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Abstract. We consider the integral functional
R

f(x, Du) dx under non stan-
dard growth assumptions of (p, q)-type: namely, we assume that

|z|p(x) ≤ f(x, z) ≤ L(1 + |z|p(x))

for some function p(x) > 1, a condition appearing in several models from math-
ematical physics. Under sharp assumptions on the continuous function p(x) we
prove partial regularity of minimizers in the vector-valued case u : R

n → R
N ,

allowing for quasiconvex energy densities. This is, to our knowledge, the first
regularity theorem for quasiconvex functionals under non standard growth
conditions.

1. Introduction.

Over the last thirty years great attention was reserved to the study of regularity
of minimizers of integral functionals of the Calculus of Variations of the type

(1.1) F(u, Ω) :=

∫

Ω

f(x, Du) dx ,

where Ω is a bounded open subset of R
n, f : Ω × R

nN → R is a Carathéodory
integrand and u ∈ W 1,1

loc (Ω; RN ). The interest of the topic also rises from the fact
that functionals of the type (1.1) naturally represent energies in the context of
many problems coming from mathematical physics. Until some years ago it was
customary to study existence and regularity of minimizers of functionals as (1.1)
under the assumption of p-growth:

(1.2) |z|p ≤ f(x, z) ≤ L(1 + |z|p) , p > 1 .

A regularity theory (quite satisfying in the scalar case N = 1) has been developed
for such integrals through various contributions from many authors (see for instance
[Gia],[Giu]).
Anyway recent models arising in various branches of mathematical phsysics suggest
that (1.2) could to be too restrictive. This is the case, for instance, of the energy
associated with the electrorheological fluids: in a recent work (see [RR]) Rajagopal
and Růžička propose a model for this class of fluids of non-Newtonian type which are
characterized by the property of drastically changing their mechanical properties
when in presence of an electromagnetic field E(x). According to [RR], their sta-
tionary flow is characterized by a set of equations which are similar to the modified
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Navier-Stokes system introduced in the sixties by O. Ladyzhenskaya:

−divS(x, E(v)) = g(x, v, Dv) , div v = 0

where v is the velocity of the fluid, E(v) is the symmetric part of the gradient Dv
and the “extra stress” tensor S satisfies standard monotonicity conditions in the
Leray-Lions fashion but with non constant growth in the sense that

D2S(x, z) ≥ ν(1 + |z|2)(p(x)−2)/2Id ,

where p(x) ≡ p(|E|2) is a function of E which is given (see [RR], [R1], [R2]).
Moreover models of this type arise for fluids whose viscosity is influenced in a
similar way by temperature (see [Z3]). In another context, the differential system
modelling the thermistor problem (see [Z1-3]) includes equations like

−div (p(x)|Du|p(x)−2Du) = 0 .

The natural common energy associated to these problems is modeled by

(1.3)

∫

Ω

(µ2 + |Du|2)p(x)/2 dx ,

µ ≥ 0, which clearly violates (1.2) but that, instead, meets the more general as-
sumption

(1.4) |z|p ≤ f(x, z) ≤ L(1 + |z|q) , q > p > 1 .

This condition, which is commonly referred to as (p, q)-growth, was introduced in
[M1] by Marcellini, who subsequently gave important regularity results for mini-
mizers of functionals with nonstandard growth (see [M1-5]). The regularity theory
for such functionals was later studied by many authors (see the references in [M4-5]
and [ELM]).
The aim of this paper is to study regularity of minimizers for a class of functionals
which lie in an intermediate position between (1.2) and (1.4) and whose model case
is (1.3), that is we consider energy densities satisfying the following assumption of
p(x) growth:

(1.5) |z|p(x) ≤ f(x, z) ≤ L(1 + |z|p(x)) ,

where p(x) > 1 is a continuous function.
The regularity theory for functionals satisfying (1.5) was started by Zhikov, and in
the scalar case N = 1 has been carried out in the papers [Z1-3],[FZ],[A],[AM1],[CC]
under suitable convexity hypotheses on f and mild regularity assumptions on p(x).
In this paper we concentrate on the vector-valued case N > 1 and we prove partial
regularity of minimizers.
As it is well known, in the scalar case a natural assumption in order to guarantee
existence and regularity of minimizers is convexity of f . In the vector-valued case
this condition is not necessary anymore since, as shown by Morrey (see also [AF1]),
in order to ensure lower semicontinuity of an integral functional the weaker assump-
tion of quasiconvexity suffices. Subsequently the hypothesis of quasiconvexity was
shown to be the appropriate substitute for convexity in order to obtain regularity of
minimizers (see [E], [AF2], [CFM]). Here we consider quasiconvex functionals with
p(x) growth and we prove partial C1,α-regularity of minimizers, that is Hölder con-
tinuity of the gradient in an open subset of full measure, provided the function p(x)
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is Hölder continuous. Our result covers functionals such as (with p(x) ≥ n = N)
∫

Ω

[(1 + |Du|2)p(x)/2 + (1 + |det Du|2)p(x)/2n] dx .

We hope that our methods will be helpful in order to treat also more concrete and
precise models arising from mathematical physics; we would like to stress that the
difficulties to be overcome are not only due to the nonstandard growth (1.5) in itself
but also to the presence in the integrand f of the variable x, which, in contrast to
the standard case (1.2), is not easy to handle under nonstandard growth conditions,
especially when trying to obtain sharp results. Moreover (see remark 2.2 below)
our methods allow to cover more general integrals of the type

∫

Ω

f(x, u, Du) dx .

Most of these difficulties are present already in the convex case, which happens more
frequently in the applications (we note that all the convex vector-valued cases under
non standard growth considered in the literature, such as [AF3],[FS],[EM],[BF], are
concerned with an integrand depending only on the gradient and the methods used
do not seem to extend immediately to the case in which f is allowed to contain
also (x, u) or even only x). Moreover we remark that our motivations do not
come only from the applicative aspects of the problem but are also theoretical:
indeed the regularity theory of functionals with (p, q)-growth has not developed
enough to cover quasiconvex integrals and, although we set ourselves in a particular
situation, that is the one of p(x)-growth, this is, up to our knowledge, the first
partial regularity result valid for quasiconvex integrals with (p, q)-growth. We recall
that the problem of regularity of minimizers of quasiconvex functionals with (p, q)-
growth was raised by Marcellini in [M5].
Finally we spend some words about our techniques. In order to treat condition (1.5),
we have to push hard all the technical tools developed (see [AF2],[CFM]) to treat
quasiconvexity under assumption (1.2), proceeding through a strong revisitation
of the blow-up arguments leading to partial regularity in the traditional p-growth
case. We employ a suitable localization of the usual blow-up procedure (see [EG])
in the sense that we blow-up a minimizer u not in the whole Ω but in small open
subsets constructed in such a way that both Du satisfies certain average bounds
and p(x) has suitably small variations. Nevertheless we present some technical
simplifications, even with respect to the p-growth case, that allow us to avoid the
use of the selection and extension (via maximal functions) lemmas employed for
instance in [AF2] and [CFM] (see the proof of theorem 2.1, step 4).
Acknowledgement. This work has been performed as a part of the Research
Project “Modelli Variazionali sotto Ipotesi non Standard,” supported by GNAFA-
CNR; the second author also acknowledges the kind hospitality of the Mittag-
Leffler Institut, Djursholm, Sweden, under the programme “Potential Theory and
Nonlinear Partial Differential Equations.”

2. Notation and statement

In the sequel Ω will denote an open bounded domain in R
n, and B(x, R) the

open ball {y ∈ R
n : |x− y| < R}. If u is an integrable function defined on B(x, R)
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we will set

(u)x,R = −

∫

B(x,R)

u(x) dx =
1

ωnRn

∫

B(x,R)

u(x) dx ,

where ωn is the Lebesgue measure of B(0, 1). We shall also adopt the convention
of writing BR and (u)R instead of B(x, R) and (u)x,R respectively, when the center
will not be relevant, or it is clear from the context; moreover, unless otherwise
stated, all balls considered will have the same center. Finally, the letter c will
freely denote a constant, not necessarily the same in any two occurencies, while
only the relevant dependeces will be highlighted.
We are going to deal with the integral functional

(2.1) F(u, Ω) =

∫

Ω

f(x, Du) dx ,

defined on W 1,1
loc (Ω; RN ). The Carathéodory function f : Ω × R

nN → R will be
supposed to satisfy a growth condition of the following type:

(2.2) L−1|z|p(x) ≤ f(x, z) ≤ L(1 + |z|p(x))

for any z ∈ R
nN , x ∈ Ω, where p : Ω → (1, +∞) is a continuous function and L ≥ 1.

With this type of nonstandard growth condition we adopt the following notion of
(local) minimizer:

Definition 2.1. We say that a function u ∈ W 1,1
loc (Ω; RN ) is a local minimizer of

F if |Du|p(x) ∈ L1
loc(Ω) and

∫

sptϕ

f(x, Du) dx ≤

∫

sptϕ

f(x, Du + Dϕ) dx

for any ϕ ∈ W 1,1
0 (Ω; RN ) with compact support in Ω.

Besides (2.2), we shall consider the following ellipticity and continuity conditions:
∫

Q1

[f(x0, z0 + Dϕ) − f(x0, z0)] dx(2.3)

≥ L−1

∫

Q1

(1 + |z0|
2 + |Dϕ|2)(p(x0)−2)/2|Dϕ|2 dx

for each z0 ∈ R
n, x0 ∈ Ω and each ϕ ∈ C∞

0 (Q1) where Q1 = (0, 1)n, and

|f(x, z) − f(x0, z)|(2.4)

≤ Lω(|x − x0|)
(

(1 + |z|2)p(x)/2 + (1 + |z|2)p(x0)/2
)[

1 + log(1 + |z|2)
]

for any z0 ∈ R
n, x, x0 ∈ Ω and where L ≥ 1; here ω : R

+ → R
+ is a nondecreasing

continuous function vanishing at zero which represents the modulus of continuity
of p(x):

|p(x) − p(y)| ≤ ω(|x − y|) ,

thus (2.4) is modeled on the functional (1.3) for µ > 0.
Remark 2.1. We observe that our regularity result needs no other growth as-
sumptions, in particular on the second derivatives of the function f . We recall that
if (2.2) holds then (2.3) implies (see e.g. [AF2]) the following growth property for
Df (when it exists):

|Df(x0, z)| ≤ c(1 + |z|)p(x0)−1

with c ≡ c(L, γ1, γ2), for any z ∈ R
nN and x0 ∈ Ω.

Our main result is the following:
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Theorem 2.1. Let u ∈ W 1,1
loc (Ω; RN ) be a local minimizer of the functional F where

f is a function of class C2 with respect to the variable z satisfying (2.2)–(2.4) with

(2.5) ω(R) ≤ LRα

for some 0 < α ≤ 1 and for any R ≤ 1. Then there exists an open subset Ω0 ⊂ Ω
such that |Ω \ Ω0| = 0 and that Du is locally Hölder continuous in Ω0.

Remark 2.2. In a matter already burdened with technicalities we preferred to
avoid the full generality in order to highlight only the main ideas. Anyway our
results can be carried out for more general functionals of the type

∫

Ω

f(x, u, Du) dx

with f satisfying (2.2)–(2.5) and a continuity assumption with respect to u such as

|f(x, u, z)− f(x, u0, z)| ≤ Lω(|u − u0|)(1 + |z|2)p(x)/2.

3. Preliminary results

In this section and in the following one, since all our results are local in nature,
without loss of generality we shall suppose that

1 < γ1 ≤ p(x) ≤ γ2 ∀x ∈ Ω ,

∫

Ω

|Du|p(x) dx < +∞ .

We start with a higher integrability result due to Zhikov, which in the following
statement appears in [AM1] (see also [Z2], [CM]):

Theorem 3.1. Let u ∈ W 1,1(Ω, RN ) be a local minimizer of the functional F , with

f : Ω × R
nN → R satisfying (2.2) and with

ω(R) ≤ L| logR|−1

for all R < 1; also let
∫

Ω

|Du|p(x) dx ≤ M .

Then there exist two positive constants c0, δ ≡ c0, δ(γ1, γ2, L, M) such that for every

BR ⊂⊂ Ω

(3.1)

(

−

∫

BR/2

|Du|p(x)(1+δ) dx

)1/(1+δ)

≤ c0 −

∫

BR

|Du|p(x) dx + c0 .

Remark 3.1. The condition on ω in the previous theorem, which is weaker than
(2.5), was first considered by Zhikov (see [Z1-3]).
The next lemma is an up-to-the-boundary higher integrability result, and the ver-
sion we give here is a vector-valued restatement of lemma 2.7 from [CFP].

Lemma 3.1. Let g(x, z) : Ω × R
nN → R be a continuous function satisfying

L−1|z|p ≤ g(x, z) ≤ L(|z|p + a(x)) ,

where L ≥ 1, 0 ≤ a(x) ∈ Lγ(BR), γ > 1, γ1 ≤ p ≤ γ2. Let ū ∈ W 1,q(B2R; RN ), p <

q, B2R ⊂⊂ Ω and v ∈ ū + W 1,p
0 (BR; RN ) be a minimizer of the functional w 7→

∫

BR
g(x, Dw) dx in the Dirichlet class ū + W 1,p

0 (BR; RN ). Then there exist c, ε ≡
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c, ε(γ1, γ2, L) with 0 < ε < min{ q−p
p , γ−1} := m, but independent of R, v, a(x) and

ū, such that

(

−

∫

BR

|Dv|p(1+ε) dx

)1/p(1+ε)

≤ c

(

−

∫

BR

|Dv|p dx

)1/p

+ c

(

−

∫

B2R

[|Dū|p + a(x)1BR ](1+m) dx

)1/p(1+m)

.

Proof. We only give a sketch, since this result is just a restatement of similar
theorems appearing in the literature. When γ = +∞ then the proof is contained
in lemma 2.7 from [CFP], except for the fact that in our case N ≥ 1, which is
completely unrelevant for the proof. When γ < ∞ we extend a(x) to the whole
B2R just setting ã(x) := a(x)1BR , then once again we follow the proof of lemma 2.7
from [CFP] adding to the right hand side of each inequality the term −

∫

ã(x) dx and
applying Gehring lemma in the version of Giaquinta and Modica (see [Giu], theorem
6.6) to get our statement. We remark that although from [CFP] it seems that the
exponent ε depends on p, the proof of [CFP] itself and an accurate inspection of the
statements of the various versions of the Gehring lemma appearing in the literature
(again, see for instance [S], or [I], proposition 6.1), reveal that ε can be chosen to
be bounded uniformly away from zero as p varies in a compact subset of ]1, +∞[
such as our [γ1, γ2]. �

We shall widely use the function Vp : R
k → R

k defined by

(3.2) Vp(z) = (1 + |z|2)(p−2)/4z

for each z ∈ R
k and for any p > 1. The properties of Vp may be found in [CFM],

lemma 2.1, which we restate here in a way that suits our needs.

Lemma 3.2. Let p > 1, and let V ≡ Vp : R
k → R

k be as in (3.2); then for any

z, η ∈ R
k, t > 0

(a) |V (tz)| ≤ max{t, tp/2}|V (z)|

(b) |V (z + η)| ≤ c[|V (z)| + |V (η)|]

(c) |V (z) − V (η)| ≤ c(M)|V (z − η)| if |η| ≤ M and z ∈ R
k

(d) max{|z|, |z|p/2} ≤ |V (z)| ≤ c max{|z|, |z|p/2} if p ≥ 2

c−1 min{|z|, |z|p/2} ≤ |V (z)| ≤ min{|z|, |z|p/2} if 1 < p < 2

(e) c−1|z − η| ≤
|V (z) − V (η)|

(1 + |z|2 + |η|2)(p−2)/4
≤ c|z − η|

(f) |V (z − η)| ≤ c(M)|V (z) − V (η)| if |η| ≤ M and z ∈ R
k

with c ≡ c(k, p) > 0. Moreover if 1 < γ1 ≤ p ≤ γ2 all constants may be replaced by

a single constant c ≡ c(k, γ1, γ2).

The next lemma is a further higher integrability result concerning local minimizers
of a certain class of functionals that will be needed later. The proof, including the
precise dependences of the constants, will be omitted for the sake of brevity and
can be easily adapted from [AF2], lemma II.4 for the case p ≥ 2 and from [CFM],
lemma 2.8, for the case 1 < p < 2.
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Lemma 3.3. Let L̄ > 0, 0 < λ < 1, 1 < γ1 ≤ p ≤ γ2 and let g : R
nN → R be a

continuous function such that

|g(z)| ≤ L̄(1 + λ2|z|2)(p−2)/2|z|2(3.3)
∫

B1

g(Dφ) dx ≥ L̄−1

∫

B1

λ−2|Vp(λDφ)|2 dx(3.4)

for any φ ∈ W 1,p
0 (B1; R

N ). Let µ > 0 and let ū ∈ W 1,p(B1; R
N ) be such that

(3.5)

∫

B1

g(Dū) dx ≤

∫

B1

g(Dū + Dφ) + µ|Dφ| dx

for all φ ∈ W 1,p
0 (B1; R

N). Then there exist c, δ2 ≡ c, δ2(γ1, γ2, L̄) but independent

of R, λ, ū, g and µ, such that for any B3R ⊂⊂ B1:
(

−

∫

BR/2

|Vp(λDū)|2(1+δ2) dx

)1/(1+δ2)

≤ c −

∫

B3R

(λ2µ + |Vp(λDū)|2) dx .

The next is a consequence of the mean value theorem applied to suitable rescalings
of the function f (see [AF2], lemma II.3 and [CFM], lemma 3.3):

Lemma 3.4. Let M > 1, and x0 ∈ Ω. If A ∈ R
nN , |A| ≤ M, λ > 0 set

fA,λ(z) := λ−2[f(x0, A + λz) − f(x0, A) − λDf(x0, A)z] .

Then there exists a constant L̄ ≡ L̄(γ1, γ2, L, M) > 0 such that

(3.6) fA,λ(z) ≤ L̄(1 + λ2|z|2)(p(x0)−2)/2|z|2 = L̄λ−2|Vp(x0)(λz)|2

(3.7)

∫

B1

fA,λ(Dφ) dx ≥ L̄−1

∫

B1

λ−2|Vp(x0)(λDφ)|2 dx

for any φ ∈ W
1,p(x0)
0 (B1; R

N ).

Now we state a Poincaré-type inequality on increasing spheres, proved in [CFM],
and involving the function Vp.

Theorem 3.2. If γ1 < p(x0) < 2, there exist 2
p(x0)

< α < 2 and σ > 0 depending

on (n, N, γ1), such that if u ∈ W 1,p(x0)(B(x0, 3R); RN) then

(3.8)

(

−

∫

B(x0,R)

∣

∣

∣
Vp(x0)

(u − (u)x0,R

R

)
∣

∣

∣

2(1+σ)

dx

)1/2(1+σ)

≤ c

(

−

∫

B(x0,3R)

|Vp(x0)(Du)|αdx

)1/α

,

where c ≡ c(n, N, γ1) is independent of R and u.

We conclude the section by stating a well known variational principle due to Ekeland
(see [Ek]).

Lemma 3.5. Let (X, d) be a complete metric space and G : X → (−∞, +∞] a

lower semicontinuous functional such that infX G is finite. Given ε > 0 let v ∈ X
be such that G(v) ≤ infX G + ε. Then there exists ¯̄u ∈ X such that

d(¯̄u, v) ≤ 1

G(¯̄u) ≤ G(v)

G(¯̄u) ≤ G(w) + εd(w, ¯̄u) for any w ∈ X .
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4. Blow-up and Partial Regularity

In this section we prove theorem 2.1. Before starting, we fix some quantities and
make some preliminary reductions, that will be crucial for our proof; from now on,
u ∈ W 1,1(Ω; RN ) will always denote the local minimizer of theorem 2.1.

Choice of some relevant quantities. We start observing that if Ω′ ⊂⊂ Ω is
open then, via a standard covering argument, by theorem 3.1 we get an exponent
δ1 such that |Du|p(x) ∈ L1+δ1(Ω′). Again, since all our results are local, we shall
rightaway suppose that

∫

Ω

|Du|p(x)(1+δ1) dx < +∞ .

Without loss of generality, we may pick δ1 as small as we want in order to have

(4.1) 0 < δ1 ≤ min{γ1 − 1, 1} .

Now, let 1 < M < ∞ and denote by L̄ ≡ L̄(M) the constant given by lemma 3.4;
applying lemma 3.3 to g(z) ≡ fA,λ(z) we come up with a further higher integrability
exponent δ2 ≡ δ2(M). We now turn our attention to lemma 3.1 and we apply it
when q = p(1+δ1/4) and L is replaced by 2L. In this way we again have another (up-
to-the-boundary) higher integrability exponent 0 < ε < δ1/4, ε ≡ ε(γ1, γ2, L, δ1),
independent of any local minimizer we are going to consider. Finally we set

δ3 := min{ε, δ2} ≡ δ3(M) .

Select a radius RM > 0 in such a way that ω(RM ) ≤ δ3/4: from now on O ⊂⊂ Ω
will always denote an open subset whose diameter does not exceed RM . In this
way if we set

p1 := inf
O

p(x) p2 := sup
O

p(x)

then it follows that

p2(1 + δ1/4) ≤ p1(1 + δ1) ≤ p(x)(1 + δ1)(4.2)

p2(1 + δ2/4) ≤ p1(1 + δ2) ≤ p(x)(1 + δ2)(4.3)

p2(1 + ε/4) ≤ p1(1 + ε) ≤ p(x)(1 + ε)(4.4)

whenever x ∈ O. We remark that, while in general δ3 depends on M in the sense
that δ3 → 0 if M → +∞ (since δ2 → 0), the exponent ε is independent of M and
stays bounded away from zero when M moves.
By CM we will denote any constant depending on M , possibly varying from line
to line, that for simplicity will be assumed to be such that CM ≥ 1. We will
occasionally denote by ĈM (or the like) any peculiar occurrence of a constant that
we need later.
In the following technical proposition we exploit a variational freezing argument
that will be used later:

Proposition 4.1. Let B(x0, 4R) ⊂⊂ O, (|Du|p2)x0,4R ≤ CM < +∞. Then there

exist β1, β2 ≡ β1, β2(γ1, γ2, L, α) but independent of M, R and x0 ∈ O, a constant

ČM depending also on M , and a function ¯̄u ∈ u + W 1,p2

0 (B(x0, R); RN ) such that

−

∫

B(x0,R)

|Du − D ¯̄u|p2 dx ≤ ČMRβ1(4.5)

−

∫

B(x0,R)

f(x0, D ¯̄u) dx(4.6)
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≤ −

∫

B(x0,R)

f(x0, Dw) dx + Rβ2 −

∫

B(x0,R)

|Dw − D ¯̄u| dx

for any w ∈ u + W 1,p2

0 (B(x0, R); RN ).

Proof. We consider g(z) := f(x0, z) and we define v ∈ u + W
1,p(x0)
0 (BR; RN ) as

the unique solution to the Dirichlet problem

min{

∫

BR

g(Dw) dx : w ∈ u + W
1,p(x0)
0 (BR; RN )} .

We remark that the existence of v is ensured since f is quasiconvex. Applying
theorem 3.1 to u we find:

−

∫

B2R

|Du|p2(1+δ1/4) dx
(4.2)

≤ c −

∫

B2R

(|Du|p(x)(1+δ1) + 1) dx

(3.1)

≤ c

(

−

∫

B4R

|Du|p(x) dx + 1

)1+δ1

(4.7)

≤ c

(

−

∫

B4R

|Du|p2 dx + 1

)1+δ1

:≤ CM ;

then, applying lemma 3.1 with ū ≡ v, p ≡ p(x0), q ≡ p(x0)(1 + δ1/4), and a(x) ≡
1 ∈ L∞ we have

−

∫

BR

|Dv|p2(1+ε/4) dx
(4.4)

≤ c −

∫

BR

(|Dv|p(x0)(1+ε) + 1) dx

≤ c

(

−

∫

BR

(|Dv|p(x0) + 1) dx

)1+ε

(4.8)

+c

(

−

∫

B2R

(|Du|p2(1+δ1/4) + 1) dx

)(1+ε)/(1+δ1/4)

(4.7)

≤ c

(

−

∫

BR

(|Du|p(x0) + 1) dx

)1+ε

+ CM ≤ CM .

Using the minimality of u and the two formulas above we directly obtain

−

∫

BR

[g(Du) − g(Dv)] dx

= −

∫

BR

[f(x0, Du) − f(x, Du)] dx

+ −

∫

BR

[f(x, Du) − f(x, Dv)] dx [≤ 0]

+ −

∫

BR

[f(x, Dv) − f(x0, Dv)] dx

≤ −

∫

BR

[f(x0, Du) − f(x, Du)] dx + −

∫

BR

[f(x, Dv) − f(x0, Dv)] dx

(2.4)

≤ cω(R) −

∫

BR

(

(1 + |Du|2)p2/2 + (1 + |Du|2)p(x)/2
)

·(4.9)

·[1 + log(1 + |Du|2)] dx
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+cω(R) −

∫

BR

(

(1 + |Dv|2)p2/2 + (1 + |Dv|2)p(x)/2
)

·

·[1 + log(1 + |Dv|2)] dx

(4.7),(4.8)

≤ c(ε)ω(R) −

∫

BR

(1 + |Du|p2(1+ε/4) + |Dv|p2(1+ε/4)) dx

≤ CMω(R) ,

so that we finally find

(4.10) −

∫

BR

[g(Du) − g(Dv)] dx ≤ ĈMRα .

Now we consider the complete metric space X := u + W 1,1
0 (BR; RN ) endowed with

the metric:

d(z1, z2) := Ĉ−1
M R−α/4 −

∫

BR

|Dz1 − Dz2| dx

and we set

G(z) :=

{

−
∫

BR
g(Dz) dx if z ∈ u + W

1,p(x0)
0 (BR; RN )

+∞ otherwise.

This functional is clearly lower semicontinuous on X and moreover G(v) = minX G
so that, by (4.10), it also follows that

G(u) ≤ inf
X

G + ĈMRα/2 ;

at this point we apply lemma 3.5 above in order to find ¯̄u ∈ u + W
1,p(x0)
0 (BR; RN )

such that

−

∫

BR

|Du − D ¯̄u| dx ≤ ĈMRα/4(4.11)

−

∫

BR

f(x0, D ¯̄u) dx ≤ −

∫

BR

f(x0, Dw) dx + Rα/4 −

∫

BR

|Dw − D ¯̄u| dx := Ḡ(w)(4.12)

for all w ∈ u + W 1,1
0 (BR; RN), so that (4.6) is proved with β2 = α/4. It remains to

prove (4.5). We observe that by (4.12) the function ¯̄u minimizes the new functional
Ḡ, so we apply lemma 3.1 to Ḡ, with g(x, z) ≡ f(x0, z)+Rα/4|z−D ¯̄u(x)|, p ≡ p(x0),
q ≡ p(x0)(1 + δ1/4), a(x) ≡ D ¯̄u + 1 ∈ Lγ1 , γ ≡ γ1, so that m ≡ δ1/4 by (4.1); we
obtain

−

∫

BR

|D ¯̄u|p2(1+ε/4) dx
(4.4)

≤ −

∫

BR

(|D ¯̄u|p(x0)(1+ε) + 1) dx

≤ c

(

−

∫

BR

|D ¯̄u|p(x0) dx

)1+ε

+c

(

−

∫

B2R

(|Du|p2(1+δ1/4) + 1) dx

)(1+ε)/(1+δ1/4)

+c

(

−

∫

BR

(|D ¯̄u| + 1)1+δ1/4 dx

)(1+ε)/(1+δ1/4)

(4.1),(4.7)

≤ CM + c

(

−

∫

BR

|D ¯̄u|p(x0) + 1 dx

)1+ε

≤ CM
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where, in order to perform the last estimate, we used the minimality of ¯̄u and the
growth conditions satisfied by G to have by lemma 3.5

−

∫

BR

|D ¯̄u|p(x0) dx ≤ G(¯̄u) ≤ G(u) ≤ c −

∫

BR

(|Du|p(x0) + 1) dx ≤ CM .

We finally interpolate p2 between 1 and p2(1 + ε/4) to obtain, using (4.11) and the
previous estimates,

−

∫

BR

|Du − D ¯̄u|p2 dx

≤

(

−

∫

BR

|Du − D ¯̄u| dx

)p2θ (

−

∫

BR

|Du − D ¯̄u|p2(1+ε/4) dx

)(1−θ)/(1+ε/4)

≤ CMRθαp2/4 ≤ CMRθα/4 := ČMRθα/4 .

The exponent θ is independent of M , since

θ =

(

1 −
1

p2(1 + ε/4)

)−1 (

1

p2
−

1

p2(1 + ε/4)

)

=
(ǫ/4)

p2(1 + ǫ/4)− 1
≥

(ǫ/4)

γ2(1 + ǫ/4)− 1
:= θ̄

and ε is independent of M . To conclude the proof of (4.5) it is then enough to
choose β2 := θ̄α/4. �

We define the numbers q, Q and β by

(4.13) q := min{2, p2} , Q := max{2, p2} , β :=
1

2p2
min{β1, β2}

and we set

E(x0, R) = −

∫

B(x0,R)

|Vp2
(Du) − Vp2

((Du)x0,R)|2dx + Rβ

whenever B(x0, 4R) ⊂⊂ O. Roughly speaking, the quantity E (usually called ex-
cess) provides an integral measure of the oscillations of the gradient Du in a ball BR.
The next decay estimate for the quantity E is the key to the proof of theorem 2.1.

Proposition 4.2. Let M > 1 and let O ⊂⊂ Ω be an open subset related to M in the

way described above. There exists a constant CM such that for every 0 < τ < 1/24
there exists ε0 ≡ ε0(τ, M) such that if B(x0, 4R) ⊂⊂ O and

(4.14)
|(Du)x0,τR| ≤ M , |(Du)x0,R| ≤ M , |(Du)x0,4R| ≤ M ,

E(x0, R) < ε0 , E(x0, 4R) ≤ 1

then

(4.15) E(x0, τR) ≤ CMτβE(x0, R)

with β defined in (4.13).

Proof. Step 1: blow-up. Arguing by contradiction we suppose there exists a
sequence of balls B(xh, 4Rh) ⊂⊂ O such that

|(Du)xh,τRh
| ≤ M , |(Du)xh,Rh

| ≤ M , |(Du)xh,4Rh
| ≤ M ,

µ2
h := E(xh, Rh) → 0 , E(xh, 4Rh) ≤ 1
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but

(4.16) E(xh, τRh) ≥ C(M)τβE(xh, Rh) ,

where the constant C(M) will be chosen later; without loss of generality we may
assume that Rh → 0. We immediately obtain that there exists CM < +∞ such
that (|Du|p2)xh,4Rh

≤ CM : indeed, using lemma 3.2 (d), (f)

(|Du|p2)xh,4Rh
≤ c −

∫

B(xh,4Rh)

|Du − (Du)xh,4Rh
|p2 dx + CM

≤ CME(xh, 4Rh) + CM ≤ CM .

Now we apply proposition 4.1 in order to find a sequence of functions uh ∈ u +
W 1,p2

0 (B(xh, Rh); RN ) such that

−

∫

B(xh,Rh)

|Du − Duh|
p2 dx ≤ CMRβ1

h(4.17)

−

∫

B(xh,Rh)

f(xh, Duh) dx(4.18)

≤ −

∫

B(xh,Rh)

f(xh, Dw) dx + Rβ2

h −

∫

B(xh,Rh)

|Dw − Duh| dx

for any w ∈ u + W 1,p2

0 (B(xh, Rh); RN ) with β1, β2 independent of h ∈ N and M .
We define

(4.19) Ah := (Du)xh,Rh
λ2

h := −

∫

B(xh,Rh)

|Vp2
(Duh) − Vp2

(Ah)|2dx + Rβ
h

(remark that Ah is not the average of Duh) and we rescale each function uh in the
ball B(xh, Rh) in order to have a sequence of functions defined on B(0, 1) ≡ B1:

vh(y) = (λhRh)−1[uh(xh + Rhy) − (uh)xh,Rh
− RhAhy]

for any y ∈ B(0, 1). Then lemma 3.2 (f) yields

λ−2
h −

∫

B(0,1)

|Vp2
(λhDvh(y))|2dy = λ−2

h −

∫

B(xh,Rh)

|Vp2
(Duh(x) − Ah)|2dx

≤ CMλ−2
h −

∫

B(xh,Rh)

|Vp2
(Duh(x)) − Vp2

(Ah)|2dx ≤ CM(4.20)

by (4.19); so, by (d) from lemma 3.2

sup
h

[

‖|Dvh|
q‖L1(B1) + ((p2 − 2) ∨ 0)‖λp2−2

h |Dvh|
p2‖L1(B1)

]

≤ CM .

Remarking that we also have (vh)0,1 = 0, eventually selecting a subsequence we

obtain that there exists v ∈ W 1,q(B1) such that:

|vh − v|q → 0 strongly in L1(B1)

λp2−2
h |vh − v|p2 → 0 strongly in L1(B1) if p2 > 2

Dvh ⇀ Dv weakly in Lq(B1; R
nN )(4.21)

xh → x in R
n, with x ∈ O

Ah → A in R
nN , with |A| ≤ M .

Finally, we prove that

(4.22) λ2
h ≤ CMµ2

h ,
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a relation that will be useful in the sequel: in particular it implies that

λ2
h → 0.

Using lemma 3.2 and Jensen’s inequality we get

λ2
h

(c)

≤ CM −

∫

B(xh,Rh)

|Vp2
(Duh − Ah)|2 dx + Rβ

h

(b)

≤ CM −

∫

B(xh,Rh)

|Vp2
(Duh − Du)|2dx

+CM −

∫

B(xh,Rh)

|Vp2
(Du − Ah)|2dx + Rβ

h

(d),(f)

≤ CM −

∫

B(xh,Rh)

|Duh − Du|p2 dx

+CM ((p2 − 2) ∨ 0)

(

−

∫

B(xh,Rh)

|Duh − Du|p2 dx

)2/p2

+ CMµ2
h

(4.17)

≤ CM [Rβ1

h + R
(2β1)/p2

h + µ2
h]

(4.13)

≤ CMµ2
h .

Step 2: v solves a linear system. By the minimality relation (4.18) satisfied by
uh, rescaled in B1, it follows that vh satisfies the Euler system

−

∫

B(0,1)

〈Df(xh, Ah + λhDvh), Dφ〉 dy + λh(II)h = 0 ,

where the second term is dominated by

λh|(II)h| ≤ Rβ2

h −

∫

B(0,1)

|Dφ| dy

for each φ ∈ C1
0 (B1; R

N ), and also

0 = λ−1
h

∫

B(0,1)

〈Df(xh, Ah + λhDvh) − Df(xh, Ah), Dφ〉 dy + (II)h

:= (I)h + (II)h .

The fact that λ−1
h Rβ2

h ≤ Rβ2−β
h → 0 implies (II)h → 0. In order to estimate (I)h,

following [AF2] we split B1 into E+
h ∪ E−

h := {x ∈ B1 : λh|Dvh| ≥ 1} ∪ {x ∈ B1 :

λh|Dvh| < 1}, thus we also split (I)h into (I)+h + (I)−h . We immediately have that

|E+
h | ≤ ‖λ

q

h|Dvh|
q‖L1(B1) ≤ cλ

q

h → 0 ;

moreover (4.20) and (d) from lemma 3.2 easily give that

‖λp2−2
h |Dvh|

p2‖L1(E+

h ) ≤ CM .

Using these facts, remark 2.1 and Hölder inequality we deduce for every fixed φ

|(I)+h | ≤ λ−1
h

∫

E+

h

|Df(xh, Ah + λhDvh) − Df(xh, Ah)||Dφ| dy

≤ CMλ−1
h

∫

E+

h

(1 + |λhDvh|
p(xh)−1) dy

≤ CM

∫

E+

h

(λ−1
h + λp2−2

h |Dvh|
p2−1) dy
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≤ CMλ−1
h |E+

h | + CMλ
(p2−2)/p2

h |E+
h |1/p2

(
∫

E+

h

λp2−2
h |Dvh|

p2 dy

)(p2−1)/p2

≤ CMλ
q−1

h + CMλ
(p2−1)/p2

h → 0

since q > 1. As for the rest of B1 we have

(I)−h = λ−1
h

∫

E−

h

〈Df(xh, Ah + λhDvh) − Df(xh, Ah), Dφ〉 dy

=

∫

E−

h

dy

∫ 1

0

〈(D2f(xh, Ah + sλhDvh) − D2f(xh, Ah))Dvh, Dφ〉 ds

+

∫

E−

h

〈D2f(xh, Ah)Dvh, Dφ〉 dy

:= (III)h + (IV )h .

Since Dvh is bounded in Lq, we have λhDvh → 0 in Lq, thus up to another (not
relabelled) subsequence we may also suppose that λhDvh → 0 a.e. in B1. Since
D2f is uniformly continuous on bounded sets this implies that (III)h → 0. On the
other hand, since |E+

h | → 0, by (4.27) we have that

(IV )h →

∫

B1

〈D2f(x, A)Dv, Dφ〉 dy

so that connecting this with the previous estimates gives

(4.23)

∫

B1

〈D2f(x, A)Dv, Dφ〉 dy = 0

for any φ ∈ C1
0 (B1, R

N ). The uniform quasiconvexity condition in (2.3), intro-
duced in [E], implies that the matrix D2f satisfies the following strong Legendre-
Hadamard condition (see e.g. [Gia],[Giu]):

C−1
M |λ|2|µ|2 ≤ 〈D2f(x, A)λ ⊗ µ, λ ⊗ µ〉 ≤ CM |λ|2|µ|2

for any λ ∈ R
n, µ ∈ R

N and for some constant 1 ≤ CM < +∞. Therefore known
regularity results (see for instance [AF2], and [CFM] for the case 1 < p2 < 2)
for solutions of linear elliptic systems with constant coefficients as (4.23) give that
v ∈ C∞(B1) and

(4.24) −

∫

Bτ

|Dv − (Dv)τ |
2 dy ≤ CM τ2

for any τ ≤ 1/4.
Step 3: upper bound. Keeping the notation of lemma 3.4 we define a sequence
of rescaled functions:

fh(z) ≡ fAh,λh
(z) :=

f(xh, Ah + λhz) − f(xh, Ah) − λhDf(xh, Ah)z

λ2
h

for any h ∈ N, z ∈ R
nN and, if r ∈ (0, 1], the corresponding functionals

Ir
h(w) :=

∫

Br

fh(Dw) dy
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for any w ∈ W 1,1(B1, R
N ). With such a notation the minimality of uh stated in

(4.18) translates, after rescaling, into:

(4.25) Ir
h(vh) ≤ Ir

h(vh + φ) + λ−2
h Rβ2

h

∫

Br

|Dφ| dy

for any φ ∈ W 1,1(B1, R
N ) such that sptφ ⊂⊂ Br. Applying lemma 3.4 with

(A, λ, x0) ≡ (Ah, λh, xh) we observe that the hypotheses of lemma 3.3 are verified

by (3.6),(3.7) and (4.25), with g(z) ≡ fh(z), u ≡ vh and µ ≡ λ−2
h Rβ2

h , so that, with
the choice of the quantities made at the beginning of the section, we easily have by
(4.20)

(4.26) −

∫

B1/12

∣

∣

∣

Vp(xh)(λhDvh)

λh

∣

∣

∣

2(1+δ3)

dx ≤ CM

(remark that µ is bounded because λ−2
h Rβ2

h ≤ R
β2(1−1/2p2)
h by (4.13)). Now we

want to prove that:

(4.27) lim sup
h

[Ir
h(vh) − Ir

h(v)] ≤ 0

for a.e. r ∈ (0, 1/12). Let us consider the sequence of Radon measures given by

αh := λ−2
h [|Vp2

(λhDvh)|2 + |Vp2
(λhDv)|2] dy.

By (4.20) and the smoothness of v it follows that

sup
h

‖αh‖BV ≤ CM

and so, up to not relabelled subsequences, we may suppose there exists a Radon
measure α such that αh ⇀ α weakly in the sense of measures. Moreover, since
α(∂Bt) = 0 for all but a countable set of t ∈ (0, 1), we may suppose without loss
of generality that α(∂Br) = 0. We choose s < r and take η ∈ C∞

0 (Br) such that
0 ≤ η ≤ 1 and η ≡ 1 on Bs, |Dη| ≤ c/(r − s); we then test the minimality of vh

with the function φh = (v − vh)η. We have by (3.6) and using (a), (b) from lemma
3.2:

Ir
h(vh) − Ir

h(v) ≤ Ir
h(vh + φh) − Ir

h(v) + λ−2
h Rβ2

h

∫

B1

|Dφh| dy

=

∫

Br\Bs

[fh(Dvh + Dφh) − fh(Dv)] dx + oh

≤ cλ−2
h

∫

Br\Bs

[|Vp(xh)(λhDv)|2(4.28)

+|Vp(xh)(λh(v − vh)Dη + λhηDv + λh(1 − η)Dvh)|2] dy + oh

≤ cαh(Br \ Bs) +
cλ−2

h

(r − s)Q

∫

Br\Bs

|Vp(xh)(λh(v − vh))|2 dy + oh

where oh will denote any quantity that vanishes as h → ∞; in this case we have

oh = λ−2
h Rβ2

h

∫

B1
|Dφh| dy → 0 since λ−2

h Rβ2

h → 0 and the norms ‖Dφh‖L1(B1)

are uniformly bounded. In order to estimate the last integral in (4.28) we observe
that this vanishes, when h → ∞, by (4.27) and lemma 3.2 (d) when p2 ≥ 2; when
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1 < p2 < 2 we interpolate by taking θ ∈ (0, 1) such that 1/2 = θ + (1− θ)/2(1 + σ),
where σ > 0 is the improving constant introduced in theorem 3.2; we have:

∫

Br\Bs

|Vp(xh)(λh(v − vh))|2 dy

≤ c

(
∫

Br\Bs

|Vp(xh)(λh(v − vh))| dy

)2θ

·

·

(
∫

Br\Bs

|Vp(xh)(λh(v − vh))|2(1+σ) dy

)(1−θ)/(1+σ)

≤ cλ2θ
h

(
∫

Br

|v − vh| dy

)2θ

·

·

(
∫

Br\Bs

[

|Vp(xh)(λh(v − vh) − λh(v − vh)0, 1
3
)|2(1+σ)(4.29)

+|Vp(xh)(λh(v − vh)0, 1
3
)|2(1+σ)

]

dy

)(1−θ)/(1+σ)

≤ cλ2θ
h

(
∫

Br

|v − vh| dy

)2θ

·

·

[(
∫

B1

|Vp(xh)(λhDvh)|2 dy

)1−θ

+ λ
2(1−θ)
h

]

(4.20)

≤ CMλ2
h

(
∫

Br

|v − vh| dy

)2θ

.

Collecting (4.28) and (4.29), we have in any case

Ir
h(vh) − Ir

h(v) ≤ CM

[

αh(Br \ Bs) +
1

(r − s)Q

(
∫

Br

|v − vh| dy

)2θ

+ oh

]

,

and (4.27) follows by letting first h → ∞ and then s ր r (using the fact that
α(∂Br) = 0).
Step 4: lower bound. Our aim here is to prove that

(4.30) lim sup
h

λ−2
h

∫

Br/2

|Vp2
(λh(Dv − Dvh))|2 dy = 0

for all r ∈ (0, 1/12). We begin by writing

Ir
h(vh) − Ir

h(v) = [Ir
h(vh) − Ir

h(v + φh)] + [Ir
h(v + φh) − Ir

h(v)] := (I)h + (II)h ,

where this time φh := (vh − v)η and η is the cut-off function defined in step 3 with
1/12 > r > s ≥ r/2. Proceeding as in step 3, we estimate in a similar fashion

|(I)h| ≤

∫

Br\Bs

|fh(Dvh) − fh(Dv + Dφh)| dy

≤ CM

[

αh(Br \ Bs) +
1

(r − s)Q

(
∫

Br

|v − vh| dy

)2θ

+ oh

]

.

In order to estimate (II)h we write

(II)h =

∫

Br

fh(Dφh) dy +

∫

Br

[fh(Dv + Dφh) − fh(Dv) − fh(Dφh)] dy
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:= (III)h + (IV )h .

Recalling that each fh satisfies (3.7) from lemma 3.4, with x0 ≡ xh and λ ≡ λh, we
have

(III)h ≥ C−1
M λ−2

h

∫

Br/2

|Vp(xh)(λh(Dv − Dvh))|2 dy .

To estimate (IV )h we observe that by Egorov theorem we may fix σ > 0 and find
S ⊂ B1 such that λh(|Dvh| + |Dφh|) → 0 uniformly in S, with |B1 \ S| ≤ σ; so
we have, linearizing around Ah in a standard way as in [AF2], [CFM], but without
using the extension and selection lemmas employed in these papers,

|(IV )h| ≤

∫

Br\S

| · · · | dy +

∣

∣

∣

∣

∫

Br∩S

(· · · ) dy

∣

∣

∣

∣

≤
c

λ2
h

∫

Br\S

(

|Vp(xh)(λhDvh)|2 + |Vp(xh)(λhDφh)|2 + |Vp(xh)(λhDv)|2
)

dy

+c

∣

∣

∣

∣

∫

Br∩S

dy

∫ 1

0

∫ 1

0

〈D2f(Ah + sλhDφh + tλhDvh)Dv, Dφh〉 ds dt

∣

∣

∣

∣

:= (V )h + (V I)h .

Proceeding as in step 3, estimates (4.28),(4.29), and using the higher integrability
bound (4.26) together with the smoothness of v, we have by Hölder’s inequality

(V )h ≤ CM |Br \ S|δ3/(1+δ3) +
CM

(r − s)Q

(
∫

Br

|v − vh| dy

)2θ

+ oh ;

on the other hand the uniform convergence in S, the uniform continuity of D2f on
bounded sets and the fact that Dφh ⇀ 0 weakly in Lq(Br) give that (V I)h → 0.
Connecting all these facts we finally obtain that

lim sup
h

λ−2
h

∫

Br/2

|Vp(xh)(λh(Dv − Dvh))|2 dy ≤ CM [σδ3/(1+δ3) + α(Br \ Bs)] ,

so that by letting first σ → 0 and then s ր r we find that

(4.31) λ−2
h

∫

Br/2

|Vp(xh)(λh(Dv − Dvh))|2 dy = oh

for a.e. 0 < r < 1/12 (and thus for all r by monotonicity). Finally, in order to prove
(4.30) we observe that when |z| ≥ 1 then (4.2)–(4.4) and the elementary properties
of the function V imply that

|Vp2
(z)|2 ≤ c|Vp(xh)(z)|2(1+δ3)

with c independent of h ∈ N, thus we have

λ−2
h

∫

Br/2

|Vp2
(λh(Dv − Dvh))|2 dy

≤ λ−2
h

∫

{λh|Dv−Dvh|<1}∩Br/2

|Vp(xh)(λh(Dv − Dvh))|2 dy

+λ−2
h

∫

{λh|Dv−Dvh|≥1}∩Br/2

∣

∣Vp(xh)(λh(Dv − Dvh))
∣

∣

2(1+δ3)
dy

(4.31)

≤ oh + cλ2δ3

h

∫

B1/12

∣

∣

∣

Vp(xh)(λhDvh)

λh

∣

∣

∣

2(1+δ3)

dy
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+cλ2δ3

h

∫

B1/12

∣

∣

∣

Vp(xh)(λhDv)

λh

∣

∣

∣

2(1+δ3)

dy

(4.26)

≤ oh + CMλ2δ3

h → 0 ,

where we also used the smoothness of v; in this way (4.30) is completely proved.
Remark 4.1. The proof of the previous estimate relies on the possibility to control
p2 ≤ p1(1+ δ3) (see (4.3)-(4.4)) and it is the main reason to blow-up the minimizer
u in the open subset O rather than in the whole Ω. On the other hand, the open
subset O depends on u itself (via M) and this will force us to involve in the proof
of theorem 2.1 a delicate localization argument (see below).
Step 5: comparison and conclusion. We preliminarily observe that using
lemma 3.2 (d)

µ−2
h −

∫

B(xh,τRh)

|Vp2
(Duh − Du)|2 dx

≤ cµ−2
h −

∫

B(xh,Rh)

|Duh − Du|p2 dx

+cµ−2
h ((p2 − 2) ∨ 0)

(

−

∫

B(xh,Rh)

|Duh − Du|p2 dx

)2/p2

(4.17)

≤ CMµ−2
h [Rβ1

h + R
2β1/p2

h ] ≤ CM [Rβ1−β
h + R

(2β1/p2)−β
h ]

(4.13)
→ 0

and again by (d) from lemma 3.2 and (4.17), in a similar way,

µ−2
h −

∫

B(xh,τRh)

|Vp2

(

(Duh)xh,τRh
− (Du)xh,τRh

)

|2 dx = oh .

Now, using (b) and (c) from lemma 3.2 together with the previous estimates we
have (since |(Du)xh,τRh

| ≤ M by assumption)

lim sup
h

µ−2
h E(xh, τRh)

≤ CM lim sup
h

µ−2
h −

∫

B(xh,τRh)

|Vp2
(Du − (Du)xh,τRh

)|2 dx

+CMτβ lim sup
h

µ−2
h Rβ

h

≤ CMτβ + CM lim sup
h

µ−2
h −

∫

B(xh,τRh)

|Vp2
(Du − Duh)|2 dx

+CM lim sup
h

µ−2
h −

∫

B(xh,τRh)

|Vp2
(Duh − (Duh)xh,τRh

)|2 dx

+CM lim sup
h

µ−2
h −

∫

B(xh,τRh)

|Vp2
((Duh)xh,τRh

− (Du)xh,τRh
)|2 dx

(4.21),(4.22)

≤ CMτβ + CM lim sup
h

λ−2
h −

∫

Bτ

|Vp2
(λh(Dvh − (Dvh)τ ))|2 dy

≤ CMτβ + CM lim sup
h

λ−2
h −

∫

Bτ

|Vp2
(λh(Dvh − Dv))|2 dy

+CM lim sup
h

λ−2
h −

∫

Bτ

|Vp2
(λh(Dv − (Dv)τ ))|2 dy
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+CM lim sup
h

λ−2
h −

∫

Bτ

|Vp2
(λh((Dv)τ − (Dvh)τ ))|2 dy

(4.24),(4.30)

≤ CM (τ2 + τβ) ≤ ĈMτβ

since (Dvh)τ → (Dv)τ by (4.21)2. Now the contradiction to (4.16) follows if we

choose, for instance, C(M) := 2ĈM . �

Proof of theorem 2.1. The proof will be divided in three steps.
Step 1: Iteration. Let M ≥ 2, B(x0, 16R) ⊂⊂ O ⊂⊂ Ω where O ≡ OM is as in
proposition 4.2; if CM is the constant appearing in (4.15) and 0 < τ < 1/24 is

such that CMτ β̄/2 < 1/4, then a minor modification (see remark 4.2 below) of the
iteration scheme developed in [FH] shows that there exists η ≡ η(M, τ) ≡ η(M) ≤
ε0 ≤ 1, with ε0 as in (4.14), such that if

(4.32)
|(Du)x0,τR| + |(Du)x0,R| + |(Du)x0,4R| ≤ M/4 ,

E(x0, R) ≤ η , E(x0, 4R) ≤ 1

then a standard iteration procedure built upon proposition 4.2 starts and leads to

(4.33) |(Du)x0,τkR| ≤ M , E(x0, τ
kR) ≤ τkβ̄/2

for any k ≥ 1.
Step 2: Construction of Ω0. We check that the inequalities (4.32) are satisfied in
the set of full measure

Ω0 := {x0 ∈ Ω : lim sup
ρ→0

(|Du|p(x))x0,ρ < +∞ and

lim sup
ρ→0

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ| dx = 0}

provided 16R < RM , where RM is a radius depending on x0 and M , smaller than
the one defined before proposition 4.1. Indeed let x0 ∈ Ω0 and B(x0, 16R) ⊂⊂ O ⊂
⊂ Ω as before. Denoting by c0 > 1 the higher integrability constant provided by
theorem 3.1, let M ≥ max{2, 8c0} and 16R ≤ RM be such that for ρ = τR, for
ρ = R and for ρ = 4R

(4.34)
(|Du|p(x))x0,2ρ <

( M

8c0

)1/(1+δ1)

, |(Du)x0,ρ| < M/4 ,

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ| dx < B ,

where B < 1 and θ are such that denoting by c̃M the square of the constant
appearing in Lemma 3.2

2(γ2)
2

Mc̃M (Bp2θ + B2θ) < η/4 , 1 = θ + (1 − θ)/(1 + δ1/4) .

We may also suppose that R is so small that

(4R)β < η/4 ,

where η = η(M) is obtained from step 1. Using theorem 3.1 and (4.2)

(|Du|p2(1+δ1/4))x0,ρ ≤ (|Du|p(x)(1+δ1) + 1)x0,ρ

≤ c0(|Du|p(x) + 1)
(1+δ1)
x0,2ρ

≤ 2c0(|Du|p(x))
(1+δ1)
x0,2ρ + 2c0 ≤ M/2 .
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Then we interpolate p2 between 1 and p2(1 + δ1/4), using also (4.1) to estimate
p2(1 + δ1) ≤ (γ2)

2:

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ|
p2 dx

≤

(

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ| dx

)θp2

·

·

(

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ|
p2(1+δ1/4) dx

)(1−θ)/(1+δ1/4)

≤ Bθp22(γ2)
2

(|Du|p2(1+δ1/4))x0,ρ ≤ 2(γ2)
2

MBθp2 .

We are finally able to estimate, using (d) from lemma 3.2,

E(x0, ρ) = −

∫

B(x0,ρ)

|Vp2
(Du) − Vp2

(

(Du)x0,ρ

)

|2 dx + ρβ

≤ c̃M −

∫

B(x0,ρ)

|Du − (Du)x0,ρ|
p2 dx

+
(p2 − 2) ∨ 0

p2 − 2

(

c̃M −

∫

B(x0,ρ)

|Du − (Du)x0,ρ|
p2 dx

)2/p2

+ ρβ

≤ 2(γ2)
2

Mc̃M [Bp2θ + B2θ] + ρβ ≤ η/2 < η

so that also the second inequality in (4.32) holds.
Step 3: Localization and conclusion. We show that the set Ω0 is actually open,
and that if x0 ∈ Ω0 and (4.32) holds for a suitable M then

(4.35) −

∫

B(x0,ρ)

|Du − (Du)x0,ρ| dx ≤ CMρβ̄/4

for any 0 < ρ ≤ R̃M . From (4.35) the assertion of theorem 2.1 immediately
follows (see [AF2],[E],[CFM]) using Campanato’s integral characterization of Hölder
continuity, via a standard covering argument.
Take x0 ∈ Ω0 and fix M such that

lim sup
ρ→0

(|Du|p(x))x0,2ρ ≤
1

2

( M

8c0

)1/(1+δ1)

;

let RM be as before proposition 4.2, and take R < RM/32 such that (4.34) are
verified: we put OM = B(x0, RM ). At this point, by step 2 we may apply step 1 to
obtain (4.33), and we are ready to prove (4.35). A simple interpolation shows that
it suffices to prove (4.41) only for the numbers ρ of the type ρ = τkR, to which case
we specialize henceforth. Starting from (4.33) if p2 ≥ 2 then by (d) from lemma 3.2

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ| dx ≤

(

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ|
2 dx

)1/2

≤ CME(x0, ρ)1/2
(4.33)

≤ CMρβ̄/4 .

If 1 < p2 < 2 we estimate, again using (d) from lemma 2.1 and setting S :=
{|Du − (Du)x0,ρ| ≥ 1}:

−

∫

B(x0,ρ)

|Du − (Du)x0,ρ| dx = ωnρ−n

[
∫

Bρ∩S

| . . . | dx +

∫

Bρ\S

| . . . | dx

]
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≤ ωnρ−n

∫

Bρ∩S

|Du − (Du)x0,ρ|
p2 dx + c −

∫

Bρ

|Vp2
(Du − (Du)x0,ρ)| dx

≤ c −

∫

Bρ

|Vp2
(Du − (Du)x0,ρ)|

2 dx +

(

c −

∫

Bρ

|Vp2
(Du − (Du)x0,ρ)|

2 dx

)1/2

≤ CM

[

E(x0, ρ) + E(x0, ρ)1/2
]

≤ CME(x0, ρ)1/2
(4.33)

≤ CMρβ̄/4 ,

and (4.35) is proved. Finally we observe that inequalities (4.34) hold not only in
x0 but for every x1 in a small ball centered in x0, and for which we may suppose
that B(x1, 16R) ⊂ OM = B(x0, RM ). This implies the assertion. �

Remark 4.2. The technical modification to the iteration scheme of [FH] is due
to the necessity of checking the behaviour of the two quantities E(x0, 4τkR) and
|(Du)x0,4τkR|; this is done by using the last inequalities above to prove that

E(x0, 4τk+1R) ≤ CME(x0, τ
kR) .
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[R1] Růžička M.: Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris 329

(1999), 393–398.
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