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Abstract
We establish local Calderón-Zygmund-type estimates for a class of parabolic problems
whose model is the nonhomogeneous, degenerate/singular parabolic p-Laplacian
system

ut − div(|Du|p−2Du) = div(|F |p−2F ),

proving that

F ∈ L
q

loc =⇒ Du ∈ L
q

loc, ∀ q ≥ p.

We also treat systems with discontinuous coefficients of vanishing mean oscillation
(VMO) type.

1. Introduction
The aim of this article is to present Calderón-Zygmund-type estimates for weak solu-
tions to a class of degenerate/singular parabolic systems and equations, a prominent
model example of which is the nonhomogeneous, parabolic p-Laplacian system

ut − div(|Du|p−2Du) = div(|F |p−2F ), p >
2n

n + 2
, (1)

considered in the cylindrical domain C := � × [0, T ). Here, � ⊂ R
n is a bounded

open set and u ∈ C0((0, T ); L2(�, R
N ))∩Lp(0, T ; W 1,p(�, R

N )), N ≥ 1, while F ∈
Lp(C, R

nN ). Such a system is degenerate when p > 2 and singular when p < 2; the
lower bound on the exponent p assumed in (1) is standard in the theory of the parabolic
p-Laplacian operator and unavoidable for the type of regularity which we consider
here.

For system (1), we prove that

F ∈ L
q

loc(C, R
nN ) =⇒ Du ∈ L

q

loc(C, R
nN ) (2)
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for any q ≥ p. In the elliptic, stationary case

div(|Du|p−2Du) = div(|F |p−2F ), (3)

the result in (2) was essentially obtained by T. Iwaniec [14] in the scalar case
(N = 1) and by DiBenedetto and Manfredi [10] for systems (N > 1). The extension to
anisotropic elliptic equations with possibly discontinuous, vanishing mean oscillation
(VMO) coefficients has been achieved by Kinnunen and Zhou [19], [20], while a
class of general nonlinear elliptic equations and systems in divergence form, under
nonstandard growth conditions, has been treated by Acerbi and Mingione [1].

There has recently been a great deal of work concerning the integrability prop-
erties of weak and very weak solutions to systems similar to (1) (see [16], [17],
[18]). In particular, in the interesting article [16], Kinnunen and Lewis proved higher
integrability of the spatial gradient for solutions of general nonlinear parabolic systems
with p-growth including (1), introducing a localization method to overcome the lack
of homogeneity of parabolic systems with p-growth when p �= 2. They came up
with a sort of reverse-type Hölder inequality. The new ingredient offered by these
authors is a suitable application of DiBenedetto’s intrinsic geometry method for de-
generate/singular parabolic systems (see [8]) in the setting of Gehring-type estimates.
Subsequently, Misawa [22] considered higher integrability of the gradient of solutions
to (1), assuming that F ∈ L∞, and therefore in Lq for every q > 1.

In this article, by means of a new technique, we use the result of Kinnunen and
Lewis and partially some methods adapted from [5] and [1] to be able finally to prove
the natural integrability result in (2).

A main difficulty of the problem is that no use of classical harmonic analysis tools
can be made here: system (1) is nonlinear in the gradient, and therefore the use of singu-
lar integrals is ruled out, while, since it is degenerate/singular and scales differently in
space and time, no maximal function operator is naturally associated with the problem.
We therefore again adopt an intrinsic geometry viewpoint, arguing directly on certain
Calderón-Zygmund-type covering arguments and completely avoiding the use of the
maximal function operator or of other harmonic analysis principles such as the good-
λ-inequality one. A peculiar aspect of our work, which allows us to treat the general
situation considered here, is that instead of using the C1,α-estimates for the homogen-
eous (F ≡ 0) p-Laplacian systems, as done in [10], [14], and [22] for both the elliptic
and the parabolic cases, we use only the C0,1-estimates (see [8]), which immediately
exhibit the right scaling properties when considered on intrinsic cylinders and perfectly
fit in this context. This is a natural attempt since we want to prove Lq-estimates for
Du, whose limit case is indeed given by the C0,1-estimates; anyway, the proof is quite
delicate. An approach to gradient estimates for equations in divergence form, making
use of C0,1-estimates and working via maximal functions, has been introduced in the
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elliptic, homogeneous case by Caffarelli and Peral in [5]; such an approach works for
(homogeneous) parabolic equations only when p = 2 (see [24]), again for the reasons
explained above. As already mentioned, it is worth pointing out that we cannot use
here the so called good-λ-inequality principle; we instead replace it with a new, direct
argument that we like to call the large-M-inequality principle (see (81)). We like to
mention that, apart from the different scaling procedures adopted for the singular and
degenerate cases, the proof offered here does not distinguish between the cases p < 2
and p ≥ 2.

Our results cover a more general class of degenerate/singular parabolic systems
of the type

ut − div
(
a(z)|Du|p−2Du

) = div(|F |p−2F ), (4)

whose coefficients a(z) ≡ a(x, t) may be discontinuous in a VMO/bounded mean
oscillation (BMO) fashion (see Section 2), for which we still prove (2); furthermore,
extensions involving operators different from the p-Laplacian are outlined in Sec-
tion 5. We also derive natural and neat local estimates for solutions in the form of
certain nonhomogeneous reverse-type Hölder inequalities (see (9)). Here, the non-
homogeneity of the estimates precisely reflects that of the system (space/time) via the
scaling deficit exponent d introduced in (10).

The problem of deriving Calderón-Zygmund-type estimates for elliptic and para-
bolic equations, eventually with discontinuous coefficients, is a classical one, and it
already has a long tradition. In the elliptic and scalar cases, it has usually been faced
via harmonic analysis tools such as nonlinear commutators (see [6]), Riezs transform
(see [15]), or the maximal function operator (see [19]; see also [12], [23]). Parabolic
equations with coefficients of VMO/BMO type have been treated only in the linear
case and, in particular, again when p = 2, making use of harmonic analysis tools
such as nonlinear commutators (see [3]) and, more recently, of the maximal function
operator (see [4]); needless to say, such ingredients are not available in the case of the
evolutionary p-Laplacian operator.

2. Results

General notation. We establish some notation in addition to what was given in the
introduction. By cylinder Qz(θ, �) ⊂ R

n+1 centered at the point z ≡ (x, t) ∈ R
n+1

with θ, � > 0, we always mean a set of the type Qz(θ, �) = Bx(�) × (t − θ, t + θ),
where, as usual, Bx(�) := {y ∈ R

N : |x − y| < �}; with abuse of terminology, such
cylinders are also called cubes. As a partial exception, we write B1 to denote the unit
ball centered at the origin of R

N . When not essential, the center of a cylinder is not
specified; that is, Q(θ, �) ≡ Qz(θ, �). In the case of the standard parabolic cylinders,
that is, when θ = �2 = R2, we simply write QR ≡ Q(R2, R). The parabolic boundary
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∂pQ of a cylinder Qz̃(θ, �) is the union of the lower base Bx̃(�) × {t̃ − θ} and the
side surface {|x − x̃| = �} × [ t̃ − θ, t̃ + θ]. Adopting a usual convention, c denotes
a constant whose value may change in any two occurrences, and only the relevant
dependences are specified, as, for example, c(γ, p); particular constants are denoted
by c1, c̃, and the like. For the Lebesgue measure of a measurable set A, we employ
either of the notations |A| = meas(A); then we define the mean value on a cylinder
Q ⊂ R

n+1 of an integrable function v ∈ L1(Q) by

(v)Q ≡ −
∫

Q

v dx := 1

|Q|
∫

Q

v dx.

When Q = QR , we also employ the notation (v)R ≡ (v)QR
.

Strong VMO/BMO functions
Here, we define the class of coefficients a(z) ≡ a(x, t) which we use when treating
systems of type (4). In order to preserve the basic parabolicity properties of the systems,
and allowing a degeneration caused only by the presence of the factor |Du|p−2 in (4),
we always assume that the function a : C → R satisfies

0 < ν ≤ a(z) ≤ L < ∞, ∀ z ∈ C. (5)

Definition 1
We say that a function a(z) satisfies the strong VMO condition if

lim
R→0

ω(R) = 0, (6)

where

ω(R) := sup
Q�C

−
∫

Q

|a(z) − (a)Q| dz (7)

and the supremum is taken among all cylinders of the type Qz(θ, �) with � ≤ R and
θ ≤ R2. We say that the function a(z) satisfies the strong BMO condition if

[a]BMO := sup
R>0

ω(R) < ∞.

We have a few comments about this definition. To adapt to the nonlinear parabolic
structure we are allowed to pick more cylinders with respect to a usual elliptic-style
VMO/BMO definition (see [25]), allowing for the size of the space radius � of the
cylinder Q to be unrelated to the time height θ . This class includes, for instance,
all continuous coefficients a(z), and it is large enough to include many possibly
discontinuous functions. For instance, in (4) we may take a(x, t) = b(x)c(t), where
both b(x) and c(t) are usual VMO/BMO functions, in � and [0, T ), respectively, and



GRADIENT ESTIMATES FOR PARABOLIC SYSTEMS 289

satisfying (5). The strong VMO/BMO condition is, in our opinion, the natural one in
order to treat situations such as in (4). Indeed, when dealing with partial differential
equations (PDEs), especially elliptic and parabolic ones, the notion of VMO/BMO is
usually given using a family of cubes or cylinders that are relevant both for the scaling
properties and for the geometry of the equation. Since the works of DiBenedetto (see
[8] and references therein), it is known that the natural class of cylinders Q(θ, �)
occurring in connection with (1) is the one having the ratio �/θ not related to the
coefficient a(z) but depending on the solution u itself, via quantities like, for instance,
|(Du)Q|p−2, which are a priori arbitrary. Therefore, when treating such problems,
we have to allow for a larger freedom in the choice of the suitable VMO/BMO-like
definition. Anyway, the class considered here is already used implicitly in [22].

Main results
When F ∈ Lp(C, R

nN ) is a vector field, following [8, pages 17, 215], a weak solution
to system (4) is a map

u ∈ C0
(
(0, T ); L2(�, R

N )
) ∩ Lp

(
0, T ; W 1,p(�, R

N )
)

such that for every 0 < t1 < t2 < T ,

∫
�

uϕ(x, t) dx

∣∣∣t2
t1

−
∫

�

∫ t2

t1

uϕt + a(z)〈|Du|p−2Du, Dϕ〉 dz

= −
∫

�

∫ t2

t1

〈|F |p−2F, Dϕ〉 dz

for every test function ϕ ∈ W
1,2
loc (0, T ; L2(�, R

N )) ∩ L
p

loc(0, T ; W 1,p

0 (�, R
N )). When

dealing with weak solutions, we always adopt the formulation via Steklov averages
(see again DiBenedetto’s book [8, pages 11, 21]).

THEOREM 1
Let u ∈ C0((0, T ); L2(�, R

N )) ∩ Lp(0, T ; W 1,p(�, R
N )) be a weak solution to (4),

where

p >
2n

n + 2
(8)

and the function a : C → R satisfies (5) and is strongly VMO. Assume that |F |p ∈
L

q

loc(C) for some q > 1. Then |Du|p ∈ L
q

loc(C). Moreover, there exists a constant
c ≡ c(n,N, p, ν, L, q, ω(·)) > 1 such that if Q2R � C, then

(
−
∫

QR

|Du|pq dz
)1/q

≤ c
[

−
∫

Q2R

|Du|p dz +
(

−
∫

Q2R

|F |pq dz + 1
)1/q]d

, (9)
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where

1 ≤ d :=
⎧⎨
⎩

p

2 if p ≥ 2,

2p

p(n + 2) − 2n
if p < 2.

(10)

We also have a result concerning coefficients a(z) that are not necessarily VMO but
rather have suitably small BMO seminorm.

THEOREM 2
Let u ∈ C0((0, T ); L2(�, R

N )) ∩ Lp(0, T ; W 1,p(�, R
N )) be a weak solution to (4),

where the function a : C → R satisfies (5) and p is as in (8). Fix q > 1, and assume
that |F |p ∈ L

q

loc(C). For every q > 1, there exists a number ε ≡ ε(n, N, p, ν, L, q) >

0 such that if [a]BMO ≤ ε, then |Du|p ∈ L
q

loc(C). Moreover, there exists a constant
c ≡ c(n,N, p, ν, L, q) > 1 such that (9) holds for every Q2R � C, with d as in (10).

Remark 1
The exponent d outside the square bracket in (9) prevents the estimate from being
homogeneous and of reverse-type Hölder. The occurrence of d is absolutely natural
and reflects the nonhomogeneity of system (4) due to the fact that the evolutionary
part of the system scales differently from the diffusion one: multiplying a solution
by a constant does not yield another solution, even when F ≡ 0. Of course, d = 1
if and only if p = 2, and the system is not degenerate/singular; moreover, d ↗ ∞
when p ↘ 2n/(n + 2) (for more comments on the dependence of the constant c on
the number q, see Remark 3). Finally, we notice that it is possible to apply the method
presented here also in the elliptic case (3); this would yield a true, homogeneous
reverse-type Hölder inequality, that is, (9) with d = 1.

3. Preliminary material
In this section we collect some known results that are crucial in the rest of the article,
and we operate a few manipulations on known estimates in order to get them in the
exact form that we later need. We start with the higher integrability result of Kinnunen
and Lewis [16] which is essential here in treating the case where the coefficient
function a(z) is not continuous. The version reported here is adapted to our setting
from the more general right-hand-side structure in [16] (for the equivalence, see (88)
with f ≡ h1 in the notation of [16, (2.3)]). Also, Kinnunen and Lewis assert that (11)
holds for some δ0 > 0, but the fact that it then holds for all δ < δ0 may be deduced
from their proof following [16, (4.13)]; indeed, the only condition on δ0 is that it must
be small.



GRADIENT ESTIMATES FOR PARABOLIC SYSTEMS 291

THEOREM 3
Let u ∈ C0((0, T ); L2(�, R

N )) ∩ Lp(0, T ; W 1,p(�, R
N )) be a weak solution to (4),

where (8) is in force and the function a : C → R satisfies (5). Assume that |F |p ∈
L

q

loc(C) for some q > 1. Then there exists δ0 ≡ δ0(n, N, p, ν, L) with 0 < δ0 <

p(q − 1) such that |Du| ∈ L
p+δ

loc (C) for every 0 < δ ≤ δ0. Moreover, there exists a
constant c ≡ c(n, p, L, ν) > 1 such that if Qz0 (Rp,R) � C, then

(
−
∫

Qz0 (Rp/2p,R/2)
|Du|p+δ dz

)1/(p+δ)
≤ cRσp−1

(
−
∫

Qz0 (Rp,R)
|Du|p dz

)σ

+ c

R
+ c

(
−
∫

Qz0 (Rp,R)
|F |p+δ dz

)1/(p+δ)
, (11)

where

σ := 2 + δ

2(p + δ)
. (12)

In the remainder of the article, we eventually take δ < δ0 in order to have

s := p + δ ≤ min
{ (p + pq)

2
, p + 1

}
< pq, (13)

and we notice that this implies

pq

pq − s
≤ 2q

q − 1
. (14)

The first two lemmas are a consequence of the fundamental L∞-gradient estimates of
DiBenedetto [8] and DiBenedetto and Friedman [9].

LEMMA 1
Let v ∈ C0((t1, t2); L2(A, R

N )) ∩ Lp(t1, t2; W 1,p(A, R
N )) be a weak solution to

vt − div(ã|Dv|p−2Dv) = 0 in A × [t1, t2), (15)

where A ⊂ R
n is an open set, t1 < t2, p ≥ 2, and ν ≤ ã ≤ L. Assume that

−
∫

Q(λ2−p�2,�)
|Dv|p dz ≤ c1λ

p (16)

for some λ > 0 and some cylinder Q(λ2−p�2, �) � A × [t1, t2), where c1 is a given
positive constant. Then there exists a constant c > 0, depending only on n, N, p, ν, L,
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and c1, such that

sup
Q((1/2)λ2−p�2,(1/2)�)

|Dv| ≤ cλ. (17)

Proof
From [8, Chapter 8, Theorem 5.1] and, in particular, [8, (5.1), page 238], by taking
σ = 3/4, we have the fact that if Q(θ, γ ) � A × [t1, t2) is a nondegenerate cylinder,
then

sup
Q(θ/2,γ /2)

|Dv| ≤ c(n,N, p, ν, L)

√
θ

γ 2

(
−
∫

Q(θ,γ )
|Dv|p dz

)1/2
+

(γ 2

θ

)1/(p−2)
. (18)

Then we take θ = λ2−pγ 2 and γ = �, so that
√

θ/γ 2 = λ(2−p)/2. Using this fact in
the previous inequality, and finally using (16), we immediately obtain (17). �

In the case where p < 2, the estimate that one is allowed to use is different, so we
need another statement (and another proof, albeit very similar).

LEMMA 2
Let v ∈ C0((t1, t2); L2(A, R

N )) ∩ Lp(t1, t2; W 1,p(A, R
N )) be a weak solution to (15),

where A ⊂ R
n is an open set, t1 < t2, ν ≤ ã ≤ L, and p < 2 satisfies (8). Assume

that

−
∫

Q(�2,λ(p−2)/2�)
|Dv|p dz ≤ c1λ

p (19)

for some λ > 0 and some cylinder Q(�2, λ(p−2)/2�) � A× [t1, t2), where c1 is a given
positive constant. Then there exists a constant c > 0, depending only on n, N, p, ν, L,
and c1, such that

sup
Q((1/2)�2,(1/2)λ(p−2)/2�)

|Dv| ≤ cλ. (20)

Proof
This time we use [8, Chapter 8, Theorem 5.2] and, in particular, [8, (5.3), page 239],
where we can take r = p since p is assumed to satisfy (8). Again taking σ = 3/4, we
have the fact that if Q(θ, γ ) � A × [t1, t2) is a nondegenerate cylinder, then

sup
Q(θ/2,γ /2)

|Dv| ≤ c(n,N, p, ν, L)
(γ 2

θ

)n/[p(n+2)−2n](
−
∫

Q(θ,γ )
|Dv|p dz

)2/[p(n+2)−2n]

+
( θ

γ 2

)1/(2−p)
. (21)
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Then we take γ = λ(p−2)/2� and θ = �2, so that
√

γ 2/θ = λ(p−2)/2. Using this fact in
the previous inequality, and finally using (19), we immediately obtain (20). �

The following twinned lemmas, Lemmas 3 and 4, show how solutions to (4) satisfy
real reverse-type Hölder inequalities when considered on cylinders built according to
the intrinsic geometry.

LEMMA 3
Let u ∈ C0((0, T ); L2(�, R

N )) ∩ Lp(0, T ; W 1,p(�, R
N )) be a weak solution to (4),

where p ≥ 2, and the function a : C → R satisfies (5). Assume that

(
−
∫

Q(λ2−p�2,�)
|Du|p dz

)1/p

≤ c1λ (22)

and

λ ≤ c2

(
−
∫

Q(λ2−p�2,�)
|Du|p dz

)1/p

+ c2

(
−
∫

Q(λ2−p�2,�)
Ms |F |s dz

)1/s

(23)

hold for some λ > 0 and some cylinder Q(λ2−p�2, �) � C, where s > p is defined
in (13) via Theorem 3, c1 and c2 are two given positive constants, and M ≥ 1. Then
there exists a constant c3 ≡ c3(n, N, p, ν, L, c1, c2) such that

(
−
∫

Q((1/2p)λ2−p�2,(1/2)�)
|Du|s dz

)1/s

≤ c3

(
−
∫

Q(λ2−p�2,�)
|Du|p dz

)1/p

+ c3

(
−
∫

Q(λ2−p�2,�)
(1 + Ms |F |s) dz

)1/s

. (24)

Proof
Without loss of generality, we may assume that the cylinder Q(λ2−p�2, �) is centered
at the origin. Let us consider the rescaled maps

ũ(x, t) := u(�x, λ2−p�2t)

�λ
, F̃ (x, t) := F (�x, λ2−p�2t)

λ
,

with (x, t) ∈ Q1, and the rescaled coefficients ã(x, t) := a(�x, λ2−p�2t). It is easy to
check that ũ ∈ C0((0, 1); L2(B1, R

N )) ∩ Lp(0, 1; W 1,p(B1, R
N )) is a weak solution to

the system

ũt − div
(
ã(z)|Dũ|p−2Dũ

) = div(|F̃ |p−2F̃ ) in Q1.
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Therefore we may apply Theorem 3 and, in particular, estimate (11) in order to get
the fact that there exists a constant c, depending only on n, N, p, ν, L, such that

(
−
∫

Q(1/2p,1/2)

|Dũ|s dz
)1/s

≤ c
(

−
∫

Q1

|Dũ|p dz
)σ

+ c
(

−
∫

Q1

|F̃ |s dz
)1/s

+ c, (25)

where, according to (12), σ = (2 − p + s)/2s. Scaling back in (25) yields

(
−
∫

Q((1/2p)λ2−p�2,(1/2)�)
|Du|s dz

)1/s

≤ cλ1−σp
(

−
∫

Q(λ2−p�2,�)
|Du|p dz

)σ

+ c
(

−
∫

Q(λ2−p�2,�)
|F |s dz

)1/s

+ cλ. (26)

Here, c ≡ c(n,N, p, ν, L). But using (22) and (23), we have

λ1−σp
(

−
∫

Q(λ2−p�2,�)
|Du|p dz

)σ

≤ cλ ≤ c
(

−
∫

Q(λ2−p�2,�)
|Du|p dz

)1/p

+ c
(

−
∫

Q(λ2−p�2,�)
Ms |F |s dz

)1/s

,

where c ≡ c(c1, c2). Finally, (24) follows, connecting the last inequalities to (26). �

LEMMA 4
Let u ∈ C0((0, T ); L2(�, R

N )) ∩ Lp(0, T ; W 1,p(�, R
N )) be a weak solution to (4),

where 2n/(n + 2) < p ≤ 2, and the function a : C → R satisfies (5). Assume that

(
−
∫

Q(�2,λ(p−2)/2�)
|Du|p dz

)1/p

≤ c1λ

and

λ ≤ c2

(
−
∫

Q(�2,λ(p−2)/2�)
|Du|p dz

)1/p

+ c2

(
−
∫

Q(�2,λ(p−2)/2�)
Ms |F |s dz

)1/s

hold for some λ > 0 and some cylinder Q(�2, λ(p−2)/2�) � C, where s > p is defined
in (13) via Theorem 3, c1 and c2 are two given positive constants, and M ≥ 1. Then
there exists a constant c3 ≡ c3(n, N, p, ν, L, c1, c2) such that

(
−
∫

Q((1/2p)�2,(1/2)λ(p−2)/2�)
|Du|s dz

)1/s

≤ c3

(
−
∫

Q(�2,λ(p−2)/2�)
|Du|p dz

)1/p

+ c3

(
−
∫

Q(�2,λ(p−2)/2�)
(1 + Ms |F |s) dz

)1/s

.
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Proof
Again, we assume that Q(�2, λ(p−2)/2�) is centered at the origin. This time, we consider
the rescaled maps

ũ(x, t) := u(λ(p−2)/2�x, �2t)

�λp/2
, F̃ (x, t) := F (λ(p−2)/2�x, �2t)

λ
,

with (x, t) ∈ Q1, and the rescaled coefficients ã(x, t) := a(λ(p−2)/2�x, �2t). The
remainder of the proof now follows exactly as in Lemma 3. �

We conclude the section with a couple of elementary results: the first can be promptly
adapted from [7, Lemma 2.2]; the second can be found in [8, page 13] with slight
modifications.

LEMMA 5
Let p > 1, and let µ ∈ [0, 1]; there exists a constant c ≡ c(n, N, p) such that if
v, w ∈ R

nN , then

(µ2 + |A|2)p/2 ≤ c(µ2 + |B|2)p/2 + c(µ2 + |B|2 + |A|2)(p−2)/2|B − A|2.

LEMMA 6
Let 1 < p < ∞, and let µ ∈ [0, 1]. There exists a constant c ≡ c(n, N, p),
independent of µ, such that for any A, B ∈ R

nN ,

(µ2 + |B|2 + |A|2)(p−2)/2|B − A|2

≤ c
〈
(µ2 + |B|2)(p−2)/2B − (µ2 + |A|2)(p−2)/2A,B − A

〉
.

When µ = |A| = |B| = 0 and p < 2, the quantities involved in the previous
inequality are meant to be zero.

4. Proofs of Theorems 1 and 2
By an approximation argument, in Step 1 we reduce the proof of Theorem 1 to proving
(9) when the solution has locally bounded gradient. Then we devote the remaining
steps to this last task; Theorem 2 then follows easily.

Proof of Theorem 1
Step 1: Approximation. We first show how to approximate the solution u of (4), in a
neighborhood of a given cylinder, with a sequence uε of solutions to similar problems
whose gradients are bounded. Let Q2R ≡ (t0 − (2R)2, t0 + (2R)2) × Bx0 (2R) � C

be as in the statement of Theorem 1, and let Q2R̄ � C be a cylinder, concentric with
Q2R , with R̄ > R. Let φ1 : R

n → R and φ2 : R → R be two standard mollifiers with
compact support in B1 and (−1, 1), respectively, and for all ε < (1/2) dist(Q2R̄, ∂C)
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and (x, t) ∈ Q2R̄ , define

Fε(x, t) :=
∫

Q1

F (x + εy, t + εs)φ1(y)φ2(s) dy ds

and

aε(x, t) :=
∫

Q1

a(x + εy, t + εs)φ1(y)φ2(s) dy ds.

Clearly, Fε ∈ C∞(Q2R̄, R
nN ) and aε ∈ C∞(Q2R̄). Moreover,

Fε → F strongly in Lpq(Q2R̄, R
nN ), (27)

aε → a strongly in Lt (Q2R̄, R
nN ), ∀ t < ∞. (28)

Finally, the new functions aε satisfy (5). Now we define the map

uε ∈ C0
(
(t0 − (2R̄)2, t0 + (2R̄)2); L2(Bx0 (R̄), R

N )
)

∩ Lp
(
t0 − (2R̄)2, t0 + (2R̄)2; W 1,p(Bx0 (R̄), R

N )
)

as the unique solution to the following Cauchy-Dirichlet problem:{
(uε)t − div

(
aε(z)|Duε|p−2Duε

) = div(|Fε|p−2Fε) in Q2R̄,

uε ≡ u on ∂pQ2R̄.
(29)

The existence of such uε follows from the theory of monotone operators or via
Galerkin approximation (see [21]); for such problems and their exact meaning, see
[8, pages 20 – 21, 296]. Our aim is now to show

Duε → Du strongly in Lp(Q2R̄, R
nN ). (30)

Using the fact that both u and uε are weak solutions, we have

(uε − u)t − div
(
aε(z)(|Duε|p−2Duε − |Du|p−2Du)

)
= div

(
(aε(z) − a(z))|Du|p−2Du

) + div(|Fε|p−2Fε − |F |p−2F ).

Now we test the previous identity with the map uε − u, which is possible modulo
Steklov averages (for the definition, see [8, pages 11, 21]); note that this is an admissible
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test map since u ≡ uε on ∂pQ2R̄ . After a simple computation, we arrive at

sup
t0−(2R̄)2≤t

<t0+(2R̄)2

∫
Bx0 (2R̄)

|uε(x, t) − u(x, t)|2 dx

+
∫

Q2R̄

aε(z)〈|Duε|p−2Duε − |Du|p−2Du, Duε − Du〉 dz

≤ c

∣∣∣ ∫
Q2R̄

(
aε(z) − a(z)

)〈|Du|p−2Du, Duε − Du〉 dz

∣∣∣
+ c

∣∣∣ ∫
Q2R̄

〈|Fε|p−2Fε − |F |p−2F, Duε − Du〉 dz

∣∣∣, (31)

and therefore, using (5),

∫
Q2R̄

|Duε|p dz

≤ c

∫
Q2R̄

[|aε(z)| + |a(z)|](|Du|p−1|Duε| + |Duε|p−1|Du| + |Du|p) dz

+ c

∫
Q2R̄

(|Fε| + |F |)p−1(|Duε| + |Du|) dz.

Finally, using Young’s inequality in a standard way and the definitions of Fε and aε,
we get ∫

Q2R̄

|Duε|p dz ≤ c

∫
C

|Du|p + |F |p dz ≤ c1. (32)

Now we go back to (31). In the following, we use the expression

(A, B) �→ (|A|2 + |B|2)(p−2)/2|B − A|2, A,B ∈ R
nN ,

which is already defined in Lemma 6 and involves a singularity when |A| = |B| = 0
and p < 2. In this case, the meaning of the previous quantity was defined as zero.
Using Lemma 6 with µ = 0, together with (5), we find

∫
Q2R̄

(|Duε|2 + |Du|2)(p−2)/2|Duε − Du|2 dz

≤ c(n,N, p, ν)
∫

Q2R̄

aε(z)〈|Duε|p−2Duε − |Du|p−2Du, Duε − Du〉 dz,
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and from (31) we have∫
Q2R̄

(|Duε|2 + |Du|2)(p−2)/2|Duε − Du|2 dz

≤ c

∫
Q2R̄

|aε(z) − a(z)||Du|p−1|Duε − Du| dz

+ c

∫
Q2R̄

∣∣|Fε|p−2Fε − |F |p−2F
∣∣|Duε − Du| dz (33)

with c ≡ c(n,N, p, ν, L). Using Young’s inequality with δ ∈ (0, 1), we find∫
Q2R̄

(|Duε|2 + |Du|2)(p−2)/2|Duε − Du|2 dz

≤ c(δ)
∫

Q2R̄

|aε(z) − a(z)|p/(p−1)|Du|p dz + δ

∫
Q2R̄

|Duε|p + |Du|p dz

+ c(δ)
∫

Q2R̄

∣∣|Fε|p−2Fε − |F |p−2F
∣∣p/(p−1)

dz (34)

with the constants c depending also on n, N, p, ν, L. Now, recalling that s is the higher
integrability exponent defined in (13), we have∫

Q2R̄

|aε(z) − a(z)|p/(p−1)|Du|p dz

≤
( ∫

Q2R̄

|aε(z) − a(z)|ps/((p−1)(s−p)) dz
)(s−p)/s

·
( ∫

Q2R̄

|Du|s dz
)p/s (28)→ 0 (35)

as ε → 0. By a dominated convergence argument and (27), we directly have∫
Q2R̄

∣∣|Fε|p−2Fε − |F |p−2F
∣∣p/(p−1)

dz → 0 (36)

as ε → 0. Taking into account (32), connecting (34) – (36), and finally letting δ → 0,
we obtain

lim
ε→0

∫
Q2R̄

(|Duε|2 + |Du|2)(p−2)/2|Duε − Du|2 dz = 0. (37)

Now, if p < 2, using the Hölder inequality and again (32),
∫

Q2R̄

|Duε − Du|p dz

≤
( ∫

Q2R̄

|Duε|p + |Du|p dz
)1/2

·
( ∫

Q2R̄

(|Duε|2 + |Du|2)(p−2)/2|Duε − Du|2 dz
)1/2

;
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therefore

lim
ε→0

∫
Q2R̄

|Duε − Du|p dz = 0, (38)

which proves (30) in the case p < 2. If, instead, p ≥ 2, going back to (33) and using
Young’s inequality, we get

∫
Q2R̄

|Duε − Du|p dz ≤
∫

Q2R̄

(|Duε|2 + |Du|2)(p−2)/2|Duε − Du|2 dz,

and (38) follows from (37). Now we finally show how the validity of (9) in the
general case follows from the case when Du is bounded. Therefore, let us assume that
(9) holds whenever Du is bounded. We consider the maps {uε} defined in (29); the
regularity theory for the parabolic p-Laplacian systems applies (see [8, Chapter 8]),
and therefore Duε ∈ L∞(Q2R, R

nN ). Then, by (9),

(
−
∫

QR

|Du|pq dz
)1/q

≤ lim inf
ε→0

(
−
∫

QR

|Duε|pq dz
)1/q

≤ c lim
ε→0

[
−
∫

Q2R

|Duε|p dz +
(

−
∫

Q2R

|Fε|pq dz + 1
)1/q]d

= c
[

−
∫

Q2R

|Du|p dz +
(

−
∫

Q2R

|F |pq dz + 1
)1/q]d

,

where we used (30) and Fatou’s lemma to manage for the left-hand side. The remainder
of the proof is therefore dedicated to proving (9) under the additional assumption that
Du is bounded. Once (9) is proved in the general case, the full statement |Du|p ∈
L

q

loc(C) follows via a standard covering argument.

Step 2: A stopping-time argument. We start with the case p ≥ 2. We define λ0 > 1
according to

λ
1/d

0 :=
(

−
∫

Q2R

|Du|p dz
)1/p

+
(

−
∫

Q2R

Ms |F |s dz
)1/s

+ 1, (39)

where the number d was defined in (10). The number M > 1 is chosen later, in a
universal way that depends only on the fixed parameters n, p, ν, L. Now pick any two
numbers γ, λ such that

R

28p
≤ γ ≤ R

2
, Bλ0 := 210(n+2)t λ0 ≤ λ. (40)
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We check that for all z0 ∈ QR ,

(
−
∫

Qz0 (λ2−pγ 2,γ )
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−pγ 2,γ )
Ms |F |s dz

)1/s

< λ. (41)

Indeed, we first remark that if z0 ∈ QR and � < R, since λ > λ0 > 1 and p ≥ 2, then
Qz(λ2−p�2, �) ⊂ Q2R , so that, in particular, when γ satisfies (40),

|Q((2R)2, 2R)|
|Qz0 (λ2−pγ 2, γ )| > 1. (42)

Then (
−
∫

Qz0 (λ2−pγ 2,γ )
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−pγ 2,γ )
Ms |F |s dz

)1/s

≤
( |Q((2R)2, 2R)|
|Qz0 (λ2−pγ 2, γ )|

)1/p

·
(

−
∫

Q2R

|Du|p dz
)1/p

+
( |Q((2R)2, 2R)|
|Qz0 (λ2−pγ 2, γ )|

)1/s

·
(

−
∫

Q2R

Ms |F |s dz
)1/s

(13),(39),(40),(42)
< (210(n+2)pλp−2)1/pλ

1/d

0
(10)= (210(n+2)pλp−2)1/pλ

2/p

0

(40)≤ λ.

Now, with λ as in (40), take a point z0 ∈ QR such that |Du(z0)| > λ. By Lebesgue’s
differentiation theorem, for almost every such point we have

lim
�→0

{(
−
∫

Qz0 (λ2−p�2,�)
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−p�2,�)
Ms |F |s dz

)1/s}
> λ. (43)

Assume that for some � > 0 satisfying � ≤ R/2,

(
−
∫

Qz0 (λ2−p�2,�)
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−p�2,�)
Ms |F |s dz

)1/s

> λ.

We note that some such � exist by (43); since, for � ≥ R/28p, the opposite inequality
holds by (40) and (41), necessarily we conclude that � < R/28p. Therefore we can
select a radius �z0 ≤ R/2 to be the largest for which

(
−
∫

Qz0 (λ2−p�2
z0

,�z0 )
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−p�2
z0

,�z0 )
Ms |F |s dz

)1/s

= λ, (44)

in the sense that if R/2 ≥ � > �z0 , then

(
−
∫

Qz0 (λ2−p�2,�)
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−p�2,�)
Ms |F |s dz

)1/s

< λ.
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By this argumentation, it must be

�z0 <
R

28p
. (45)

Since λ > 1 and p ≥ 2, we immediately have

Qz0

(
λ2−p(2jp�z0 )2, (2jp�z0 )

) ⊂ Q
(
(2R)2, (2R)

)
, j ∈ {0, . . . , 5}.

Moreover, we observe that for j ∈ {0, . . . , 5}, we have

λ

8jp
≤

(
−
∫

Qz0 (λ2−p(2jp�z0 )2,(2jp�z0 ))
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−p(2jp�z0 )2,(2jp�z0 ))
Ms |F |s dz

)1/s

≤ λ. (46)

Indeed, the right-hand-side inequality just follows from the choice of �z0 , while as for
the left-hand side, the sum of the integrals appearing in (46) can be estimated from
below as follows:(

−
∫

Qz0 (λ2−p(2jp�z0 )2,(2jp�z0 ))
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−p(2jp�z0 )2,(2jp�z0 ))
Ms |F |s dz

)1/s

≥
( |Qz0 (λ2−p�2

z0
, �z0 )|

|Qz0 (λ2−p(2jp�z0 )2, (2jp�z0 ))|
)1/p

·
[(

−
∫

Qz0 (λ2−p�2
z0

,�z0 )
|Du|p dz

)1/p

+
(

−
∫

Qz0 (λ2−p�2
z0

,�z0 )
Ms |F |s dz

)1/s] (44)= λ

8jp
.

Now let us consider the level set

E(λ) := {
z ∈ QR : |Du(z)| > λ

}
.

For a.e. z0 ∈ E(λ), we can find a cube Qz0 (λ2−p�2
z0
, �z0 ) ⊂ Q2R as constructed above

and, in particular, such that (46) holds for j ∈ {0, . . . , 5}. Therefore, applying Vitali’s
covering theorem, we find a family of disjoint cubes {Q0

i } of the type considered up
to now:

Q0
i ≡ Qzi

(λ2−p�2
zi
, �zi

) ⊂ Q2R, zi ∈ E(λ), (47)

such that

E(λ) ⊂
⋃
i∈N

Q1
i ∪ negligible set.
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Here, we have denoted

Q1
i ≡ Qzi

(
λ2−p(23p�zi

)2, (23p�zi
)
)
.

For future convenience, we also introduce

Q2
i ≡ Qzi

(
λ2−p(24p�zi

)2, (24p�zi
)
)

and

Q3
i ≡ Qzi

(
λ2−p(25p�zi

)2, (25p�zi
)
)
.

We now deal with the case p < 2. The basic change with respect to the case p ≥ 2,
and following the subquadratic scaling introduced by DiBenedetto in [8, page 80],
is to use cubes of the type Qz(�2, λ(p−2)/2�). In this case, λ0 is still defined as in (39),
and γ, λ are again picked according to (40). With z0 ∈ QR , once again, we have

(
−
∫

Qz0 (γ 2,λ(p−2)/2γ )
|Du|p dz

)1/p

+
(

−
∫

Qz0 (γ 2,λ(p−2)/2γ )
Ms |F |s dz

)1/s

< λ. (48)

The equivalent of (42) in this case is

|Q((2R)2, 2R)|
|Qz0 (γ 2, λ(p−2)/2γ )| > 1. (49)

Then we have

(
−
∫

Qz0 (γ 2,λ(p−2)/2γ )
|Du|p dz

)1/p

+
(

−
∫

Qz0 (γ 2,λ(p−2)/2γ )
Ms |F |s dz

)1/s

≤
( |Q((2R)2, 2R)|
|Qz0 (γ 2, λ(p−2)/2γ )|

)1/p

·
(

−
∫

Q2R

|Du|p dz
)1/p

+
( |Q((2R)2, 2R)|
|Qz0 (γ 2, λ(p−2)/2γ )|

)1/s

·
(

−
∫

Q2R

Ms |F |s dz
)1/s

(13),(39),(40),(49)≤ [210(n+2)pλn((2−p)/2)]1/pλ
1/d

0
(10)= [210(n+2)pλn((2−p)/2)]1/pλ

(p(n+2)−2n)/(2p)
0

(8),(40)≤ λ,

and (48) is proved. An important remark to be made is that, beside needing it for
Lemmas 2 and 4 and Kinnunen and Lewis’s theorem (see Theorem 3), this is the only
point where we need (8). For the remainder, we can proceed exactly as for the case
p ≥ 2 but using the cubes of type Qz0 (�2

z0
, λ(p−2)/2�z0 ) ⊂ Q2R instead of those of
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type Qz0 (λ2−p�2
z0
, �z0 ). At the end, we come up with a family of disjoint cubes {Q0

i }
of the type

Q0
i ≡ Qzi

(�2
zi
, λ(p−2)/2�zi

) ⊂ Q2R, zi ∈ E(λ), (50)

such that (45) holds and having the fundamental property that for j ∈ {0, . . . , 5} and
all i,

λ

8jp
≤

(
−
∫

Qzi
((2jp�zi

)2,λ(p−2)/2(2jp�zi
))

|Du|p dz
)1/p

+
(

−
∫

Qzi
((2jp�zi

)2,λ(p−2)/2(2jp�zi
))

Ms |F |s dz
)1/s

≤ λ, (51)

and such that

E(λ) ⊂
⋃
i∈N

Q1
i ∪ negligible set.

Accordingly, in the case p < 2, we are denoting

Q1
i ≡ Qzi

(
(23p�zi

)2, λ(p−2)/2(23p�zi
)
)
,

Q2
i ≡ Qzi

(
(24p�zi

)2, λ(p−2)/2(24p�zi
)
)
,

and

Q3
i ≡ Qzi

(
(25p�zi

)2, λ(p−2)/2(25p�zi
)
)
.

From now on, for the remainder of the proof, when dealing with cubes of type
Q0

i , . . . , Q
3
i , we implicitly understand which kind we are using, depending on p.

Step 3: Comparison maps. When p ≥ 2, on the cube Q2
i centered at zi := (xi, ti), we

define the map

vi ∈ C0
(
(ti − 28pλ2−p�2

i , ti + 28pλ2−p�2
i ); L2(Bxi

(24p�i), R
N )

)
∩ Lp

(
ti − 28pλ2−p�2

i , ti + 28pλ2−p�2
i ; W 1,p(Bxi

(24p�i), R
N )

)
as the unique solution to the Cauchy-Dirichlet problem

{
(vi)t − div(ai |Dvi |p−2Dvi) = 0 in Q2

i ,

vi ≡ u on ∂pQ2
i

(52)
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(see again [8, pages 20 – 21, 296]), where

ai := −
∫

Q2
i

a(z) dz.

We note that, due to (5),

ν ≤ ai ≤ L. (53)

We now find some estimates on vi . Using the fact that both u and vi are solutions, we
have

(u − vi)t − div
(
ai(|Du|p−2Du − |Dvi |p−2Dvi)

)
= div

(
(a(z) − ai)|Du|p−2Du

) + div(|F |p−2F ),

in the weak sense. Now we proceed formally, as in Step 1, by testing the previous
equality with the map ϕ = u−vi , which may be justified via Steklov averages. Again,
it is crucial that u and vi agree on the parabolic boundary ∂pQ2

i . As in Step 1, we
obtain the equivalent of (31),

∫
Q2

i

ai〈|Du|p−2Du − |Dvi |p−2Dvi,Du − Dvi〉 dz

≤ c

∣∣∣∫
Q2

i

(
ai(z) − a(z)

)〈|Du|p−2Du, Du − Dvi〉 dz

∣∣∣
+ c

∣∣∣∫
Q2

i

〈|F |p−2F, Du − Dvi〉 dz

∣∣∣, (54)

and, using (53), the equivalent of (32),

∫
Q2

i

|Dvi |p dz ≤ c(n,N, p, ν, L)
∫

Q2
i

|Du|p + |F |p dz. (55)

Therefore, recalling that M ≥ 1 and using the Hölder inequality, we find

−
∫

Q2
i

|Dvi |p dz ≤ c −
∫

Q2
i

|Du|p dz + c
(

−
∫

Q2
i

Ms |F |s dz
)p/s (46)≤ cλp, (56)

where c ≡ c(n, N, p, ν, L). Now note that

Q1
i ⊂ Qzi

(λ2−p(24p�i)2

2
,

(24p�i)

2

)
;
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therefore, by (56), we can apply Lemma 1, with Q = Q2
i , to get that there exists an

absolute constant A1, depending only on n, N, p, ν, L, such that

A1 ≥ 1, sup
Q1

i

|Dvi | ≤ A1λ. (57)

When p < 2, we can proceed in a completely analogous way, invoking Lemma 2
instead of Lemma 1 and using the right kind of cubes, and (57) follows again. We note
in particular that (54) – (57) hold for both p ≥ 2 and p < 2.

Now we want to get an estimate for the integral

∫
Q2

i

(|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2 dz.

Using Lemma 6, we have

ν

c(n,N, p)

∫
Q2

i

(|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2 dz

(53)≤ ai

∫
Q2

i

〈|Du|p−2Du − |Dvi |p−2Dvi, Du − Dvi〉 dz

(54)≤ c

∫
Q2

i

|a(z) − ai ||Du|p−1|Du − Dvi | dz + c

∫
Q2

i

|F |p−1|Du − Dvi | dz.

(58)

Using Young’s inequality, with δ ∈ (0, 1) we have

∫
Q2

i

|a(z) − ai ||Du|p−1|Du − Dvi | dz

≤ c

δ1/(p−1)

∫
Q2

i

|a(z) − ai |p/(p−1)|Du|p dz + δ

∫
Q2

i

|Du|p + |Dvi |p dz

(55)≤ c

δ1/(p−1)

∫
Q2

i

|a(z) − ai |p/(p−1)|Du|p dz + cδ

∫
Q2

i

|Du|p + |F |p dz (59)

and∫
Q2

i

|F |p−1|Du − Dvi | dz ≤ c

δ1/(p−1)

∫
Q2

i

|F |p dz + δ

∫
Q2

i

|Du|p + |Dvi |p dz

(55)≤ c

δ1/(p−1)

∫
Q2

i

|F |p dz + cδ

∫
Q2

i

|Du|p dz
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with c ≡ c(n,N, p, ν, L). Connecting the last two inequalities with (58), we finally
have ∫

Q2
i

(|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2 dz

≤ c

δ1/(p−1)

∫
Q2

i

|a(z) − ai |p/(p−1)|Du|p dz

+ c

δ1/(p−1)

∫
Q2

i

|F |p dz + cδ

∫
Q2

i

|Du|p dz (60)

with c ≡ c(n,N, p, ν, L), and δ ∈ (0, 1) not yet chosen.
We estimate the first integral appearing in the right-hand side of (60). Using the

Hölder inequality, we have∫
Q2

i

|a(z) − ai |p/(p−1)|Du|p dz ≤
(

−
∫

Q2
i

|a(z) − ai |b dz
)(s−p)/s(

−
∫

Q2
i

|Du|s dz
)p/s

|Q2
i |,

where we have set

b := p

p − 1

s

s − p
> 1.

We note that(
−
∫

Q2
i

|a(z) − ai |b dz
)(s−p)/s

≤ (2L)(b−1)(s−p)/s[ω(R)](s−p)/s

as a consequence of (5), (7), (45), and (53), while

(
−
∫

Q2
i

|Du|s dz
)p/s

≤ c −
∫

Q3
i

|Du|p dz + c
(

−
∫

Q3
i

(1 + Ms |F |s) dz
)p/s

as a consequence of Lemma 3 or Lemma 4. Merging the last three estimates with (60),
we finally obtain the estimate that we were looking for:∫

Q2
i

(|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2 dz

≤ c
{ [ω(R)](s−p)/s

δ1/(p−1)
+ δ

} ∫
Q3

i

|Du|p dz

+ c[ω(R)](s−p)/s

δ1/(p−1)

(
−
∫

Q3
i

(1 + Ms |F |s) dz
)p/s

|Q0
i | + c

δ1/(p−1)

∫
Q3

i

|F |p dz, (61)

where the constant c depends on the data n, N, p, ν, L, we estimated |Q3
i | ≤

410np|Q0
i |, and δ ∈ (0, 1) is not yet chosen.
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Step 4: Estimates on cubes. Lemma 5 with µ = 0 implies

|Du|p ≤ cl|Dvi |p + cl(|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2,

where cl ≡ cl(n, p) is the constant appearing in the lemma. Accordingly, we fix the
constant

A := (1 + 2cl)A1, (62)

where A1 is the constant appearing in (57). In this way, A depends only on the data
n, N, p, ν, L. We have

∣∣{z ∈ Q1
i : |Du|p > Aλp

}∣∣
≤ ∣∣{z ∈ Q1

i : (|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2 > A1λ
p
}∣∣

+ ∣∣{z ∈ Q1
i : |Dvi |p > A1λ

p
}∣∣ (

(57),(62)= 0)

= ∣∣{z ∈ Q1
i : (|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2 > A1λ

p
}∣∣,

so that

∣∣{z ∈ Q1
i : |Du|p > Aλp

}∣∣ ≤ 1

A1λp

∫
Q1

i

(|Du|2 + |Dvi |2)(p−2)/2|Du − Dvi |2 dx,

and using (61) and (62),

∣∣{z ∈ Q1
i : |Du|p > Aλp

}∣∣ ≤ c

Aλp

{ [ω(R)](s−p)/s

δ1/(p−1)
+ δ

} ∫
Q3

i

|Du|p dz

+ c[ω(R)](s−p)/s

Aλpδ1/(p−1)

(
−
∫

Q3
i

(1 + Ms |F |s) dz
)p/s

|Q0
i |

+ c

Aλpδ1/(p−1)

∫
Q3

i

|F |p dz. (63)

We now carefully estimate these three integrals; we note that the constant c just seen
depends only on n, p, ν, L. Since we later backtrack to find the exact dependence on
q, we are careful to let every constant c be independent of q; given (13), when not
essential, we majorize constants as, for example, 2s by c = c(p). We first provide an
estimate for |Q0

i |; by (44), (47), or the analogous expressions for p < 2, either of the
following inequalities must be true:

(λ

2

)p

≤ 1

|Q0
i |

∫
Q0

i

|Du|p dz or
(λ

2

)s

≤ 1

|Q0
i |

∫
Q0

i

Ms |F |s dz.
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In any case,

|Q0
i | ≤ 2p

λp

∫
Q0

i

|Du|p dz + 2s

λs

∫
Q0

i

Ms |F |s dz. (64)

We now split the last integral as follows: for some γ > 0,

1

λs

∫
Q0

i

Ms |F |s dz = 1

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz + 1

λs

∫
Q0

i ∩{|F |≤γ λ}
Ms |F |s dz

≤ 1

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz + Msγ s |Q0

i |. (65)

Choosing

γ s := 1

2s+1Ms
, (66)

connecting (65) to (64), and reabsorbing |Q0
i |/2, we find the estimate for |Q0

i | in
which we are interested:

|Q0
i | ≤ 2p+1

λp

∫
Q0

i

|Du|p dz + 2s+1

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz. (67)

Now we gain a further estimate, again splitting with some τ > 0:

1

λp

∫
Q0

i

|Du|p dz = 1

λp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz + 1

λp

∫
Q0

i ∩{|Du|≤τλ}
|Du|p dz

≤ 1

λp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz + τp|Q0

i |

(67)≤ 1

λp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz + 2p+1τp

λp

∫
Q0

i

|Du|p dz

+ 2s+1τp

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz. (68)

Choosing

τp := 1

2p+2
(69)

and reabsorbing the next-to-last integral into the left-hand side of (68), we conclude
with

1

λp

∫
Q0

i

|Du|p dz ≤ 2

λp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz + 2s−p

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz.
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In particular, from (67) we deduce

|Q0
i | ≤ 2p+2

λp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz + 2s+2

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz. (70)

Then we have

1

λp

∫
Q3

i

|Du|p dz = |Q3
i |

λp
−
∫

Q3
i

|Du|p dz

(46)/(51)≤ |Q3
i |

≤ 25p(n+2)|Q0
i |

(70)≤ c

λp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz

+ c

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz. (71)

(As we said, we omitted a 2s here.) Similarly, using the Hölder inequality,

1

λp

∫
Q3

i

|F |p dz = |Q3
i |

Mpλp
−
∫

Q3
i

Mp|F |p dz ≤ c|Q0
i |

Mpλp

(
−
∫

Q3
i

Ms |F |s dz
)p/s

(46)/(51)≤ c|Q0
i |

Mp

(70)≤ c

Mpλp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz

+ c

Mpλs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz. (72)

Finally, since λ > 1, we have

|Q0
i |

λp

(
−
∫

Q3
i

(1 + Ms |F |s) dz
)p/s (46)/(51)≤ |Q0

i |

(70)≤ c

λp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz + c

λs

∫
Q0

i ∩{|F |>γλ}
Ms |F |s dz. (73)

Connecting (71) – (73) to (63), we have the estimate on the cubes which we were
looking for:∣∣{z ∈ Q1

i : |Du|p > Aλp
}∣∣

≤ c

Aλp

{ [ω(R)](s−p)/s

δ1/(p−1)
+ 1

Mpδ1/(p−1)
+ δ

} ∫
Q0

i ∩{|Du|>τλ}
|Du|p dz

+ cMs

Aλs

{ [ω(R)](s−p)/s

δ1/(p−1)
+ 1

Mpδ1/(p−1)
+ δ

} ∫
Q0

i ∩{|F |>γλ}
|F |s dz.
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Define

G ≡ G(δ, M,R) := [ω(R)](s−p)/s

δ1/(p−1)
+ 1

Mpδ1/(p−1)
+ δ, (74)

and the estimate may be rewritten as∣∣{z ∈ Q1
i : |Du|p > Aλp

}∣∣
≤ G(δ,M, R)

{ c

Aλp

∫
Q0

i ∩{|Du|>τλ}
|Du|p dz + cMs

Aλs

∫
Q0

i ∩{|F |>γλ}
|F |s dz

}
. (75)

Here, the constant c depends only on n, N, p, ν, L, while γ and τ have been chosen
in (66) and (69), respectively. The constant δ ∈ (0, 1) is not yet chosen.

Step 5: Final estimate. Here, we prove the validity of (9), provided

R ≤ R0, (76)

where R0 ≡ R0(n, N, p, ν, L, ω(·)) > 0 is a radius that we determine in (82). The
general case follows via a standard covering argument.

Using the fact that the cubes {Q0
i } are disjoint, summing up on i ∈ N in (75) we

have, by (47) or (50), since A > 1 by (57), (62),∣∣{z ∈ QR : |Du| > A1/pλ
}∣∣

≤
∑

i

∣∣{z ∈ Q1
i : |Du|p > Aλp

}∣∣
≤ G(δ, M,R)

{ c

Aλp

∫
Q2R∩{|Du|>τλ}

|Du|p dz + cMs

Aλs

∫
Q2R∩{|F |>γλ}

|F |s dz
}
.

The previous inequality holds for every λ ≥ Bλ0 (recall (40)). Therefore, integrating
with respect to λ yields∫ ∞

Bλ0

λpq−1
∣∣{z ∈ QR : |Du| > A1/pλ

}∣∣ dλ

≤ cG(δ,M, R)

A

∫ ∞

Bλ0

λpq−p−1
∫

Q2R∩{|Du|>τλ}
|Du|p dz dλ

+ cMsG(δ,M,R)

A

∫ ∞

Bλ0

λpq−s−1
∫

Q2R∩{|F |>γλ}
|F |s dz dλ. (77)

We recall that for any measurable function g ≥ 0 and any β > α > 1,∫
gβ dx = (β − α)

∫ +∞

0
tβ−α−1

∫
{x:g(x)>t}

gα dx dt ; (78)
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then we have, using Fubini’s theorem in a standard way,

∫
QR

|Du|pq dz

= pq

∫ ∞

0
(A1/pλ)pq−1

∣∣{z ∈ QR : |Du| > A1/pλ
}∣∣ d(A1/pλ)

= pq

∫ Bλ0

0
(same) dλ + pq

∫ ∞

Bλ0

(same) dλ

≤ AqBpqλ
pq

0 |QR| + pqAq

∫ ∞

Bλ0

λpq−1
∣∣{z ∈ QR : |Du| > A1/pλ

}∣∣ dλ

(62),(77)≤ AqBpqλ
pq

0 |QR|

+ cpqAqG(δ,M, R)

τpq−p

∫ ∞

0
(τλ)pq−p−1

∫
Q2R∩{|Du|>τλ}

|Du|p dz d(τλ)

+ cpqAqMsG(δ, M,R)

γ pq−s

∫ ∞

0
(γ λ)pq−s−1

∫
Q2R∩{|F |>γλ}

|F |s dz d(γ λ)

(66),(69),(78)≤ AqBpqλ
pq

0 |QR|

+ c
q

q − 1
2(p+2)qAqG(δ, M,R)

∫
Q2R

|Du|pq dz

+ c
pq

pq − s
Aq2pqMpqG(δ,M, R)

∫
Q2R

|F |pq dz

(14)≤ c̃AqBpqλ
pq

0 |QR|

+ c̃2(p+2)qAq q

q − 1
G(δ, M,R)

{∫
Q2R

|Du|pq dz + Mpq

∫
Q2R

|F |pq dz
}
,

(79)

where c̃ ≡ c̃(n, N, p, ν, L) and the dependence on q is explicitly stated. We note that
nothing depends on λ0 except the first term at the right-hand side.

Now we look again at (74), we fix ε0 so that it only depends on n, and we first
choose δ > 0 small enough in order to have

c̃δ ≤ q − 1

6qAq2(p+2)q
ε0. (80)

Since c̃ depends only on n, N, p, ν, L, q, this also fixes δ as a number depending only
on n, N, p, ν, L, q. We can therefore select M ≡ M(c̃, δ) ≡ M(n,N, p, ν, L, q) > 1
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large enough in order to have (large-M-inequality principle)

c̃

Mp
≤ (q − 1)δ1/(p−1)

6qAq2(p+2)q
ε0. (81)

We may finally select R0 ≡ R0(n, N, p, ν, L, q, ω(·)) > 0 small enough to ensure

c̃[ω(R0)](s−p)/s ≤ (q − 1)δ1/(p−1)

6qAq2(p+2)q
ε0. (82)

Therefore, for every R satisfying (76), taking into account (74) and inequalities (80) –
(82), we obtain

c̃2(p+2)qAq q

q − 1
G(δ,M,R) ≤ 1

2
ε0. (83)

Plugging this last inequality into (79) and finally passing to averages, we get, by (40),

(
−
∫

QR

|Du|pq dz
)1/q

≤ cλ
p

0 + c
(

−
∫

Q2R

|F |pq dz
)1/q

+
(
ε0 −

∫
Q2R

|Du|pq dz
)1/q

, (84)

where now c depends also on q; that is, c ≡ c(n, N, p, ν, L, q). Now we recall the
choice of λ0 in (39), that M has been chosen in (81) depending on n, N, p, ν, L, q,
and we finally apply the Hölder inequality to have

λ
p

0 ≤ c
[

−
∫

Q2R

|Du|p dz +
(

−
∫

Q2R

|F |s dz
)p/s

+ 1
]d

≤ c
[

−
∫

Q2R

|Du|p dz +
(

−
∫

Q2R

|F |pq dz
)1/q

+ 1
]d

, (85)

where again c ≡ c(n,N, p, ν, L, q) and d is defined in (10). Joining the last estimate
and (84), and reabsorbing at the left-hand side the last integral in (84) by a covering
and iteration argument (see [13, Corollary 6.1, Lemma 6.1]), we obtain (9) for all
R ≤ R0. At this stage, the constant c in (9) depends only on n, N, p, ν, L, q and not
on ω(·); it is only R0 that depends on ω(·) through (82). The case R ≥ R0 follows from
a standard covering argument; at this point, c also depends on ω(·) via the covering
coefficients that depend on R0. The proof of Theorem 1 is now complete. �

Proof of Theorem 2
By carefully looking at the proof of Theorem 1, we can immediately infer the statement
of Theorem 2. Indeed, we first chose δ in (80) and M in (81); then, when dealing with
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(82), we may choose the number ε ≡ ε(n,N, p, ν, L, q) > 0 in the statement of
Theorem 2 small enough to have

c̃ε(s−p)/s <
(q − 1)δ1/(p−1)

6qAq2(p+2)q
ε0,

and then we just estimate as follows:

c̃[ω(R0)](s−p)/s ≤ c̃[a](s−p)/s
BMO <

(q − 1)δ1/(p−1)

6qAq2(p+2)q
ε0. (86)

The last inequality allows us to recover (83), and the remainder of the proof works
without any further change. This also implies that the constant c in the final estimate
(9) depends only on n, N, p, ν, L, q. �

Remark 2
The proof of Theorem 1 deserves some comments. The stopping-time argument in
Step 2 clearly depends on the choice of the positive quantity M , via the stopping-time
radius �z0 determined by the first occurrence of the equality (44). On the other hand,
the constant M is chosen at the very end, in (81). Actually, the proof should be read
backward: the choice of M is influenced only by the constant c̃ appearing in (79). In
turn, c̃ is universal, in the sense that it only depends on n, N, p, ν, L, q and not on
the cubes Q0

i determined in Step 2. Therefore, once the choice of c̃, and therefore of
M , is done in the universal way dictated by (79) – (81), we can restart from Step 2,
finding the family of cubes {Q0

i } with a fixed value of M , and then proceed toward the
end through Steps 3 – 5.

Remark 3
The technique developed here allows us to get a rather precise dependence of the
constant c in estimate (9) on the integrability parameter q. We observe interesting
similarities with the estimates obtained in the elliptic case (3) via maximal function
techniques in [1], [10], and [14]; this is not surprising since the local use of estimates
(18) and (21), in combination with Vitali’s covering lemma, in some sense emulates
the use of the maximal function. For the sake of simplicity, we confine ourselves to the
model problem (1). We go back to (79); since a(z) ≡ 1, then we have ω(R) ≡ 0. Then,
taking δ and M in such a way as to obtain equalities in (80) and (81), respectively,
and combining this with (79), recalling that B depends only on n, p by (40), we
obtain

(
−
∫

QR

|Du|pq dz
)1/q

≤ cAλ
p

0 + c
( q

q − 1
Aq2(p+2)q

)p/(p−1)(
−
∫

QR

|F |pq dz
)1/q

,
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and therefore, by (85) and the covering argument,

(
−
∫

QR

|Du|pq dz
)1/q

≤ cA
[

−
∫

Q2R

|Du|p dz +
( q

q − 1
Aq2(p+2)q

)p/(p−1)(
−
∫

Q2R

|F |pq dz
)1/q

+ 1
]d

.

(87)

The previous a priori estimate reveals the same asymptotic behavior for q ↘ 1 both
of the constant appearing in the Hardy-Littlewood maximal function estimate (see
[2]) and of the a priori elliptic estimates of [1], [10], and [14]. On the other hand,
this is harmless: when q is approaching 1, a priori estimates bounding the Lpq-norm
of Du by the Lpq-norm of F are simply given by Theorem 3, which works for any
small choice of δ, with all constants remaining bounded as δ ↘ 0 (see [16]). Note that
the scaling of estimates (9) and (87) is in perfect accordance with that of the known
a priori estimates for the evolutionary p-Laplacian operator: when F ≡ 0, letting
q ↗ ∞ in (87), we obtain, up to an absolute constant, the sup estimates (18) and (21)
for θ = γ 2 = R2.

5. A few possible extensions
For the sake of simplicity, and in order to emphasize the main ideas, we have up to now
restricted ourselves to the analysis of the model cases (1) and (4); nevertheless, the
methods presented in this article immediately apply to several more general situations.

As for the right-hand side, as we already mentioned, we could have considered
instead of (4) the system

ut − div
(
a(z)|Du|p−2Du

) = div f,

which is equivalent to (4) through

f = |F |p−1 F

|F | ←→ F = |f |1/(p−1) f

|f | (88)

and (beside complicating the exponents in the proof) leads to the more awkward
statement “if f ∈ L

pq/(p−1)
loc , then |Du|p ∈ L

q

loc,” together with an equally awkward
estimate of the type (9).

In what follows, we describe other parabolic problems to which our techniques
apply, sketching the main modifications to the proof as far as the estimates in Steps
2 – 5 from Section 4 are concerned. The approximation part of Step 1 can be easily
reconstructed as in Section 4.
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The vectorial case N > 1, and different operators. The reader recognizes that the main
property of the evolutionary p-Laplacian operator used in the proof of Theorem 1,
apart from the obvious monotonicity and growth properties used in the compar-
ison estimates of Steps 1 and 3 from Section 4, is the possibility to get the explicit
L∞-bounds (18) and (21). In turn, these are used to get the fundamental Lemmas
1 and 2 and, eventually, the crucial estimate (56) on the comparison map vi . This
observation allows us to extend our results to a family of degenerate parabolic systems
whose special structure allows for the L∞-bounds (18) and (21) and to which the
results of Theorems 1 and 2 extend.

We may consider systems of the type

ut − div
[
a(z)g(|Du|)Du

] = div(|F |p−2F ). (89)

The function a is in VMO, and the assumptions on the function g : R
+ → R

+, which
is in C1(R \ {0}), are different depending on p:

if p ≥ 2, g′(s) ≥ 0, ∀ s > 0, (90)

νsp−2 ≤ g(s) ≤ Lsp−2, ∀ s > 0, (91)

|g′(s)|s
g(s)

≤
{

L if p ≥ 2,

θ(< 1) if p < 2,
∀ s > 0, (92)

〈
g(|w2|)w2 − g(|w1|)w1, w2 − w1

〉 ≥ ν(µ2 + |w1|2 + |w2|2)(p−2)/2|w2 − w1|2, (93)

for all w1, w2 ∈ R
nN . Under the previous assumptions, the conditions stated on

[8, page 217] are satisfied, and the solutions to the comparison system

vt − div
[
ãg(|Dv|)Dv

] = 0

satisfy the gradient bounds (18) and (21) for p ≥ 2 and p < 2, respectively. Accord-
ingly, the main modification in the proof of Theorem 1 is the use of the comparison
system

{
(vi)t − div

[
aig(|Dvi |)Dvi

] = 0 in Q2
i ,

vi ≡ u on ∂pQ2
i

(94)
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instead of (52). Then one gets the upper bound (56), and the remainder of the proof
follows thanks to the growth, ellipticity, and monotonicity assumptions (91) – (93),
thereby replacing the use of Lemma 6. Finally, the integrability results of Theorems 1
and 2 follow.

Another left-hand-side structure that we can treat with the methods proposed here
is the one already considered in [19] for the elliptic case. Let us consider an (n2 ×N2)-
tensor A(z) ≡ {Aα,β

i,j (z)}, defined on C and whose entries are strongly VMO in the
sense of Definition 1: assume that the tensor A(z) satisfies the following ellipticity
and boundedness conditions:

ν|λ|2 ≤
n∑

i,j=1

N∑
α,β=1

A
α,β

i,j (z)λα
i λ

β

j ≤ L|λ|2, ∀ λ ∈ R
nN , ∀ x ∈ C.

Then the result of Theorem 1 also holds for solutions to the system

ut − div
(〈A(z)Du, Du〉(p−2)/2Du

) = div(|F |p−2F ). (95)

Accordingly, assuming the tensor {Aα,β

i,j (z)} to have BMO entries, the analog of
Theorem 2 for solutions of (95) also follows. The proofs for (95) are very much
similar to those already considered for Theorems 1 and 2.

We can also consider systems of the type

ut − div
[
g̃(z, |Du|)Du

] = div(|F |p−2F ) (96)

with g̃ : C × R
+ → R

+. This time, we assume that the function

w ∈ R
nN �→ g̃(z0, |w|) ∈ R

satisfies the assumptions required on the function g appearing in (89), that is, (90) –
(93), uniformly with respect to z0 ∈ C. Moreover, the following type of con-
tinuity (or, rather, limited discontinuity) assumption is required with respect to the
variable z:

∣∣g̃(z2, |w|) − g̃(z1, |w|)∣∣ ≤ Lω(|z2 − z1|)(1 + |w|)p−2 (97)

for every w ∈ R
nN and z1, z2 ∈ C, where ω : R

+ → R
+ is a bounded, nondecreasing

function such that

lim
R→0

ω(R) = � ≥ 0. (98)

If � = 0, then g̃ is continuous. In this case, the only differences are the following.
First, the comparison function vi is now defined as the unique solution to the new
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comparison system

{
(vi)t − div

[
g̃(zi, |Dvi |)Dvi

] = 0 in Q2
i ,

vi ≡ u on ∂pQ2
i ,

where we recall that zi is the center of the cylinder Qi . Once again, the L∞-bound
in (56) follows for vi , thanks to the assumptions satisfied by w �→ g̃(z0, w). Second,
estimate (59) must be worked out directly using (97), and it is not necessary to use
the Hölder inequality there; in particular, the use of the higher integrability result of
Theorem 3 can be avoided, and instead of the quantity at the left-hand side of (45),
one can use the simpler

(
−
∫

Q(λ2−p�2,�)
|Du|p dz

)1/p

+
(

−
∫

Q(λ2−p�2,�)
Mp|F |p dz

)1/p

.

Then, following the proof of Section 4, we finally come to the following theorem.

THEOREM 4
Let u ∈ C0((0, T ); L2(�, R

N )) ∩ Lp(0, T ; W 1,p(�, R
N )) be a weak solution to (96),

where p satisfies (8), the function g̃ is as described above, and ω(·) satisfies (98) with
� = 0. Assume that |F |p ∈ L

q

loc(C) for some q > 1. Then |Du|p ∈ L
q

loc(C). Moreover,
estimate (9) holds, where d is as in (10).

The appropriate analog of Theorem 2 is instead the following.

THEOREM 5
Let u ∈ C0((0, T ); L2(�, R

N )) ∩ Lp(0, T ; W 1,p(�, R
N )) be a weak solution to

(96), where p satisfies (8), the function g̃ is as described above, and ω(·) satisfies
(98). Fix q > 1, and assume that |F |p ∈ L

q

loc(C). Then there exists a number
ε ≡ ε(n, N, p, ν, L, q) > 0 such that if � ≤ ε, then |Du|p ∈ L

q

loc(C). Moreover,
there exists a constant c ≡ c(n,N, p, ν, L, q) > 1 such that if Q2R � C, then (9)
holds with d as in (10).

The scalar case N = 1. In the scalar case, the L∞-bounds (18) and (21) are true
for general parabolic equations with no additional structure properties as dependence
upon Du specified via the quantity |Du|; this is a peculiarity of the case where N = 1
(again, see [8]). Therefore, we consider a general parabolic equation of the type

ut − div[a(z)A(Du)] = div(|F |p−2F ), (99)
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where the vector field A : R
N → R

N is C1(R \ {0}) and satisfies the following growth
and ellipticity assumptions:

|A(w)| + |DA(w)|(µ2 + |w|2)1/2 ≤ L(µ2 + |w|2)(p−1)/2, (100)

DA(w)λ ⊗ λ ≥ ν(µ2 + |w|2)(p−2)/2|λ|2, (101)

for every w, λ ∈ R
n, where, as usual, 0 < ν ≤ L and µ ∈ [0, 1]. It is then standard

to verify that assuming (101) implies the existence of a constant c ≡ c(n, p, ν) > 0
such that the monotonicity condition

〈A(w2) − A(w1), w2 − w1〉 ≥ c(µ2 + |w1|2 + |w2|2)(p−2)/2|w2 − w1|2

holds for all w1, w2 ∈ R
n. Under assumptions (100) and (101), the results of Theorems

1 and 2 hold for general weak solutions to equation (99) with the same proofs given in
Section 4; the only change comes again when considering (52), which is now replaced
by the equation {

(vi)t − div[aiA(Dvi)] = 0 in Q2
i ,

vi ≡ u on ∂pQ2
i .

For weak solutions to the parabolic equation (99), Theorems 1 and 2 hold with exactly
the same proofs as in Section 4. As in the vectorial case, we can also consider more
general equations such as

ut − div Ã(z, Du) = div(|F |p−2F ). (102)

Here, we assume that for every z ∈ C, the vector field w �→ Ã(z, w) satisfies
assumptions (100) and (101) uniformly with respect to z ∈ C. Moreover, the map
Ã : C × R

n → R
n is required to satisfy the continuity property

|Ã(z2, w) − Ã(z1, w)| ≤ ω(|z2 − z1|)(1 + |w|)p−1,

where ω : R
+ → R

+ is the usual bounded, nondecreasing function. At this point, the
results of Theorems 4 and 5 follow for weak solutions to (102). Note that any type of
modulus of continuity is allowed (see [11]).
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