + ]DW\Z)ZT\Du — Dw|?

=: 3Gy (X) + CgGQ(x),

with ¢3 = ¢3(n, 9, 7,). From (66) we immediately deduce
ok 3~
(76) M (Gy)(x) £ K4 Vxe EQ;
3 . . =
we remark that 3 Q is a neighborhood of Q.

Accordingly, let us take
(77) C:=5"¢cie3, A=2C

and without loss of generality assume ¢j, c3 = 1; observe that now 4 = 2 is determined,
with the dependence upon the constants specified in the statement; in particular, it is inde-
pendent of 4, K = 1. With such a choice we estimate as follows:
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(78) {xeQ: M™(|Du|™)(x) > CK/}

)
<

{x €0 M™(G))(x) + M™(Ga)(x) > Cfaz}'

< er 0: M™(G)(x) > g’;AH

_|_

{xe 0: M™(Gy)(x) > CKH/IH

26’3

(76

=

(77)

{x c0: MY (G)(x) > (;I;/IH

(20) cw 2 2 9272 2
S D D > |Du — Dw|" d.
Sy Ky U+ [Dul” + [Dwl) 1 Du = D dx

INS

(74) 1 o -l
< cao(s) log <E> 10| 4 ca46 7 ()| Q| + 4 7 ||

where, obviously ¢4 := cyca, cas := cacw; ¢2 and ¢y are the constants appearing in (74)
and therefore ¢4 = ca(n, y;,y2, v, L), cas = caa(n,y;,72,v, L, q).

Now let d; be chosen as in the statement: by (6) we may determine the radius
Ry = R\(n,y,,7,,v,L,q,6,01) > 0 small enough in order to have

1 -
(79) cs0(s) log (E) < %7 caam(s) < 51?0, if s < 8nRy;

clearly, if Ry < R, satisfies (34), (44) we have
RO = RO (7’17 Y1572, Vs L7 q, H ‘Du()|p(> HLI(Q)7 ” ’F<)’p() HL"(Q)’ 6-’51)'
For Ry £ R; and for every 6 = d; we obviously have

(80) cs(s) log (%) < g, caa(s) < %;, if s < 8nRy;

we may now choose & = &(n, y;, 7,5, v, L,0) € (0,1) by

I
(81) cagn =g
With the previous choices we obtain
kk 2 g1 5
(82) [{x € Or, - M (|Dul™) > CK72}| = 70);

observe that the choice of both & and Ry is done here giving the dependence upon the
constants described in the statement; actually, the dependence of Ry, on the norms
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DU gy IHECPY
serve that the first inequality in (79) is the only point where (6) is needed; otherwise we could
have simply assumed the limit in (6) to be finite, as in (18), compare Remarks 2 and 3.
Now, recalling (54), observe that since p, > p(x) whenever x € 2Q we have that

Le(q) only comes from the restrictions made in (44). Also ob-

$1DulP™ dx < §|Dul” dx + 1
0 0

as soon as Q < %Q is a cube; as a consequence, if x € Q then
M (|Du() ") (x) £ M (|Dul” + 1)(x).
But 4, K and C are larger than 1, see (77), so CK’/A = 1 and we have
M (|Du(-)["Y) (x) > AK“2
= M**(|Dul”)(x) + CK?A = M**(|Du|” + 1)(x) > AK?). = 2CK’},

so from (82) we deduce that
: )
[{xeQ: M*(|Du(-)|"V)(x) > AK2}| < 510l

Now let Z be the side length of Q, take any point x € Q and remark that both x and x, the
point to which (50) refers, belong to 0, a cube with side length 27. If C’ < Qsr, 1s a cube
containing x and with side length /' larger than //2, then since C' N Q + 0 there is a cube
C" < Qup, containing both C’ and Q and whose side length /" satisfies

(<2 L <5

SO

1 (50)|C//|
Dul”™ dx <
oD = e

f1DulP™ dx < A< 50
C/

i 3
On the other hand, if instead /' < //2 then C’ = 3 QO and
F1Dul?™ dx < M** (|Du(-)|").
C/

Therefore
M*(|Du(-)P) (x) £ max{M**(|Du(-)|"V)(x),5"2} V¥xe Q.

Since CK? = 5"*! by (77), it also follows that
‘ () o< ?
[{xeQ: M*(1Du(-)|"")(x) > AK /1}|§§|Q|7

which contradicts (49). The proof of the lemma is complete. []
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Remark 4. The role of (49). The possibility to perform the estimates is given by
the failure of (49) and by (52), that is {x € Qg, : My, (JF(-)|"") +1) < &} # 0 for some
€€ (0,1): neither the measure of the set nor the value of & have been used in the

estimate. [

Proof of Theorems 1 and 2. In Lemma 2 we take

1
(83) 51 = W

and we determine R; according to (79), then we take the greatest number Ry < R; which
satisfies (34), (44); now that R is set we may define Ky, gy as in (35), (36), we set o = Gaoy
and we take K as in (47). Now comes the crucial moment: we link the number J, which we
still have to choose, to K, by setting

1
0:= 244K

(84)

(remark that such a value is admissible in Lemma 2, as clearly 6 = ¢;), which also forces the
value of &, see (81). We remark that, beside (34), (44), the choice of Ry and ¢ done in (79),
(81) means that

1 1 —q
< p(x) p(x)q
(85) o(Rp) log (R()) = T6eudi (g{ |Du|” 4+ |F|P" dx + 1) )

6- X X)q -4
(86) o(Ro) < 16644Aq(g |Du|?™) 4 || >’dx+1> ,
71
R L]
s p(x) p(x)(140) 7=l
(87) i= <16C4Aq> <Q4£O|Du’ +|F| dx + 1) .

Therefore Ry and & are now fixed; this is the final choice of these three quantities, that, as
far as Ry is concerned, together with the restrictions in (34) and (44) widely discussed
above, yields the dependence on the constants announced in the statement of Theorem 2. In
the following we shall denote

(1) = |{x € O, : M*(|Du(-)|") (x) > 1}],
wo(t) = [{x € Qr, : M, (IFC)I" +1)(x) > 1},
where all maximal operators are restricted to Qug,, and we define

5n+2
TS

(88) Jo : w

f |DulP™ dx + 1
Osr,,

< 5" AK% § | Dul’™ dx + 1,
Our,,

cw = cw(n) being the constant which appears in (20). With such a choice (84) gives
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c . 0
(89) w(io) < == [ |Dul™ dx < Z|Qg,|-
A0 Qur 2
0
We set
(90) A:=AK° > 2.

From (89) it follows that
- 5
(91) ,ul(A /10) <§|QR0| Vh e N.

We will check, by induction, that actually

- h . -
(92) (A" 20) 6"y (o) + 306" y(A'80)
i=0

for every integer & = 0. The case 4 = 0 reduces to

ﬂl(l‘uo) < 0y (Ao) + 12(&20)

which is a consequence of Proposition 1 (applied to the sets X, Y of points where the
conditions in (48) and (49) hold respectively) and Lemma 2 with the choice 1 = 49 = 1 and
o0 as in (84), keeping into account that (89) holds. Moreover, assuming (92) for a certain
n = 0, we apply again Proposition 1 and Lemma 2 with the choice 4 = A" 1) and ¢ as in

(84), keeping in mind (91), in order to have
ﬂl(léih+2}~0) < 5/11(1‘l~ll+1)uo) +M2(A~h+15)uo)

(92) o 5
< 6(0" 1 (20) + 200" a (A'800) | + (A" E)
=0

_ cht2. 1y oz h+1—i Tix

and (92) is completely proved for every 4 € N. Now, from (92) it follows that for every

M e N
Mo h+1 Th+1 M Ta\ h+1
93) S A (4 ) 5 (/zo (64%) )M)
M ho . -,
+ Z Aq(h+1)5h7lﬂ2(Al(§io).
h=0i=0
By (84)

M -
> (0A) " 1y (20) < 1 (2o) VM e N.
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Concerning the last sum at the right-hand side of (93) we have, again by (84)

M ho oL {qi
Z ZAq(/1+1)5h i (A 810) é A Z (A 810) Z (5Aq)
h=0i=0 =0 "=
ik . M =
< 2495 A% py (A Eh).
k=0

Using the last two estimates in (93) and letting M — oo we get
N fak, gk N Falkr Tkl
(94) S A%y (A520) = 32 ATy (451 )
k=1 k=0
o .
< iy (o) +247 Y A%y (A*800).
k=0

Now we will once more do a straight, readable estimate, although it is justified only if read
backwards: when the series in (96) will be shown to converge, we will have proved that the
power ¢ of the maximal function is integrable, which implies that also the first integral we
are about to write is finite. We observe that

(95) [ 1Duf™ dx < [ [M(|Du(-)") (x)] " dx
Ok, Ro
Ao

ql‘f_lul(i)d/lzg[...]di+f[...]dl

S8

and

Ao ) ) X q
a2 () d £ 78)0n) S ek (§ 1Du e +1)' Q|
Osr,,

where ¢ = ¢(n, y,,7,,v,L,q) since 4 = A(n,y,,7,,v,L). In a similar way we have

0 A(n+1 /1

forr i ai= 5" [ ) di < ()" S5 A ().
0 n=0 A"

Again,

- - (89) '
(A20) 1y (ho) = ATy (ho) < K237 [ |DulP™ dx
Oary

(

88) cK ¢ ’
< ) ¢ ‘QR0|( f |Du|p<'\)+ldx)q

q—1
Y Our,,

(84) oa? X q
= C(”a y17y27v7L7q)K 1 ( :F |Du|[7( ) + 1dx> |QR0|'
Our,
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Joining the last three estimates to (95) yields

(96) J 1DuP ™ ax < ko f 1Dul™ + 1dx)q|QR0|
Or, Osr,,

+ (A20) 'ty (2o) + (Ado)? i A1y, (¥ 7o)

(94) :
< K § 1Dl +1dx)'| 0/
Osr,,

+2(Aho) "1y (20) + 2(A20) 1A Y A% 1y (A E00)
k=0

q
< ek ( § 1Dul"™ +1dx) | Ox,|
Oar,,

. ~
+ K> /Zo ANy, (A*Eh),
K=

where ¢ = ¢(n,y,,7,,V, L, q). It remains to estimate the last series.

To this aim, observe that, as before,

Tl 0di+ [1...]da

0 &g

[ M7 (FOPY + 1) ()] dx —;rcqmlm(z) ) =

Ro
Then

&lo

[ @297 y(2) di = (8ho) (8o,

0
and, using also (90)
o0 Aqfl l di_ 0 A./HIEJ.O g1 . di
Ja (A di=5% | ai" w(2)
o k=0 g*z7,

> 5 (A5 80)[(AFh0) " — (A800)"]
k=0

®© . ~
= (820)"3_ AUy (A eA0)[1 — A7)
k=0

(éio)q Z Aqu,uz(A[kgﬂo).

k=1

=

N —

Combining the last estimates with the maximal inequality (22) we finally get
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| - &) .
50 (820)"3 Ak‘fﬂz(Akszo)Jr( ) 112 (EA0)
q k=1 q

1 o

< —(820)"). ANy (A*Eh)
q k=0

=, f| My (FCIMY + 1) (x)] dx

(20)

e VIR
T+ )g—1-0) g

(43) q+1

221 cn)g [ |F[P™4 4+ 1ax.

Our,,

Using this estimate in (96) and passing to averages we have

1
(97) ( { |Dufp4 dx)"
Ok,
20 1
< cK% § |Dul"™ (f |F‘p(X>qu>q
Our,, € Our,)

(81) ﬂ2!n1 72q71 1
< ek f | Dul’™ dx + K ‘( { |F|p<x)qu+1>q
Our,, Our,,

where now ¢ = ¢(n, y;,7,, v, L, q). Summarizing what we have done up to now we see that
we have proved estimate (14) for every o as above provided and for every radius R < Ry
where R, satisfies conditions (34), (44), (85) and (86); with ¢ fixed, now (14) follows
choosing ¢ in (41) small enough to meet

o< M
297
thus we may take, see (40),
-1
(98) 5o =)
29710m

Observing that ¢ < ¢ implies that

K< | |Du|p<x) + |F|P(X)(1+£) dx +2,
Qur

we can replace K by this last expression in (14), obtaining the full statement. The estimate
trivially follows for larger values of & since K = 1. Since our reasoning applies to any cube
O such that R < Ry and Q4r =< Q, the fact that |Du|"™ e L{ (Q;R") follows from (14)
via a standard covering argument. We finally remark that the precise way we deduced our
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estimates allows to conclude that, after we chose ¢ € (0,1) as in (98), the constant ¢ ap-
pearing in (14) does not depend on Du: the dependence on the solution is explicitly com-
puted via the appearance of the quantity K. []

Remark 5. On the radius Ry. Our derivation of the estimates is precise enough to
allow an estimate on the radius Ry. Suppose for instance that p(x) is Holder continuous,
and therefore w(s) < ¢s* for some o € (0, 1): keeping in mind (85) and (86) we get

1

—&q

‘ (y))‘/(ﬂDuV’W IR dx+1) 7
Q

C(na Y1:72: Y L)qc

Ro(e) » (

for every y < a. As one may check by tracing the dependence of the constants in (66) and
(76), here c(n,y,,7,,v, L,0) is the constant in the weak type Harnack inequality valid for
solutions to p-Laplacean type equations (or systems) introduced in (64). [

Remark 6. A4 more accurate estimate. One may be more careful with some

1
exponents, as we remarked after (74): then in (78) a K U(W_o appears before &, and filing
some more exponents we would have ended estimate (97) with the power

a2qy,
7n—1

replaced by

oy 1
20 + < -1+ —)
n—1 1 4y,

and we would need to reduce ¢ accordingly to an uglier value. []

Proof of Theorem 3. This is essentially the same as the previous one. We sum-
marize it via the following observations: to begin with, Theorem 5 applies in the case of
the p(x)-Laplacean system, since it only depends on the monotonicity and growth as-
sumptions imposed on the vector field a(x, -). More precisely, if we define the vector field
a: QxRN - R"™ as

(99) a(x,z) = |z|P972z2 ie{l,...,n},ae{l,...,N}

then a(x, z) satisfies, with a suitable choice of v and L the assumptions (8), (9) (once recast
in a way that fits the vectorial case and the degenerate structure, that is 1,z € R™, 4 =0,
and so on). These are the only ones used in the proof of Theorem 5. Observe that the vector
field in (99) is not of class C! when p(x) < 2; this fact does not affect the proof of Theorem
5; anyway, this lack of regularity, due to the singularity of the sub-quadratic case, can be
easily dealt with via a by now classical approximation argument [1]. When passing to the
proof of Lemma 2, everything goes as before but at the point where the a priori estimate for
the solution of the (frozen) auxiliary problem (61) comes into the play, (66). Due to the
particular structure of the p(x,,)-Laplacean system

—div(|Du["™) 2 Dy) = 0
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estimate (66) is still valid in this case [33], [1], [9]. At this point the rest of the proof proceeds
exactly in the same way, giving the announced dependence of the constants. []
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