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Abstract

We consider a class of parabolic systems of the type:

ut − diva(x, t,Du)= 0

where the vector fielda(x, t,F ) exhibits non-standard growth conditions. These systems arise when studying certain
of non-Newtonian fluids such as electrorheological fluids or fluids with viscosity depending on the temperature. For
defined weak solutions to such systems, we prove various regularity properties: higher integrability, higher differen
partial regularity of the spatial gradient, estimates for the (parabolic) Hausdorff dimension of the singular set.
 2003 Elsevier SAS. All rights reserved.

Résumé

Nous étudions une classe de systèmes paraboliques du type :

ut − diva(x, t,Du)= 0

où le champ vectoriela(x, t,F ) possède des conditions de croissance non standard. Ces systèmes se présentent da
de certaines classes de fluides non Newtoniens comme les fluides electro-rhéologiques ou les fluides dont la viscos
de la température. Nous prouvons différentes propriétés de régularité pour des solutions faibles convenables de tels
intégrabilité et différentiabilité améliorées, régularité partielle du gradient spatial et estimations pour la dimension de H
(parabolique) de l’ensemble des points singuliers.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

In recent years considerable attention was paid to the mathematical modelling of non-Newtonian fluids
are fluids described by a set of equations including a stress tensor depending in a non-linear way by the gr
the velocity. One of the first mathematical investigations of such models was carried out by Ladyzhenskaya
(see [17–19]); she considered the following system of equations that are known today as modified Navie
equations:{

ut − diva(D(u))+Dπ =−div(u⊗ u)+ f,

divu= 0,
in Ω × (0, T ), (1.1)

where D(u) denotes the symmetric part of the gradientDu andπ the pressure. The main point in the previo
system, as just mentioned, is that the monotone vector fielda :R9→R

9 depends in a non-linear way by D(u):

a
(
D(u)

)≈ (1+ ∣∣D(u)
∣∣2) p−2

2 D(u)+ terms with a similar growth (1.2

wherep > 1. The basic analysis of such systems goes back to Ladyzhenskaya and J.L. Lions (see also
particular, Ladyzhenskaya was also able to prove an existence and uniqueness theorem providedp > 2 belongs
to a certain range. Note that to find a set of equations for which uniqueness held was actually her ma
motivation; indeed, when studying systems as (1.1), she was not thinking of non-Newtoninan fluids at all,
she was looking for some alternative model system in Fluid dynamics, being of the opinion that the c
Navier–Stokes equations are not quite correct even for Newtonian fluids if the gradient of the velocity is lar
that they should be somehow modified; see also [33] for more comments. Recently, non-Newtonian flui
been intensively analyzed by many authors and a considerable literature, related to their behavior, rapidly
for an account of the mathematical aspects of the theory see the book [28] (see also [27] and [5] for an upd
of references and the paper [11] for parabolic systems with non-linear growth). It is clear that for general
as (1.1), i.e. without additional structure assumptions ona, partialC0,α-regularity of the spatial gradientDu is the
best possible result available, beside an estimate for the Hausdorff dimension of the singular set (the clos
outside whichDu is Hölder continuous). Indeed, even in the elliptic case, solutions to general elliptic sy
of the form−diva(x,Du) = 0 are not everywhere regular, while estimates for the Hausdorff dimension o
singular set are available (see for instance [26] for a detailed account of the problem in the elliptic cas
anyway important to note that in the case of the usual Navier–Stokes equations a wider and deeper theory
developed (see [6,20,34,35]).

A new interesting kind of fluids of prominent technological interest has recently emerged: the so
electrorheological fluids. These are special fluids characterized by their ability to change in a dramatic w
mechanical properties when in presence of an external electromagnetic field; for instance they are able to
their viscosity by a factor 1000 in a few milliseconds. In the context of continuum mechanics these fluids ha
modelled as non-Newtonian fluids. The basic studies can be found in the papers [29,30] while the fund
mathematical analysis for the model can be found in the monograph [31] (see also [32,9]). According to th
proposed by Rajagopal and R˚užička, the system governing an electrorheological fluid looks to the naïve eye e
as the one in (1.1) apart for the coupling with the external electromagnetic fieldE:

curlE= 0, divE= 0,

ut − diva(x, t,E,D(u))+Dπ =−div(u⊗ u)+ f

divu= 0.

in Ω × (0, T ), (1.3)

Here we want to stress the main feature of the previous model: the dependence ofa uponE is described via a
variable growth exponent, indeed in this case the relation in (1.2) is now substituted by:

a
(
x, t,E,D(u)

)≈ ν(x, t,E)
(
1+ ∣∣D(u)

∣∣2) p(E)−2
2 D(u)+ terms with similar growth (1.4
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that is the exponentp is varying with the electromagnetic fieldE (this describes the changes of viscosit
Once noted that the system in (1.3) is uncoupled, one can first obtainE(x, t) from Maxwell’s equations so tha
p ≡ p(x, t). This is going to tell us that actually the vector fielda exhibits non-standard growth conditions:

c1|F |γ1 − c2 � a(x, t,F ): F � c3|F |γ2 + c3, 1 < γ1 < γ2 <+∞,

where

γ1= inf p(x, t), γ2= supp(x, t).

The previous ones, i.e. with a gap between the monotonicity and the growth exponents, are known in the l
as non-standard growth conditions of(p, q) type (in this casep ≡ γ1 andq ≡ γ2) and they have been the obje
of an extensive series of papers starting with the counterexamples of Giaquinta and Marcellini [15,24]
regularity theory of Marcellini for the scalar case, [25] (see also [10] for an updated list of references
interesting to remark that Zhikov used a similar model to describe the behavior of a conductor influenc
somewhat analogous way by the temperature (see [37]).

The first purpose of this paper is to begin the study of regularity issues for the non-stationary sys
electrorheological fluids (1.3) by starting with the model situation of a parabolic system with non-standard g{

ut − diva(x, t,Du)= 0,

c1|F |p(x,t)− c2 � a(x, t,F ): F � c3|F |p(x,t)+ c3, p(x, t) > 1,
(1.5)

in Ω × (0, T ). Indeed we prove partialC0,α regularity of spatial gradient of weak solutions (defined in a suita
sense and named Energy Solutions; see Definition 2.1) to system (1.5), see Theorem 2.1. We remark t
as partialC0,α regularity of the spatial gradient is concerned, this is the first result for parabolic systems,
non-standard growth conditions. We remark that even in the scalar case, the literature on the issue is no
we mention here the nice paper by Lieberman [22], concerning everywhere regularity of the spatial gradie
scalar caseN = 1. We also observe that for the sake of brevity and in order to highlight the main ideas, we co
ourselves to the analysis of homogeneous systems but, in principle, the techniques developed here allo
more general systems with a non-zero right-hand side, provided this satisfies suitable growth assumption

Related regularity results in the stationary case can be found in [2,3] (see also [8,1] for the variationa
Moreover, fluids with viscosity dependence described using non-standard growth conditions have been tr
the stationary case, in various settings; see for instance [5,13,14,12,4]; this paper also offers an approach
potentially useful to extend such results to the non-stationary case.

Finally we spend a few words about the techniques. In Section 3 we study the problem in cylinders whep(z)

has small oscillations (“cylinders of the typeQ0”). Here we prove an a priori estimate (Theorem 3.1), ensu
the higher integrability of the spatial gradient inQ0; at this stage an interpolation-iteration procedure tailo
for parabolic problems plays a central role (Lemmas 3.3 and 3.5). This is first done for a priori regular so
(Section 3) and then adapted to the original one via approximation (Section 4); here we observe that
approximation argument works since the peculiarp(z)-growth structure of the problem is compatible with t
usual convolution (see Appendix A and Lemma 4.1). In Section 5 we consider a blow up procedure ex
only in cylinders of the typeQ0. The advantage is that we can use the higher integrability to choose a su
excess functional involving the maximum ofp(z) in Q0, allowing to overcome the fact that the problem exhib
non-standard growth conditions (the use of such a “maximal excess” allows to treat, in a certain sense, the
as one with standard polynomial growth). Finally we cover the full cylinderΩ × (0, T ) with small cylinders of
the typeQ0, and, using the results in Sections 5, we blow up the solution in each of these, thereby proving
regularity in eachQ0; the conclusion follows (see the comments in Section 6).
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2. Statements and notations

2.1. Basic notations

In the followingΩ will denote a bounded domain inRn, andQT will be the cylinderΩ× (0, T ). Differentiation
with respect to the space variables will be denoted with a comma in lower indices, for example,∂f /∂xj = f,j . For
functions, vectors fields and matrix fields, respectively, we use the differential operatorsDf := (f,j ), Dv := (vi,j ),
divA = (Aij,j ), all of which are understood in the sense of distributions; differentiation with respect to the
variable will be denoted by∂t or by t : ∂tf ≡ ft . The symbolsLp(Ω;Rn) andW1,p(Ω;Rn) stand for the usua
Lebesgue and Sobolev spaces, and will be often abbreviated intoLp(Ω) andW1,p(Ω), respectively (or evenLp

andW1,p). The norm inLp(Ω) will be abbreviated in|| · ||p,Ω . The spacesCα,β are those of functions whic
areα-Hölder continuous in the space variables andβ-Hölder continuous in the time variable. We shall keep
standard notation concerning balls and parabolic cylinders:

B(x,R) := {y ∈R
n: |x − y|< R

}
Q(z,R)≡Q

(
(x, t),R

) := B(x,R)× ]t −R2, t
[
.

They will be simply denoted byBR andQR respectively when no ambiguity about the center of the ball or
vertex of the cylinder shall arise; also, except when differently specified, all balls (or cylinders) will have the
center (vertex). Ifv is an integrable function inQ(z0,R) we shall denote its average by:

(v)z0,R := 1

ωnRn+2

∫
Q(z0,R)

v dx dt = −
∫

Q(z0,R)

v dx dt,

whereωn denotes the measure ofn-dimensional unit ball inRn; we shall often abbreviate(v)z0,R ≡ (v)R when no
confusion about the vertex will arise.

We shall deal with vector fields depending on many variables, for instancea(x, t,F ) :Rn×R×R
nN →R

nN ;
differentiation with respect to thex variable will be denoted byDx , as e.g.Dxa, while differentiation with respec
to F will be denoted byDF or simply byD, e.g.:Da ≡DF a.

If A⊂R
n andt ∈R, we shall denote byAt the layer

At :=A× {t}.
We recall that the parabolic Hausdorff MeasurePs is defined as follows:

Pδ
s (F ) := inf

{ ∞∑
i=1

Rs
i : F ⊂

∞⋃
i=1

Q(zi,Ri), Ri � δ

}
,

Ps(F ) := sup
δ>0

Pδ
s (F ).

Finally, in the following, the constantc will simply denote an unspecified, positive quantity, possibly chang
from line to line, while only the critical connections will be remarked; more peculiar instances will be deno
c̃, č and so on. In the rest of the paper we shall use Einstein’s convention on repeated indices.

2.2. Systems and energy solutions

We are given an exponent functionp : z ∈QT �→ p(z) ∈ (1,+∞) which is Lipschitz continuous with respect
the space variables andβ/2-Hölder continuous with respect to time (in the following(x, t), (x0, t0) ∈QT ), that is:∣∣p(x, t)− p(x0, t0)

∣∣� L
(|x − x0| + |t − t0|β/2), β ∈ (0,1]; (2.1)
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moreover we shall assume that:

2n

n+ 2
< γ1 � p(z) � γ2 <+∞. (2.2)

Let us observe that the previous lower bound onγ1 and, consequently, onp(z), is typical in the theory of nonlinea
parabolic systems and equations.

We shall consider a vector fielda : (z,F ) ∈QT ×R
nN �→ a(z,F ) ∈ R

nN ; with abuse of notation, ifz ≡ (x, t)

we shall also denotea(z,F )≡ a(x, t,F ). We assume that the functions(z,F ) �→ a(z,F ) and(z,F ) �→Da(z,F )

are continuous inQT ×R
nN and the following growth and ellipticity conditions are satisfied:∣∣a(z,F )

∣∣� L
(
1+ |F |2)(p(z)−1)/2

, (2.3)∣∣Da(z,F )
∣∣� L

(
1+ |F |2)(p(z)−2)/2

, (2.4)

Da(z,F )A :A � L−1(1+ |F |2)(p(z)−2)/2|A|2, (2.5)

for all z ∈QT andA,F ∈R
nN where 1� L <+∞. According to (2.1), we shall assume the following continu

property, clearly modeled on the behaviuor ofa(z,F )= (1+ |F |2)(p(z)−2)/2F :∣∣a(z,F )− a(z0,F )
∣∣� L

[(
1+ |F |2)(p(z)−1)/2+ (1+ |F |2)(p(z0)−1)/2]

× log
(
2+ |F |)(|x − x0| + |t − t0|β/2) (2.6)

for anyz≡ (x, t) andz0≡ (x0, t0) and for allF ∈R
nN whereβ is as in (2.1).

We are now ready to give the definition of Energy Solution:

Definition 2.1.A functionu ∈ L2(QT ;RN) is an Energy Solution to the parabolic system:

∂tu− diva(z,Du)= 0 (2.7)

iff ∫
QT

|Du|p(z) dz <+∞ (2.8)

and ∫
QT

u∂tw− a(z,Du) :Dw dz= 0 (2.9)

for anyw ∈ C∞0 (QT ;RN).

2.3. Main result

Our main regularity result concerning weak solutions is the following:

Theorem 2.1.Let u be an energy solution of the system(2.7)under the assumptions(2.1)–(2.6). There is an open
subsetQ0

T ⊂QT such thatDu ∈ Cβ1,β1/2(Q0
T ) with any exponentβ1 < β and|QT \Q0

T | = 0.

The statement of the previous theorem requires some comments; we see that no bound has been im
the size of the oscillations of the functionp(z), that is on the numberγ2− γ1. This is particularly relevant whe
referred to the context of electrorheological fluids. Indeed the size of the numberγ2− γ1 keeps into account th
possible excursions of the functionp(E ), that is of the viscosity of the fluid, when the electromagnetic fielE
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Therefore we allow all possible large values ofγ2− γ1. This is also seemingly in contrast to what is usually d
in the framework of non-standard growth conditions of(p, q) type (see [25], for instance) for elliptic system
where a bound on the quantityq − p in terms of that ratioq/p is usually assumed. Indeed it turns out (see [1
that:

q

p
� 1+ β

n

is in general a necessary condition for regularity, whereβ , as in (2.6), is the Hölder continuity exponent w
respect to thex-variable. In particularq/p→ 1 whenn→+∞. The point here is that we fully use thep(z)-
growth structure of the problem.

3. An a priori estimate

In this section we shall prove an a priori estimate that will be used in the sequel. This estimate is concern
solutions to a perturbed system, with “standard” polynomial growth and ellipticity conditions.

First of all let us recall some notations we shall keep for the rest of the section. In the followingQ0 :=
B(x0,R)× (t1, t2) will be a fixed cylinder, withB(x0,R) � Ω . Then we shall put:

p2 := sup
Q0

p(z) � γ2, p1 := inf
Q0

p(z) � γ1 >
2n

n+ 2

while q > max{p2,2} will be a number specified below. Moreoverε ∈ (0,1) and vε ∈ C0([t1, t2];L2
loc(Ω)) ∩

Lq(t1, t2;W1,q

loc (Ω;RN)) will be the solution to the perturbed parabolic system∫
Q0

−vε∂tw+ aε(z,Dvε) :Dw dz= 0, ∀w ∈ C∞0
(
Q0;RN

)
, (3.1)

where

aε(z,F ) := a(z,F )+ ε
(
1+ |F |2) q−2

2 F. (3.2)

We will assume that the oscillation ofp is not too large: precisely, in this section we assume that for someα > 0

p2− p1 � α/2 < α <
2

(n+ 2)n
if p2 � 2,

p2− p1 � α/2 < α < min

{
4

n3 ,
1

2

(
γ1− 2n

n+ 2

)}
if p2 < 2,

(3.3)

and we set

q0 := p1+ 4

n
. (3.4)

We also define the numberq according to:

q :=
{

p2+ α if p2 � 2,

2+ α if p2 < 2,
(3.5)

and therefore in any case, by (3.3),

q > 2, q0 > q > p2. (3.6)

The main result of this section is the following a priori estimate forvε :
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Theorem 3.1 (A priori estimate).Assume that(3.3) holds for someα > 0, and letQ(z0,2Γ ) � Q0; then the
following estimate holds for the functionsvε :∫

Q(z0,Γ/2)

|Dvε|q0 dz � cΓ n+2+ c

(
1

Γ

)s1
( ∫

Q(z0,Γ )

|Dvε |p1 dz

)s2

, (3.7)

where

s1= 8

4− (q − p1)(n+ 2)

n+ 2

n
, s2= 4− (q − p1)n

4− (q − p1)(n+ 2)

n+ 2

n

and the constantc depends upon(n, γ1, γ2,L,α) but is independent ofε and of the solutionvε .

For the sake of simplicity, from now on we shall suppose that, with a clear abuse (and even ambig
notations:

Q0≡QT :=A× (0, T ); A := B(x0,R).

The estimate will be reached through a series of lemmas. In the first one we derive a suitable Cacciop
estimate which differs from the usual one due to the non-standard growth conditions we are assuming.

Lemma 3.1. Let ϕ,χ be two cut-off functions such thatϕ ∈ C∞0 (A;RN), 0 � ϕ � 1, |Dϕ| � 1 and χ ∈
W1,∞((0, T )), χ(0)= 0 and∂tχ � 0. LetQt0 :=A× (0, t0) and:

Pε :=
n∑

i=1

Daε

(
z,Dvε(z)

)
Dvε

,i (z) :Dvε
,i (z),

I0(ϕ,χ) :=
∫

Qt0

χϕ2Pε dz, J0(ϕ,χ) := sup
0<t<t0

∫
Ω

χ(t)ϕ2(x)
∣∣Dvε(x, t)

∣∣2 dx.

Then

I0(ϕ,χ)+ J0(ϕ,χ) � c

∫
Qt0

[
∂tχϕ2+ χ

(
ϕ2+ |Dϕ|2)](1+ |Dvε |2)q/2

dz, (3.8)

with c≡ c(n, γ1, γ2,L,α) independent of(ε, t0, χ,ϕ) and of the particular solutionvε .

Proof. In the following we shall make all the computations in some detail since the same procedure will be re
later, in step 3 from Lemma 5.1. It turns out that (recall thatq > 2):

∫
Q̃

(
1+ |Dvε|2) p(z)−2

2
∣∣D2vε

∣∣2 dz �
∫
Q̃

(
1+ |Dvε|2) q−2

2
∣∣D2vε

∣∣2 dz <+∞,∫
Q̃ |Dvε |q dz <+∞

(3.9)

for any parabolic subcylinder̃Q � QT (see for instance [21]). For anyf ∈ L1
loc(QT ;Rk) andi ∈ {1,2, . . . , n}, and

h �= 0 we set (with(x + hei, t) ∈QT ):

τhf (x, t)≡ (τh,if )(x, t) := f (x + hei, t)− f (x, t),

8hf (x, t)≡ (8h,if )(x, t) := |h|−1(f (x + hei, t)− f (x, t)
)
,

where, as usual,{ei} denotes the standard basis ofR
n. In the weak formulation (2.9) we replacew by τ−hw, where

0 < h < dist(suppϕ, ∂Q0)/1000 in order to get:∫
τhu ∂tw− τhaε(z,Du)Dw dz= 0.
QT
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If {gρ} denotes a family of standard, positive radially symmetric mollifiers, replacingw with wρ ≡w ∗ gρ in the
previous equation yields:∫

QT

−(τhu)ρ∂tw+
(
τh

(
aε(z,Du)

))
ρ
Dw dz= 0.

In the last formulation we let the test functionw := φ(τhvε)ρ whereφ ∈ C∞0 (Q0) is a non-negative cut-of
function; this choice yields, after a simple integration by parts:

−1

2

∫
QT

∂tφ
∣∣(τhvε)ρ

∣∣2 dz+
∫

QT

φ
(
τh

(
aε(z,Dvε)

))
ρ
:D(τhvε)ρ dz

=−
∫

QT

(
τh

(
aε(z,Dvε)

))
ρ
:Dφ ⊗ (τhvε)ρ dz.

By (3.9) we can letρ→ 0 to get:

−1

2

∫
QT

∂tφ|τhvε |2+
∫

QT

φτhaε(z,Dvε) :Dτhvε dz=−
∫

QT

τhaε(z,Dvε) :Dφ ⊗ τhvε dz.

Now we perform the following choice:φ(x, t) := χ̃ (t)χ(t)ϕ2(x) whereχ andϕ are as in the statement andχ̃ is
continuous function defined as follows: with 0< t0 < T and 0< 8 < T − t0 we let

χ̃(t) :=


1 if t � t0,

affine if t0 � t � t0+8,

0 if t0+8 � t .

With such a choice ofφ, letting8→ 0, sincevε ∈ C0([t1, t2];L2
loc(Ω)), we get that for everyt ∈ (0, T ):

1

2

∫
A

χ(t)ϕ2(x)
∣∣τhvε(x, t)

∣∣2 dx +
∫

Qt0

χϕ2τhaε(z,Dvε) :Dτhvε dz

=−2
∫

Qt0

χϕτhaε(z,Dvε) :Dϕ ⊗ τhvε + 1

2

∫
Qt0

∂tχϕ2|τhvε |2 dz. (3.10)

Now we splitτhaε(z,Dvε) as follows:

τhaε(z,Dvε) = [
aε

(
x + hes, t,Dvε(x + hes, t)

)− aε

(
x, t,Dvε(x + hes, t)

)]
+ [aε

(
x, t,Dvε(x + hes, t)

)− aε

(
x, t,Dvε(x, t)

)]
=: T1(h)+ T2(h)

using (2.6) we get:∣∣T1(h)
∣∣� c|h|(1+ ∣∣Du(x + hei)

∣∣2) p2−1+α/4
2 (3.11)

where we used the elementary inequality:

log
(
2+ s2)� c(α)

(
1+ s2)α/8; (3.12)

Remark 1. The use of (3.12) is the only point causing the dependence on the constantα in the estimate o
Theorem 3.1.
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In order to estimateT2(h) from below, we observe that:

T2(h)Dτhvε :Dτhvε =
1∫

0

Dzaε(x, t,Dvε + θDτhvε) dθDτhvε :Dτhvε

� L−1

1∫
0

(
1+ |Dvε + θτhDvε |2) p(z)−2

2 dθ |Dτhvε |2

� c−1(1+ ∣∣Dvε(x, t)
∣∣2+ ∣∣Dvε(x + hei, t)

∣∣2) p(z)−2
2 |Dτhvε |2, (3.13)

wherec≡ c(n,L,γ1, γ2) > 0. Finally we introduce a further notation:

B(h) := [1+ ∣∣Dvε(x, t)
∣∣2+ ∣∣Dvε(x + hei, t)

∣∣2].
Using (3.11)–(3.13) in (3.10) we obtain:∫

A

χ(t)ϕ2(x)
∣∣τhvε(x, t)

∣∣2 dx +
∫

Qt0

χϕ2T2(h)Dτhvε :Dτhvε dz

+
∫

Qt0

χϕ2[B(h)
p(z)−2

2 + εB(h)
q−2

2
]|Dτhvε|2 dz

� c

∫
Qt0

χϕ2[B(h)
p(z)−2

2 + εB(h)
q−2

2
]|Dτhvε||τhvε ||Dϕ|dz

+ c

∫
Qt0

χB(h)
p2−1+α/4

2
[
ϕ2|Dτhvε | + 2ϕ|Dϕ||τhvε|]|h|dz+ c

∫
Qt0

∂tχϕ2|τhvε |2 dz. (3.14)

We estimate the terms coming fromT1(h) (that is the fifth integral of the previous inequality) in the following w
(using that|Dϕ|� 1):∫

Qt0

χB(h)
p2−1+α/4

2
[
ϕ2|Dτhvε| + 2ϕ|Dϕ||τhvε|]|h|dz

� σ

∫
Qt0

χϕ2B(h)
p(z)−2

2 |Dτhvε|2 dz+Cσ

∫
Qt0

χϕ2B(h)
p(z)+α

2 |h|2 dz+ c

∫
Qt0

χϕ|Dϕ|2B(h)
q−1

2 |τhvε||h|dz.

Observe that in the previous estimate we have made crucial use of the fact thatp2 − p1 � α/2 (see (3.3)). We
remark that in all the previous estimates the constantc only depends onn,γ1, γ2,L,α. Now we plug-in the las
estimate in (3.14), using Young inequality to manage for the forth integral of (3.14), choosingσ small enough in
the previous relation and finally dividing up by|h|2 we obtain, using the definition of the numberq and the fact
thatq > 2 (see (3.5)):

sup
0<t<t0

∫
A

χ(t)ϕ2(x)
∣∣8hvε(x, t)

∣∣2 dx +
∫

Qt0

χϕ2T2(h)D8hvε :D8hvε dz

� c

∫
Qt0

χϕ|Dϕ|2[B(h)
q−2

2 |8hvε|2+B(h)
q−1

2 |8hvε |]+ ϕ2[χ + ∂tχ]B(h)
q
2 dz

and the conclusion follows just lettingh→ 0, by (3.9). ✷
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hat
Lemma 3.2. Let ϕ1 ∈ C∞0 (A;RN) and χ1 ∈ W1,∞((0, T )) be two non-negative cut-off functions such t
χ1(0)= 0 and∂tχ1 � 0; let 0 < t0 < T . Then:∫

Qt0

χ1ϕ
2
1|Dvε |q0 dz

� c

[
sup

t<t0, χ1(t) �=0

∫
sptϕ1

(
1+ ∣∣Dvε(x, t)

∣∣2)dx

]2/n[
I0(ϕ1, χ1)+

∫
Qt0

χ1|Dϕ1|2|Dvε |p1 dz

]
with c≡ c(n, γ1, γ2,L) independent of(t0, χ1, ϕ1, ε).

Proof. Let us introduce the following function:

H := 1

1+ α0
|Dvε |1+α0, α0 := q0− 2

2
(3.15)

and note thatα0 > 0 by (3.6). Using Sobolev’s embedding theorem, one has the inequality:∫
At

ϕ2
1H 2 dx � c

( ∫
Ωt

∣∣D(ϕ1H)
∣∣ 2n

n+2 dx

) n+2
n

� c

( ∫
At

|ϕ1DH | 2n
n+2 dx

) n+2
n + c

( ∫
At

|Dϕ1H | 2n
n+2 dx

) n+2
n =: cA4+ cA5. (3.16)

By Hölder inequality we get, using also and recalling that from (3.6) and (3.15) it also follows(2α0+2−p1)n/2=
2, we get

A4=
[ ∫

At

(
ϕ2

1

(
1+ |Dvε |2) p1−2

2
∣∣D2vε

∣∣2) n
n+2
(|Dvε |2α0

(
1+ |Dvε |2) 2−p1

2
) n

n+2 dx

] n+2
n

�
( ∫

At

ϕ2
1

(
1+ |Dvε |2) p(z)−2

2
∣∣D2vε

∣∣2 dx

)( ∫
sptϕ1

(1+ ∣∣Dvε(x, t)
∣∣2) dx

) 2
n

. (3.17)

Moreover, again by Hölder inequality and since(1+ α0)(2n)/(n+ 2)= (p1n+ 4)/(n+ 2), we gain

A5=
(

2

q0

)2( ∫
At

(|Dϕ1|2|Dvε |p1
) n

n+2 |Dvε | 4
n+2 dx

) n+2
n

�
( ∫

At

|Dϕ1|2|Dvε |p1 dx

)( ∫
sptϕ1

∣∣Dvε(x, t)
∣∣2 dx

) 2
n

. (3.18)

Integrating on(0, t0) via (3.16), (3.17) and (3.18) we conclude the proof:∫
Qt0

ϕ2
1χ1|Dvε |q0 dz � c

t0∫
0

χ1

( ∫
sptϕ1

(
1+ ∣∣Dvε(x, t)

∣∣2)dx

) 2
n ×

( ∫
At

ϕ2
1Pε + |Dϕ1|2|Dvε |p1 dx

)
dt

� c

[
sup

0<t<t0, χ1(t) �=0

∫
sptϕ1

(
1+ ∣∣Dvε(x, t)

∣∣2)dx

] 2
n
[
I0(ϕ1, χ1)+

∫
Qt

χ1|Dϕ1|2|Dvε |p1 dz

]
. ✷
0
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The next lemma gives a first form of the estimate in Theorem 3.1:

Lemma 3.3.Assume thatΓ > 0 is such that the cylinderQ(z0,Γ ) � QT . Then:∫
Q(z0,ρ)

|Dvε |q0 dz � c

[
1

(R − ρ)2

∫
Q(z0,R)

(
1+ |Dvε |q)dz

] 2
n+1

(3.19)

whenever0 < Γ/2� ρ < R � Γ . In (3.19)the constantc≡ c(n, γ1, γ2,L,α) is independent of(z0,Γ,ρ,R, ε).

Proof. In Lemma 3.2 we choose the cut-off functions as follows:ϕ1 is such thatϕ1≡ 1 in B(x0, ρ), ϕ1≡ 0 out of
B(x0, (ρ +R)/2) and such that|Dϕ1|� c(R− ρ)−1 in A. As for χ1 we let:

χ1(t) :=


0 if t0−

(
R+ ρ

2

)2

� t,

t + ((R+ ρ)/2)2− t0

((R + ρ)/2)2− ρ2
if t0− ρ2 � t � t0−

(
R + ρ

2

)2

,

1 if t � t0− ρ2.

It obviously follows that|∂tχ1|� 4/(R − ρ)2. With such a choice ofϕ1 andχ1 Lemma 3.2 yields:∫
Q(z0,ρ)

|Dvε |q0 dz � c

[
sup

t0−((R+ρ)/2)2<t<t0

∫
B(x0,(R+ρ)/2)

(
1+ ∣∣Dvε(x, t)

∣∣2)dx

]2/n

×
[ ∫

Q(z0,(R+ρ)/2)

Pε(z) dz+ 1

(R− ρ)2

∫
Q(z0,(R+ρ)/2)

|Dvε |p1 dz

]
. (3.20)

Now we turn to Lemma 3.1 and we perform a suitable choice of the test functionsϕ andχ . We chooseϕ in such a
way thatϕ ≡ 1 in B(x0,

R+ρ
2 ), ϕ ≡ 0 out ofB(x0,R) and 1� |Dϕ|� c(R − ρ)−1 in A. Analogously we pick the

following χ :

χ(t) :=



0 if t0−R2 � t,

t +R2− t0

R2− ((R + ρ)/2)2 if t0−R2 � t � t0−
(

R + ρ

2

)2

,

1 if t � t0−
(

R + ρ

2

)2

.

Once again|∂tχ |� 4/(R− ρ)2. With such a choice it follows from Lemma 3.1 that:∫
Q(z0,(R+ρ)/2)

Pε(z) dz+ sup
t0−((R+ρ)/2)2<t<t0

∫
B(x0,(R+ρ)/2)

(
1+ ∣∣Dvε(x, t)

∣∣2)dx

� c

[
1

(R − ρ)2

∫
Q(z0,R)

(
1+ |Dvε|2)q/2

dz

]
.

Finally, the lemma follows merging this last bound with the one in (3.20).✷



36 E. Acerbi et al. / Ann. I. H. Poincaré – AN 21 (2004) 25–60

r

The following is restatement of Lemma 6.1 from [16]:

Lemma 3.4.Let h : [Γ/2,Γ ] → R be a non-negative bounded function, and letA,B,β1 β2 > 0. Assume that fo
anyρ andR such thatΓ/2 � ρ < R � Γ :

h(ρ) � 1

2
h(R)+ A

(R − ρ)β1
+ B

(R− ρ)β2
.

Then there existsc≡ c(β1, β2), such that:

h(Γ/2) � c

(
A

Γ β1
+ B

Γ β2

)
.

Lemma 3.5.Assume there are numbersq1 � 1, δ > 1, µ � 0, γ � 1, θ ∈ (0,1) such that:

θγ

δ
< 1. (3.21)

Assume thatf ∈ Lq1δ(Q(z0,Γ )) and:∫
Q(z0,ρ)

|f |q1δ dz � c1

(R− ρ)µ

( ∫
Q(z0,R)

(
1+ |f |)q1 dz

)γ

(3.22)

for all ρ andR such thatΓ/2� ρ < R < Γ . Then there is a constantc≡ c(c1, q1, δ,µ,γ,n, θ) such that:∫
Q(z0,Γ/2)

|f |q1δ dz � cΓ (n+2)γ−µ + c

Γ
δµ

δ−γ θ

( ∫
Q(z0,Γ )

|f | q1(1−θ)δ

δ−θ dz

) γ (δ−θ)
δ−γ θ

. (3.23)

Proof. Using Hölder inequality we have:∫
Q(z0,R)

|f |q1 dz �
( ∫

Q(z0,R)

|f |q1δ dz

) θ
δ
( ∫

Q(z0,R)

|f |q1
(1−θ)δ

δ−θ dz

) δ−θ
δ

.

Therefore, using (3.22) and the previous inequality, it follows that:∫
Q(z0,ρ)

|f |q1δ dz � c

(R− ρ)µ

[
Γ (n+2)γ +

( ∫
Q(z0,R)

|f |q1 dz

)γ ]

� cΓ (n+2)γ

(R− ρ)µ
+ c

(R − ρ)µ

( ∫
Q(z0,R)

|f |q1δ dz

) θγ
δ
( ∫

Q(z0,R)

|f |q1
(1−θ)δ

δ−θ dz

) (δ−θ)γ
δ

. (3.24)

By (3.22) we can apply Young inequality to get:∫
Q(z0,ρ)

|f |q1δ dz � 1

2

∫
Q(z0,R)

|f |q1δ dz+ cΓ (n+2)γ

(R − ρ)µ

+ c̃

(
1

R − ρ

) δµ
δ−γ θ

( ∫
Q(z0,ρ)

|f | q1δ(1−θ)

δ−θ dz

) γ (δ−θ)
δ−γ θ

. (3.25)

Finally the assertion follows applying Lemma 3.4 with the choice:
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havior:

.5 we

th

y
d (3.3)
A := cΓ (n+2)γ , B := c

( ∫
Q(z0,Γ )

|f | q1δ(1−θ)

δ−θ dz

) γ (δ−θ)
δ−γ θ

,

h(s) :=
∫

Q(z0,s)

|f |q1δ dz, β1 := µ, β2 := δµ

δ− γ θ
. ✷

Remark 2.The constant and the quantities appearing in the previous lemma exhibit the following critical be

lim
θγ /δ→1

c=+∞; (3.26)

this appears after using Young inequality in (3.24) in order to get (3.25), more precisely the constantc̃ in (3.25)
becomes unbounded asθγ /δ→ 1. Therefore, when repeatedly applying this lemma, we shall take care thatθγ /δ

stays uniformly bounded away from one, with respect to the parameters involved in the proof.

Proof of Theorem 3.1. We want to apply Lemma 3.5 in the context of Lemma 3.3, therefore in Lemma 3
perform the following choice of the various quantities involved:

f := |Dvε |, γ := (n+ 2)/n, µ := 2(n+ 2)/n, q1 := q (3.27)

and finally

δ := p1+ 4/n

q
.

Now, as suggested by the statement, we are going to distinguish between the casesp2 < 2 andp2 � 2 checking
in both cases that the choice of the previous quantities allows to apply Lemma 3.5.

Casep2 < 2. In this case, sincep1 > 2n
n+2 we first obtain thatδ stays uniformly bounded away from 1 wi

respect to all the parameters involved:(L,p1,p2, ε). Indeed:

δ � p1+ 4/n

2+ 4/n3 >

(
2n

n+ 2
+ 4

n

)(
2+ 4

n3

)−1

> 1.

Let us defineθ as the solution to the equation:

δ
q(1− θ)

δ− θ
= p1, (3.28)

i.e.:

θ = δ(q − p1)

δq − p1
= n(q − p1)δ

4
. (3.29)

Then we check, in order to apply Lemma 3.5, thatθ ∈ (0,1). Indeed, it turns out that alsoθ stays bounded awa
from 1 (from above, this time) uniformly with respect to all the parameters involved; using in turn (3.29) an
it follows:

0< θ = n(q − p1)

4

p1+ 4/n

2+ α

� n

4
(2− γ1+ α)

p1+ 4/n

2

= n

4

[
2− 2n

n+ 2
+
(

α −
(

γ1− 2n

n+ 2

))]
p1+ 4/n

2
=: θ̄

<
n
(

2− 2n
)

2+ 4/n = 1. (3.30)

4 n+ 2 2
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ble
.5

tion. We
It remains to check condition (3.21) that is:

θγ

δ
= n(q − p1)

4

n+ 2

n

� n+ 2

4
(2+ α − γ1)

= n+ 2

4

[
2− 2n

n+ 2
+
(

α −
(

γ1− 2n

n+ 2

))]
=: b̄

<
n+ 2

4

(
2− 2n

n+ 2

)
= 1.

We observe that we have used the fact thatγ1 > 2n
n+2 via (3.3). So, keeping into account (3.28), we are now a

to apply Lemma 3.5 obtaining (3.7). The precise values ofs1 ands2 can now be inferred by looking at Lemma 3
and the relations included in (3.27), (3.28) and (3.29) .

Remark 3. Here we somehow trace back the dependence of the constants in the previous argumenta
observe that the distance 1− b̄ is critical for the constant appearing in (3.21), see also Remark 3. Sinceb̄ < 1, then
θγ /δ stays bounded away from 1. This quantity, indeed, critically depends onγ1− 2n

n+2 in the sense that:

lim
γ1→2n/(n+2)

1− θγ

δ
= 0.

Consequently, the constant in Theorem 3.1 blows up whenγ1→ 2n
n+2. Therefore assuming thatγ1 > 2n

n+2 we

have that the crucial quantity appearing in (3.21) stays uniformly bounded away from 1:θγ /δ < b < 1 with b

depending on(n, γ1, γ2,L) but not onε andα which, in turn, can be fixed a priori depending only onn and the
distanceγ1− 2n

n+2 (in the casep2 < 2). Finally observe how also the exponentss1 ands2 critically depend on the
distance 1− θγ /δ; indeed it turns out that:

s1= µ

1− θγ /δ
, s2= γ (1− θ/δ)

1− θγ /δ
.

Casep2 � 2. As before we observe thatδ stays bounded away from 1:

δ = p1+ 4/n

p2+ α
= 1+ 4/n− α − (p2− p1)

p2+ α
> 1+ 4/n− 4/(n(n+ 2))

γ2+ 2/(n(n+ 2))
> 1,

where we used both inequalities in (3.3)1. Then we check thatθ , again defined by (3.28), still belongs to(0,1) and
is uniformly bounded away from 1. Let us observe that:

q − p1= (p2+ α)− p1 � 2α <
4

(n+ 2)n
<

4

n+ 2
. (3.31)

Using (3.29) and (3.31) it follows that:

0< θ = n(q − p1)δ

4
� δ

n+ 2

= p1+ 4/n

q(n+ 2)
� 1

n+ 2

(
1+ 4

nq

)
<

1
(

1+ 4
)

� 3
,

n+ 2 n 4
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lop an
tions
ent;

ne of
where, of course, we used the fact thatn � 2. Again we have to check (3.21); using (3.29) and (3.31):

θγ

δ
� n(q − p1)

4

n+ 2

n
� n+ 2

n

4n

(n+ 2)4n
� 1

2
,

and the proof is concluded applying again Lemma 3.5 as in the previous case.✷
A side benefit of Theorem 3.1 is the following higher differentiability result.

Theorem 3.2.Under the assumptions of Theorem3.1∫
Q(z0,Γ/4)

(
1+ |Dvε |2) p(z)−2

2 |D2vε|2 dz � c(n, γ1, γ2,L, s1,Γ )

( ∫
Q(z0,Γ )

1+ |Dvε |p1 dz

)s2

.

Proof. It suffices to combine estimates (3.7) and (3.8), choosing suitable cut-off functionsϕ and χ between
B(x0,Γ /4) andB(x0,Γ /2) and between[t0− (Γ /4)2, t0) and[t0− (Γ /2)2, t0), respectively. ✷

4. An approximation procedure

We shall keep here the notations introduced in the previous section. In the following we shall deve
approximation procedure aimed to establishing the estimate contained in Theorem 3.1 not only for the funcvε ,
but directly for the original solutionu. The proof of this assertion will be achieved via an approximation argum
a main point is that the usual smoothing procedure by convolution behaves nicely when the exponentp(z) is Hölder
continuous (see Appendix A).

The main result of the section is the following (local) higher integrability result, extending the o
Theorem 3.1:

Theorem 4.1.The results and the estimates stated in Theorems3.1 and 3.2 hold for any Energy Solutionu to
system(2.7) under the assumptions(2.1)–(2.6). Moreover ifQ0 := B(x0,R) × (t1, t2) � QT is as in Section3,
then: 

Du ∈L
q0
loc(Q0;RnN),

u ∈ L
p

loc(t1, t2;W2,p

loc (B(x0,R);RN)) with p :=min{p1,2},
(1+ |Du|2) p(z)−2

2 |D2u|2 ∈L1
loc(Q0).

(4.1)

We start with a smoothing procedure, letting:

uγ (z) :=
∫

QT

ωγ (z̄− z)u(z̄) dz̄,

with γ ∈ (0,1), ωγ (z) = ω1
γ (x)ω2

γ (t) whereω1
γ ∈ C∞0 (Rn) is a standard mollifier inRn i.e.: ω1

γ � 0, supp

ω1
γ ⊂ B(0, γ ) and

∫
Rn ω1

γ (x) dx = 1; as forω2
γ we first let:

ω2
1(t) :=


0 if 0 � t,

c exp

(
1

(t + 1)t

)
if − 1 < t < 0,
0 if t �−1,
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where constant in the previous definition is such that
∫

R
ω2

1(t) dt = 1. Then we define, as usual,ω2
γ (t) :=

γ−2ω2
1(t/γ 2), thus sptω2

γ � (−γ 2,0) and
∫

R
ω2

γ (t) dt = 1.
Now, let us consider the cylinderQ0 := B(x0,R) × (t1, t2) ≡ B0 × (t1, t2) � QT from the statement o

Theorem 4.1. Withγ ∈ (0,1) we consider an increasing continuous functionε : [0,1]→ R
+ such thatε(γ )→ 0

whenγ → 0 and:

lim
γ→0

ε(γ )

∫
Q0

∣∣(Du)γ

∣∣q dz= 0 (4.2)

(it suffices to take e.g.

ε(γ ) := 1

1+ γ−2+ (
∫
Q0
|(Du)γ |q dz)2

with γ > 0).

Keeping fixed our Energy Solutionu, we look for a functionwγ :Q0→R
N with the following properties:{

wγ ∈C([t1, t2];L2(B0; R
N))∩Lq(t1, t2; W

1,q

0 (B0; R
N)),

∂twγ ∈ L
q

q−1 (t1, t2; W
−1,

q
q−1 (B0; R

N)),
(4.3)

wγ (· , t1)= 0, (4.4)∫
Q0

[−wγ ∂tW + aε(γ )(z,Duγ +Dwγ )
] :DW dz=

∫
Q0

(
a(z,Du)

)
γ
:DW dz ∀W ∈ C∞0

(
Q0;Rn

)
, (4.5)

1

2

∥∥wγ (· , t)
∥∥2

L2(B0)
+

∫
B0×(t1,t )

aε(γ )(z,Duγ +Dwγ ) :Dwγ dz

�
∫

B0×(t1,t )

(
a(z,Du)

)
γ
:Dwγ dz for a.e.t ∈ [t1, t2].

(4.6)

We used the notation introduced in the previous section, that is:

aε(γ )(z,F )= a(z,F )+ ε(γ )
(
1+ |F |2) q−2

2 F, (4.7)

and the exponentq satisfies (3.6).
We remark that for a fixed Energy Solutionu and a fixedγ > 0 the existence of a solutionwγ with the properties

stated above is a well established fact [21]. From now onγ will abbreviate a sequence of positive numbers{γn}n�3
such thatγn→ 0; from time to time we shall pass to a subsequence that will be still denoted byγ . We shall assume
that 0< γ � γ0 := (1/1000)min{dist(B0, ∂Ω), t1,

√
t1}.

Lemma 4.1.If wγ is a solution to problem(4.3)–(4.6), then:

sup
t1<t<t2

∥∥wγ (· , t)
∥∥2

L2(B0)
+
∫
Q0

|Dvγ |p(z) + ε(γ )|Dvγ |q dz

� c

[ ∫
QT

1+ |Du|p(z) dz+ ε(γ )

∫
Q0

|Duγ |q dz

]
, (4.8)

wherevγ ≡wγ + uγ and the constantc≡ c(n, γ1, γ2) is independent ofγ ∈ (0,1).

Proof. From (4.6) it follows that for a.e.t ∈ (t1, t2):
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finally
1

2

∥∥wγ (· , t)
∥∥2

L2(B0)
+

∫
B0×(t1,t )

aε(γ )(z,Duγ +Dwγ ) : (Duγ +Dwγ )dz

� c

∫
B0×(t1,t )

[(
a(z,Du)

)
γ
:Dwγ + aε(γ )(z,Duγ +Dwγ ) :Duγ

]
dz. (4.9)

On the other hand, writing

aε(γ )(z,F ) : F = (aε(γ )(z,F )− aε(γ )(z,0)
) : F + aε(γ )(z,0) : F

using (2.3)–(2.5) we easily derive also the following estimate:

1

2

∥∥wγ (· , t)
∥∥2

L2(B0)
+
∫
Q0

|Dvγ |p(z) + ε(γ )|Dvγ |q dz

� c

∫
Q0

1+ ∣∣(a(z,Du)
)
γ

∣∣|Dwγ | + |Dvγ |dz

+ c

∫
Q0

((
1+ |Dvγ |2

) p(z)−1
2 + ε(γ )

(
1+ |Dvγ |2

) q−1
2
)|Duγ |dz. (4.10)

We recall that, sincep(z) is Hölder continuous we have that (see Appendix A):∫
Q0

∣∣Duγ (z)
∣∣p(z)

dx � c

∫
QT

1+ ∣∣Du(z)
∣∣p(z)

dx <+∞, (4.11)

∫
Q0

∣∣(a(z,Du)
)
γ
(z)
∣∣ p(z)

p(z)−1 dx � c

∫
QT

∣∣a(z,Du(z)
)∣∣ p(z)

p(z)−1 dx

� c

∫
QT

1+ ∣∣Du(z)
∣∣p(z)

dx <+∞. (4.12)

Using (4.2), (4.11), (4.12) we can derive (4.8) from (4.10) using Young’s inequality and the lemma is
proved. ✷
Lemma 4.2.If wγ is a solution to problem(4.3)–(4.6), thenI (γ )→ 0, where:

I (γ ) := sup
t1<t<t2

∥∥wγ (· , t)
∥∥2

L2(B0)
+
∫

Q0

(
a(z,Dvγ )− a(z,Duγ )

) :Dwγ dz

+ ε(γ )

∫
Q0

(
1+ |Dvγ |

) q−2
2 |Dvγ |2 dz.

We postpone the proof of the previous lemma to the one of the following corollary:

Lemma 4.3.With the previous notation it follows that, up to extracting a subsequence,

vγ → u in L1(Q0;RN
)
,

Dvγ →Du in Lp1
(
Q0;RnN

)
and a.e. inQ0.
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Proof. Indeed from Lemma 4.2 it follows that

wγ → 0 in L2(Q0;Rn
)
. (4.13)

Now we observe that by (2.5)(
a(z,F2)− a(z,F1)

) : (F2−F1) � c̃
(
1+ |F2|2+ |F1|2

) p(z)−2
2 |F2− F1|,

for anyF1,F2 ∈ R
nN , where the constant̃c depends only onL, γ1 andn. From this inequality it follows that if

p1 � 2 then:∫
Q0

|Dwγ |p1 dz � c

∫
Q0

(
1+ |Dwγ |2+ |Duγ |2

) p1−2
2 |Dwγ |2 dz � cI (γ ). (4.14)

If p1 < 2, instead, we must argue in a different manner, using Hölder inequality:∫
Q0

|Dwγ |p1 dz=
∫

Q0

(|Dwγ |2
(
1+ |Dwγ |2+ |Duγ |2

) p1−2
2
) p1

2
(
1+ |Dwγ |2+ |Duγ |2

) 2−p1
2

p1
2 dz

�
( ∫

Q0

(
1+ |Dwγ |2+ |Duγ |2

) p1−2
2 |Dwγ |2 dz

) p1
2
( ∫

Q0

(
1+ |Dwγ |2+ |Duγ |2

) p1
2 dz

) 2−p1
2

� c
[
I (γ )

] p1
2 → 0 (4.15)

asγ → 0. So in any case we have thatDwγ → 0 in Lp1(Q0;Rn). Finally, keeping into account thatuγ → u

strongly inL1
loc(QT ;RN) andDuγ →Du strongly inL

p1
loc(QT ;RnN), the statement follows using (4.13).✷

Proof of Lemma 4.2. From (4.6) it is possible to derive the following identity:

1

2

∥∥wγ (· , t)
∥∥2

L2(B0)
+

t∫
t1

∫
B0

(a(z,Dvγ )− a(z,Duγ )) :Dwγ dz+ ε(γ )

t∫
t1

∫
B0

(
1+ |Dvγ |2

) q−2
2 |Dvγ |2 dz

� ε(γ )

t∫
t1

∫
B0

(
1+ |Dvγ |2

) q−2
2 Dvγ :Duγ dz

+
t∫

t1

∫
B0

((
a(z,Du)

)
γ
− a(z,Du)

) :Dwγ dz

+
t∫

t1

∫
B0

(
a(z,Du)− a(z,Duγ )

) :Dwγ dz

for all t ∈ (t1, t2) and, therefore:

I (γ ) � c
(
I1(γ )+ I2(γ )+ I3(γ )

)
, (4.16)

where:



E. Acerbi et al. / Ann. I. H. Poincaré – AN 21 (2004) 25–60 43

ate:

t
ess

n
of

t

I1(γ ) := ε(γ )

∫
Q0

(
1+ |Dvγ |2

) q−2
2 |Dvγ ‖Duγ |dz,

I2(γ ) :=
∫
Q0

∣∣((a(z,Du)
)
γ
− a(z,Du)

)‖Dwγ |dz,

I3(γ ) :=
∫
Q0

∣∣a(z,Du)− a(z,Duγ )
∣∣|Dwγ |dz.

By Hölder inequality we have:

I1(γ ) �
(

ε(γ )

∫
Q0

1+ |Dvγ |q dz

) q−1
q
(

ε(γ )

∫
Q0

1+ |Duγ |q dz

)
and thereforeI1(γ )→ 0, by (4.2). Now, withδ ∈ (0,1) we use Young’s inequality in (4.16) to deduce the estim

I2(γ )+ I3(γ ) � δ

∫
Q0

|Dwγ |p(z) + |Dvγ |p(z) dz+ cδ(I4+ I5), (4.17)

where this time we have set:

I4(γ ) :=
∫
Q0

∣∣(a(z,Du)
)
γ
− a(z,Du)

∣∣ p(z)
p(z)−1 dz,

I5(γ ) :=
∫
Q0

∣∣a(z,Du)− a(z,Duγ )
∣∣ p(z)

p(z)−1 dz.

Observe that, by the results in Appendix A, it follows thatI4(γ )+ I5(γ )→ 0 whenγ → 0. Finally the statemen
follows looking at (4.17) and letting firstγ → 0 and then lettingδ→ 0, keeping into account the boundedn
result in (4.8) and the choice (4.2) ofε(γ ). ✷
Proof of Theorem 4.1. We take a parabolic cylinderQ(z0,2Γ ) � Q0 (z0 ≡ (x0, t0)) as in Theorem 3.1; the
we apply the approximation procedure described above toQ0. At this stage we can use the a priori estimate
Theorem 3.1 for each functionvγ . Indeed by (4.5) it follows thatvγ solves the problem∫

Q0

−vγ ∂tw+ aε(z,Dvγ ) :Dw dz= 0 ∀w ∈ C∞0
(
Q0;RN

)
which is of the type in (3.1). Therefore the a priori estimate in (3.7) is valid forvγ with a constantc that does no
depend onγ . Using the result of Lemma 4.3 and the lower semicontinuity of integrals it follows:∫

Q(z0,Γ/2)

|Du|q0 dz � lim inf
γ

∫
Q(z0,Γ/2)

|Dvγ |q0 dz

� cΓ n+2+ lim
γ

c

(
1

Γ

)s1
( ∫
Q(z0,Γ )

|Dvγ |p1 dz

)s2

= cΓ n+2+ c

(
1

Γ

)s1
( ∫

|Du|p1 dz

)s2
Q(z0,Γ )
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and the proof of the higher integrability is finished; now we turn to the higher differentiability part. The es
of Theorem 3.2 holds uniformly with respect toγ . From this fact it immediately follows that the sequence{vγ }γ
is bounded in

Lp
(
t0− Γ 2/16, t0;W2,p

(
B(x0,Γ /4);RN

))
, p :=min{p1,2}

sinceDvγ → Du strongly inLp1(Q(z0,Γ /4);RN), up to (not relabelled) subsequences we have thatD2vγ ⇀

D2u weakly in Lp(Q0;Rn2N). Finally, by well known lower semicontinuity theorems (in fact,Dvγ converges
strongly,D2vγ converges weakly and the integrand is convex with respect to theD2vγ argument) and the estima
of Theorem 3.2 it follows:∫

Q(z0,Γ/4)

(
1+ |Du|2) p(z)−2

2 |D2u|2 dz � lim inf
γ

∫
Q(z0,Γ/4)

(
1+ |Dvγ |2

) p(z)−2
2 |D2vγ |2 dz

� c(n, γ1, γ2,L, s1,Γ )

( ∫
Q(z0,Γ )

1+ |Du|p1 dz

)s2

.

From this (4.1)1 and (4.1)3 follow via a standard covering argument.✷

5. A decay estimate

In this section we consider an Energy Solutionu to the system (2.7) inQ0, under the assumptions described
Section 2, whereQ0 ≡ B(x0,R)× (t1, t2) � QT andQ0 satisfies all the requirements described in Section 3
particular those in Theorem 3.1. Therefore we shall suppose that the numbersp1,p2, q, q0 andα are exactly as
the ones described in (3.3)–(3.5) and (3.6). In this situation we are able to apply Theorem 4.1 (which is ac
consequence of Theorem 3.1) from Section 4 to gain both higher integrability and higher differentiability
spatial gradient ofu. Finally we perform a last reduction, since the result of Theorem 4.1 is only local with re
to Q0: up to passing to subcylinders̃Q � Q0 and proving Propositions 5.1 and 5.2 iñQ, we shall suppose tha
(4.1) hold globally inQ0. Summarizing, we get, essentially by Theorem 4.1, that:∫

Q0

|Du|q0 dz <+∞,

∫
Q0

(
1+ |Du|2) p(z)−2

2 |D2u|2 <+∞. (5.1)

After such a preliminary discussion we are going to introduce the fundamental quantity, namely an “e
functional measuring, in an integral way, the oscillations ofDu in a small parabolic cylinderQ(z0,R). We define,
for anyQ(z0,R) � Q0:

U(z0,R) :=U1(z0,R)+U2(z0,R),

U1(z0,R) := 1

R

(
−
∫

Q(z0,R)

∣∣u(z)− (Du)z0,R(x − x0)− (u)z0,R

∣∣2 dz

)1/2

+
(
−
∫

Q(z0,R)

∣∣Du(z)− (Du)z0,R

∣∣2 dz

)1/2

,

U2(z0,R) :=
(
−
∫

Q(z0,R)

∣∣Du(z)− (Du)z0,R

∣∣q dz

)1/2

.

Observe thatU1(z0,R) makes sense by (5.1), sinceq0 > q > 2.
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Let us recall that a regular pointz ∈ QT for the functionu is a point such that the gradientDu is Hölder
continuous for any exponentβ1 < β (with respect to the standard parabolic metric) in a neighborhood of it. A p
which is not regular will be called a non-regular point. The following proposition allows to characterize the r
points via the excess functionalU(z0,R). In the following the exponentβ is the one introduced in (2.1).

Proposition 5.1.Assume that conditions of Section3 are satisfied with respect to a cylinderQ0 := B(x0,R) ×
(t1, t2). Letz0 ∈Q0 such that there exists a sequence of radii{Rk}k∈N, Rk ↘ 0, such that

lim
k

U(z0,Rk)= 0, sup
k∈N

∣∣(Du)z0,Rk

∣∣<+∞.

Thenz0 is a regular point foru.

A straightforward consequence of the previous result is the following local version of Theorem 2.1:

Proposition 5.2.Under the assumptions of Proposition5.1, there is an open subsetQ0 ⊂ Q0 such thatDu ∈
Cβ1,β1/2(Q0) with any exponentβ1 < β and|Q0 \Q0| = 0.

Proposition 5.1 (and therefore Proposition 5.2) can be proved by a more or less standard iteration arg
algebraic nature starting from the following decay estimate for the excessU(z0,R) (see, for instance, [7]).

Lemma 5.1.Let u be an Energy Solution to system(2.7), with Q0 as described above; letM,τ andβ1 be such
that:

0< M <+∞, 0 < τ < 1, 0 < β1 < β. (5.2)

There exists a positive numberε ≡ ε(M,τ,β) such that if:

Q(z0,R) � Q0,
∣∣(Du)z0,R

∣∣� M, U(z0,R) < ε (5.3)

then

U(z0, τR) � c1(M)τ
[
U(z0,R)+Rβ1

]
, (5.4)

wherec1(M) is a positive constant depending only onM.

Proof. Step1: blow up. As usual when using blow up techniques, we argue by contradiction, therefore we
sequence of non-degenerate cylindersQ(zk,Rk) � Q0 (wherezk ≡ (xk, tk)) such that:

Ak := −
∫

Q(zk,Rk)

Dudz, |Ak|� M, (5.5)

εk :=U(zk,Rk)+R
β1
k → 0 (5.6)

but nevertheless:

U(zk,Rk) > 2c1(M)τεk, (5.7)

where the constantc1(M) will be chosen later, see (5.16), and will be the one included in (5.4). We proce
scaling and introducing the new space–time variables:

y := x − xk

R
, s := t − tk

R2 , l ≡ (y, s) ∈Q1= B1× (−1,0)

k k
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and the new functionsvk , defined onQ1 according to:

vk(l) := u(z)−Ak(x − xk)− (u)zk,Rk

εkRk
.

With such a notation, the following relations easily follow:

U(zk, τRk)= εkV
k(τ ), V k(τ ) := V k

1 (τ )+ V k
2 (τ ), (5.8)

where:

V k
1 (τ ) := 1

τ

(
−
∫

Q(τ)

∣∣vk − (Dvk)τ y − (vk)τ

∣∣2 dl

)1/2

+
(
−
∫

Q(τ)

∣∣Dvk − (Dvk)τ

∣∣2 dl

)1/2

,

V k
2 (τ ) := ε

q
2−1
k

(
−
∫

Q(τ)

∣∣Dvk − (Dvk)τ

∣∣q dl

)1/2

.

Consequently(vk)1= 0 and(Dvk)1= 0. Moreover, from the definition ofεk :

1= V k(1)+ R
β1
k

εk

�
(
−
∫
Q1

|vk |2 dl

)1/2

+
(
−
∫
Q1

|Dvk |2 dl

)1/2

+ ε
q
2−1
k

(
−
∫
Q1

|Dvk |q dl

)1/2

(5.9)

while (5.7) turns to:

V k(τ ) > 2c1(M)τ. (5.10)

Regarding the functionsvk , it follows that each one is an Energy Solution to the system:∫
Q1

(−vk∂sw+ σk :Dyw)dl = 0 ∀w ∈C∞0
(
Q1;RN

)
, (5.11)

where we set

σk := ε−1
k

[
a(xk +Rky, tk +R2

k s,Ak + εkDvk)− a(xk, tk,Ak)
]

(5.12)

According to (5.9), sinceq > 2, up to not relabelled subsequences:

vk ⇀ v in L2
(
Q1;RN

)
Dvk ⇀ Dv in L2

(
Q1;RnN

)
ε

q−2
q

k vk ⇀ 0 in Lq
(
Q1;RN

)
ε

q−2
q

k Dvk ⇀ 0 in Lq
(
Q1;RnN

)
zk ≡ (xk, tk)→ (x∗, t∗)=: z∗ in R

n ×R

Ak→A∗ in R
nN

εkDvk→ 0 a.e. inQ1

ε
q−2
k |Dvk |q → 0 a.e. inQ1.

(5.13)

Without loss generality we can assume thatz∗ ∈Q1; (let us just comment that by (5.13)2 it follows that, up to
subsequences,ε

(q−2)/q
k |Dvk | → 0 a.e. and therefore (5.13)8 follows ).

Using standard lower semicontinuity results for integral functionals, it follows:

(v)1= 0, (Dv)1= 0, |A∗|� M, V (1) � 1, (5.14)
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where for any 0< τ � 1

V (τ) := 1

τ

(
−
∫
Qτ

∣∣v − (Dv)τ y − (v)τ

∣∣2 dl

)1/2

+
(
−
∫
Qτ

∣∣Dv − (Dv)τ

∣∣2 dl

)1/2

.

Now we are going to letk pass to the limit in the systems (5.11); in the next step we will prove that the
functionv is a solution to the following linear parabolic system with constant coefficients:∫

Q1

−v∂sw+ ∂a

∂F
(z∗,A∗)Dv :Dw dl = 0 ∀w ∈ C∞0

(
Q1;RN

)
. (5.15)

By (2.4) and (2.5) it follows that the following ellipticity conditions are satisfied:

c−1(M,L)|λ|2 � ∂a

∂F
(z∗,A∗)λ⊗ λ � c(M,L)|λ|2,

for any λ ∈ R
nN , wherec(M,L) ≡ c(M) is a bounded constant essentially depending onM only. Therefore,

taking into account the standard regularity theory for linear parabolic systems with constant coefficients (s
we conclude that the functionv is smooth inQ1 and that there is a constantc1≡ c1(M), which from this momen
we choose to appear in (5.7), such that:

V (τ) � c1(M)τV (1) � c1(M)τ, 0 < τ < 1. (5.16)

Now if we prove that

V h(τ)→ V (τ) (5.17)

this, via (5.10), implies that

V (τ) � 2c1(M)τ,

which contradicts (5.16), and the proof will be finished.
We now prove (5.15), while (5.17) will be proved in step 3.
Step2: proof of (5.15). Let us first derive some preliminary estimates. We split the vector field in (5.1

follows:

σk := σk
1 + σk

2 ,

where:

σh
1 := ε−1

k

[
a(xk +Rky, tk +R2

k s,Ak + εkDvk)− a(xk, tk,Ak + εkDvk)
]
,

σ k
2 := ε−1

k

[
a(zk,Ak + εkDvk)− a(zk,Ak)

]
.

We obtain some estimates for these objects that will be useful below. Using (2.6), (3.5), (5.5) and (5.9) we

|σk
1 |� cε−1

k R
β

k

(
1+ |Ak + εkDvk |) p2−1

2 log
(
2+ |Ak + εkDvk |)

� c(M,α)R
β−β1
k

(
1+ |εkDvk |q−1)

� c(M,α)R
β−β1
k

(
1+ ε

2(q−1)
q

k ε
(q−2)

q−1
q

k |Dvk |q−1) (5.18)

so that, by (5.9),∫
|σk

1 |
q

q−1 dl→ 0. (5.19)
Q1
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Forσk
2 we have (using a standard algebraic lemma to treat the second integral):

|σk
2 | =

∣∣∣∣∣
1∫

0

∂a

∂F
(zk,Ak + θεkDvk)Dvk dθ

∣∣∣∣∣
� c

1∫
0

(
1+ |Ak + θεkDvk |2) p(zk )−2

2 dθ |Dvk |

� c(M)
(
1+ |Dvk | + ε

q−2
k |Dvk |q−1). (5.20)

From the last inequality and (5.18) we also find:

|σk|� c(M)
[
1+ |Dvk | + ε

q−2
k |Dvk |q−1]

and, with (5.9) and using the fact thatq > 2, we get

|σk| q
q−1 � c(M). (5.21)

In order to get (5.15), it is clear that it suffices proving that:

Ik :=
∫

Q1

σk :Dw dl→
∫

Q1

∂a

∂F
(z∗,A∗)Dv :Dw dl =: I∞,

for anyw ∈ C∞0 (Q1;RN). To this aim we write:

Ik =
∫

Q1

σk
1 :Dw dl +

∫
Q1

(
σk

2 −
∂a

∂F
(zk,Ak)Dvk

)
:Dw dl

+
∫
Q1

∂a

∂F
(zk,Ak)Dvk :Dw dl =: I1

k + I2
k + I3

k .

By (5.19) and (5.13) it follows thatI1
k → 0 andI3

k → I∞. It remains to prove thatI2
k → 0. This can be rapidly

seen as follows: fix 0< σ < 1 and determine, by Egorov theorem and (5.13)7, A⊂Q1 such that|Q1 \A|< σ and
εkDvk → 0 uniformly inA; then breakI2

k in two pieces according to:

I2
k =

∫
Q1\A

(. . .) dl+
∫
A

(. . .) dl =: I4
k + I5

k .

Using the uniform continuity ofDa on bounded subsets we conclude thatI5
k → 0 (sinceDvk is bounded inL1

andDw is smooth); in order to treatI4
k it suffices to observe that, by (5.20) and (5.21):

|I4
k |� c(M)‖Dw‖L∞

∫
Q1\A

(
1+ |Dvk | + ε

q−2
k |Dvk |q−1)dl

� c(M)

[
|Q1 \A| 12 + ε

q−2
q

k |Q1 \A| 1q
( ∫

Q1

ε
q−2
k |Dvk |q dl

)1− 1
q
]

and keeping into account (5.9) and thatq > 2, we achieve thatI4
k → 0 letting firstk→+∞ and thenσ → 0.

Step3: proof of (5.17).
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In the following we shall extract a compactness information from the existence of second spatial deriva
order to do so we shall differentiate the system.

Warning. We warn the reader that the following calculations will be, at the beginning, a bit sloppy. In
in order to proceed in a rigorous way, we should use the same procedure (smoothing plus difference
arguments) introduced for the proof of Lemma 3.1. This would take too much time, yielding only technical ch
so we shall proceed formally, differentiating the systems rather than taking difference quotients and assu
existence ofDxa rather than (2.6), which is just Lipschitz continuity, therefore the existence a.e. ofDxa. More
precisely we assume that:∣∣Dxa(z,F )

∣∣� L
(
1+ |F |2) p(z)−1

2 log
(
2+ |F |). (5.22)

This additional assumption can be easily removed with extra technical-routine efforts, either, as me
before, following the procedure of Lemma 3.1 or by a simple approximation method based on mollifica
a with respect tox. The only difference with respect to Lemma 3.1 is that since now we are dealing di
with the original solution, which is, according to definition only aL2(0, T ;L2

loc(Ω;RN)) function (and not
C0((0, T );L2

loc(Ω;RN)) as the approximating solutions of Lemma 3.1), then, where previously we used
this will be replaced by “ess sup”. We shall proceed this way for the sake of brevity.

Accordingly, we consider the following differentiated system:∫
Q1

[
vk

,i∂sw− σk
,i :Dw

]
dl = 0 ∀w ∈ C∞0

(
Q1;RN

)
. (5.23)

In the previous formula we take the test functionw = χ̃χϕ2vk
,i where χ̃ is as in the proof of Lemma (3.1

χ ∈W
1,∞
0 ((−1,0)) such that∂tχ(t) � 0 andχ(t)= 0 in a small right neighborhood of−1, while ϕ ∈W

1,q
0 (B1)

has the property that|Dϕ| � 1; they are usual cut-off functions to be chosen later. As a result of manipula
similar to the ones at the beginning of Lemma 3.1 we obtain:

ess sup
−1<s<0

∫
B1

χ(s)ϕ2(y)
∣∣Dvk(y, s)

∣∣2 dy +
∫
Q1

χϕ2P k dl

� c
(|J1| + |J2| + |J3|

)+ c

∫
Q1

ϕ2∂sχ |Dvk |2 dl (5.24)

where:

P k :=
n∑

i=1

Da(xk +Rky, tk +R2
k s,Ak + εkDvk)Dvk

,i :Dvk
,i ,

J1 := −2
∫
Q1

n∑
i=1

ϕχDa(xk +Rky, tk +R2
k s,Ak + εkDvk)Dvk

,i : vk
,i ⊗Dϕ dl,

J2 := −Rk

εk

∫
Q1

n∑
i=1

ϕ2χDxi a(xk +Rky, tk +R2
k s,Ak + εkDvk) :Dvk

,i dl,

J3 := −2
Rk

εk

∫ n∑
i=1

ϕχDxi a(xk +Rky, tk +R2
k s,Ak + εkDvk) : vk

,i ⊗Dϕ dl.
Q1
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In (5.24) we are going to use the growth and ellipticity conditions stated in the formulas (2.4), (2.5), (5.22),
estimate, as in (3.12):

log
(
1+ |Ak + εkDvk |2)� c(α)

(
1+ |Ak + εkDvk |2)α/4

. (5.25)

Moreover we shall denotep(xk +Rky, tk +R2
k s)≡ p(−). Using Cauchy-Schwartz and Young inequalities, (5.

and the fact thatRk/εk stays bounded from above, we obtain, withσ ∈ (0,1):

ess sup
−1<s<0

∫
B1

χ(s)ϕ2(y)
∣∣Dvk(y, s)

∣∣2 dl +
∫
Q1

χϕ2P k dl

+
∫
Q1

χϕ2(1+ |Ak + εkDvk |2) p(−)−2
2 |D2vk |2 dl

� c

∫
Q1

|Dϕ|(1+ |Ak + εkDvk |2) p(−)−2
2 |Dvk‖D2vk |dl+ c

∫
Q1

∂tχϕ2|Dvk |2 dl

+ Rk

εk

∫
Q1

χϕ
(
ϕ|D2vk | + |Dϕ‖Dvk |)(1+ |Ak + εkDvk |2) p(−)−1

4 log
(
2+ |Ak + εkDvk |2)dl

� σ

∫
Q1

(
1+ |Ak + εkDvk |2) p(−)−2

2 |D2vk |2 dl + c

∫
Q1

∂tχϕ2|Dvk |2 dl

+ c(M,α,σ )

∫
Q1

χ
(
ϕ2+ |Dϕ|2)(1+ |Dvk | + ε

q−2
k |Dvk |q)dl.

Let us observe that the right-hand side of the previous inequality stays bounded form above, by (5.13).
chooseσ suitably small, then the cut-off functionsχ andϕ in an appropriate way, and we deduce from the ab
the following bound:

ess sup
−((1+τ )/2)2�s�0

∥∥Dvk(·, s)
∥∥2

L2(B((1+τ )/2))
+

∫
Q((1+τ )/2)

P k dl

+
∫

Q((1+τ )/2)

(
1+ |Ak + εkDvk |2) p(−)−2

2 |D2vk|2 dl � c(M)c(τ ), (5.26)

where the constantsc(τ ) andc(M) blow up asτ ↗ 1 andM↗+∞, respectively; both constants are independ
of k ∈N . Now, using (5.26), we prove that:∥∥ε q−2

q

k Dvk
∥∥

Lq0(Q((1+τ )/2))
� c(M)c(τ ) (5.27)

with the same dependence of the constants outlined above. According to the notation introduced in Lemm
set:

α0 := q0− 2

2

(3.6)
> 0, ṽk := ε

q−2
q

k vk, H := |Dṽk |1+α0

1+ α0
, 1+ α0= 1

2

(
p1+ 4

n

)
. (5.28)

Up to the end of this section, all integrals will be made onB((1+ τ )/2) or onQ((1+ τ )/2); since these tend to b
unreadable when used as indices, throughout the section we simply write

B := B

(
1+ τ

)
, Q :=Q

(
1+ τ

)
.

2 2
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Then, using also Sobolev embedding theorem we gain the inequalities:∫
B

H 2 dy � c(τ )

[( ∫
B

|DH | 2n
n+2 dy

) n+2
n +

( ∫
B

H dy

)2]
(5.29)

while using Hölder inequality we get:( ∫
B

H dy

)2

� c

( ∫
B

|Dṽk |p1 dy

)( ∫
B

|Dṽk | 4n dy

)
. (5.30)

Since 4/n � 2, estimate (5.26) leads to the following bound, which is uniform with respect tos ∈ (−(1+τ
2 )2,0):( ∫

B

H(y, s) dy

)2

� c(M)c(τ )

∫
B

∣∣Dṽk(y, s)
∣∣p1 dy, (5.31)

where the constant in the previous inequality is again independent ofk ∈N. Summarizing (5.29)–(5.31) and usin
in a standard way Hölder inequality, we obtain:∫

B

H 2 dy � c(M)c(τ )

{
ε

(q−2)q0
q

k

[∫
B

(
1+ |Ak + εkDvk |2) p1−2

2 |D2vk |2 dy

]

×
[ ∫

B

(
1+ |Ak + εkDvk |2) 2−p1

2
n
2 |Dvk |α0n dy

] 2
n +

∫
B

|Dṽk |p1 dy

}

� c(M)c(τ )

{∫
B

P k dy

[∫
B

(
1+ |Ak + εkDvk |2) 2−p1

2
n
2 |Dvk |α0n−Γ |Dvk |Γ dy

] 2
n

+
∫
B

|Dṽk |p1 dy

}
, (5.32)

where we have setΓ := n(q0− q)/q > 0. Now we check that:

Γ < 2, Γ < α0n. (5.33)

Indeed, as for the first of (5.33), we notice that ifp1 < 2 then, sinceq > 2:

n

(
q0

q
− 1

)
< n

(
q0

2
− 1

)
(3.4)= n

2

(
p1+ 4

n
− 2

)
< 2.

On the other hand ifp1 � 2 then:

n

(
q0

q
− 1

)
< n

(
q0

p1
− 1

)
= n

p1

4

n
= 4

p1
� 2.

As for the second inequality in (5.33), we observe that:

Γ < α0n ⇔ q0

q
− 1 <

q0

2
− 1 ⇔ 2 < q,

which is true.
By (5.33), using Hölder inequality in (5.32), we get the following estimate, again uniform ins ∈ (−((1+

τ )/2)2,0):
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t

∫
B

H 2 dy � c(M)c(τ )

{∫
B

P k dy

(∫
B

|Dvk |2 dy

)Γ
n

×
[ ∫

B

((
1+ |Ak + εkDvk |2) 2−p1

2
n
2 |εkDvk |α0n−Γ

) 2
2−Γ dy

] 2−Γ
n +

∫
B

|Dṽh|p1 dy

}
. (5.34)

We are finally ready to prove (5.27). We first observe that(2− p1)n/2+ α0n= 2; therefore integrating (5.34) o
(−((1+ τ )/2)2,0) we get:∫

Q

(
ε

q−2
q

k |Dvk |)q0 dl =
∫
Q

H 2 dl

(5.26)
� c(M)c(τ )

[∫
Q

P k dl +
∫
Q

1+ ε
q−2
k |Dvk |q dl

]
(5.13),(5.26)

� c(M)c(τ )

and (5.27) is completely proved.
Now we observe that if we letfk := ε

q−2
k |Dvk |q then (5.13)8 implies thatfk→ 0 a.e. while (5.27) implies tha

{fk} is bounded inLq0/q(Q) with q0/q > 1; therefore it follows that

ε
q−2
k

∫
Q

|Dvk |q dl→ 0,

so

V k
2 (τ )→ 0. (5.35)

In order to fully prove (5.17) it remains to prove that

V k
1 (τ )→ V (τ). (5.36)

To this aim, first we assume thatp1 � 2. Then it follows from (5.26) that:∫
Q

|D2vk |2 dl � c(M)c(τ ). (5.37)

In the second case we assumep1 < 2 and, again by (5.26), we have the bound:∫
Q

|D2vk |p1 dl �
( ∫

Q

(
1+ |Ak + εkDvk |2) p1−2

2 |D2vk |2 dl

) p1
2

×
( ∫

Q

(
1+ |Ak + εkDvk |2) p1

2 dl

) 2−p1
2

� c(M)c(τ ) (5.38)

with the constants independent ofk. Using the multiplicative inequality we gain:( ∫
|Dvk |Γ0 dl

) 1
Γ0 � c

( ∫
|D2vk|p1 dl +

∫
|Dvk |p1 dl

) α̃
p1

ess sup
s∈(−((1+τ )/2)2,0)

( ∫
|Dvk |2 dy

) (1−α̃)
2

,

Q Q Q B
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where

α̃ = n/(n+ 2), Γ0= p1(n+ 2)/n > 2, (5.39)

the last inequality following directly by the lower bound in (2.2). By (5.26) and (5.38) we obtain yet another b∫
Q

|Dvk |Γ0 dl � c(M)c(τ ). (5.40)

Now, in order to gain compactness, we are going to estimate the time derivatives. To do this, letw ∈ C∞0 (QT ;RN);
we first estimate∣∣∣∣ ∫

Q

σk :Dw dl

∣∣∣∣ �
0∫

−((1+τ )/2)2

∥∥Dw(· , s)
∥∥

L∞(B)

∥∥σk(· , s)
∥∥

L1(B)
ds

� c‖σk‖
L

q
q−1 (Q)

( 0∫
−((1+τ )/2)2

∥∥Dw(·, s)
∥∥q

L∞(B)

) 1
q

(5.21)
� c(M)

( 0∫
−((1+τ )/2)2

∥∥Dw(· , s)
∥∥q

L∞(B)

) 1
q

. (5.41)

By the usual Sobolev inequality:

‖Dw‖L∞(B) � c‖Dw‖
W

2,l
0 (B)

, l > (n+ 2)/2,

we deduce from (5.41) and Eq. (5.11), that:

{∂sv
k}k is bounded inL

q
q−1
(−((1+ τ )/2

)2
,0; (W2,l

0 (Q;RN)
)′)

. (5.42)

Now, let us consider again separately the previous cases. Ifp1 � 2 then from (5.37) and an Aubin–Lions typ
compactness result (see for instance [36], Theorem 2.1, chapter 3) it follows that, up to not relabelled subse

Dvk→Dv in L2(Q;RnN
)
. (5.43)

If p1 < 2, from (5.38) and again an Aubin–Lions type result, we first obtain that, again up to subsequences

Dvk→Dv in Lp1
(
Q;RnN

)
and then by (5.40) we get (5.43), again interpolatingL2 betweenLp1 andLΓ0, since by (5.39) it follows tha
Γ0 > 2.

In a similar (actually, much easier) way it follows that:

vk→ v in L2(Q;RnN
)
. (5.44)

We are ready to finish: indeed (5.43), (5.44) imply (5.36), that togehter with (5.35) completely establish (5.
the proof of Lemma 5.1 is now complete.✷

6. The main result proved

In this section we are going to prove Theorem 2.1. We explain the way we proceed. All the results de
in Sections 3–5 have been obtained in a particular situation i.e.: in the basic cylinderQ0 a special bound (the on
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described before the statement of Theorem 3.1) for the oscillations of the functionp(z), measured in terms of th
sizep2−p1, is valid. In order to use these results for the proof of Theorem 2.1, the first thing we do is redu
the previous situation: up to passing to a subcylinder compactly contained inQT , we shall coverQT with a finite
number of small subcylinders in which the oscillations of the exponent functionp(z) are small enough to meet th
conditions of Theorem 3.1. Then we proceed working in each of these subcylinders, blowing up the solu
thereby proving partial regularity of the solution in each subcylinder. The final result then follows by a co
argument.

Proof of Theorem 2.1. We take an increasing sequence of cylindersQh↗QT such thatQh � QT . If we prove
that theDu is partially regular in each of theQh we are clearly done, since in each of them the set of non-reg
points will be negligible (see also the argument below). Therefore we can reduce ourself to prove the st
of Theorem 2.1 in a singleQh; such a cylinder will denoted bỹQ. We fix α ≡ α(n, γ1) > 0 according to the
restrictions proposed in Section 3, right-hand side inequalities of (3.3), then we determineδ ≡ δ(p(z),α) such
that:

|z1− z2|� δ ⇔ ∣∣p(z1)− p(z2)
∣∣< α/2. (6.1)

Then we take a finite covering of̃Q, {Q(k)}, with Q(k) � QT , such that, by (6.1):

diamQ(k) < δ, oscQ(k)
p(z) < α/2 ∀k. (6.2)

Now, eachQ(k) is small enough to meet the conditions imposed in Sections 3–5, that is the ones in the le
side inequalities of (3.3), and we can apply Proposition 5.2 to eachQ(k); therefore there exists an open sub
Q0

(k) ⊂Q(k) such thatDu is Hölder continuous inQ0
(k) with any exponentβ1 < β and|Q(k) \Q0

(k)| = 0. Then we
set

Q̃0 :=
⋃
k

Q0
(k)

and we observe thatDu is Hölder continuous iñQ0 (which is obviously open) with any exponentβ1 < β and
|Q̃ \ Q̃0| = 0, thereby proving Theorem 2.1.✷

7. Estimates for the singular set

For the sake of simplicity, in this section we shall assume (5.22).
Remarks on the Integrability of Solutions. Here we are going to observe that given a parabolic cylinderQ0

as considered in Sections 3–5, and therefore with the bounds in (3.3) being in force, the function|D2u| + |∂tu|
is in certain Lebesgue spaceL

µ0
loc(Q0). Let us recall that by the results in Section 4 (and again up to passi

subcylinders as in Section 5) we have:∫
Q0

|Du|q0 dz <+∞,

∫
Q0

(
1+ |Du|2) p(z)−2

2 |D2u|2 <+∞. (7.1)

We introduce the following exponents:

µ1 := 2(p1+ 4/n)

2+ 4/n
, µ2 := 2(p1+ 4/n)

(p2− 2)+ (p1+ 4/n)
.

Observe that triviallyµ1 > 1 while by (3.3) we also haveµ2 > 1. Then we let:

µ0 :=


µ1 if p2 < 2,

µ2 if p1 � 2,
min{µ1,µ2} if p1 < 2 � p2.
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In any caseµ0 � 2. Now we wish to show that (7.1) implies:

|D2u| + |∂tu| ∈Lµ0(Q0). (7.2)

First we remark that:

|D2u| ∈
{

L
µ1
loc(Q0) if p1 < 2,

L2
loc(Q0) if p1 � 2.

(7.3)

Indeed, ifp1 � 2 then, obviously:

|D2u|2 �
(
1+ |Du|2) p(z)−2

2 |D2u|2.
If p1 < 2 then alsoµ1 < 2 and Young inequality yields:

|D2u|µ1 = [(1+ |Du|2) p1−2
4 |D2u|(1+ |Du|2) 2−p1

4
]µ1

� c
[(

1+ |Du|2) p1−2
2 |D2u|2+ (1+ |Du|2) q0

2
]

sinceq0= p1+ 4/n= (2− p1)µ1/(2−µ1) and (7.3) follows by (7.1). Now we show that:

|∂tu| ∈
{

L2
loc(QT ) if p2 � 2,

L
µ2
loc(QT ) if p2 > 2.

(7.4)

In order to establish (7.4) we use the equation:

ut = diva(z,Du) (7.5)

and the fact that, via Theorem 3.2 and (7.1), it can be differentiated (locally) with respect to the space va
Using (2.4), (2.6) and (3.12), we obtain:

|∂tu|� c
[(

1+ |Du|2) p(z)−2
2 |D2u| + (1+ |Du|2) p2−1

2 log
(
1+ |Du|2)]

� c
[(

1+ |Du|2) p(z)−2
2 |D2u| + (1+ |Du|2) q−1

2
]

(7.6)

whereq has been defined in (3.5). Now, consider the casep2 � 2. Then sincep(z) � 2 it also follows that:

|∂tu|2 � c
[(

1+ |Du|2) p(z)−2
2 |D2u|2+ 1+ |Du|2(q−1)

]
.

We must check that 2(q − 1) � q0= p1+ 4/n; recall thatq = 2+ α if p2 � 2 ((3.6)) therefore, using the fact th
2n/(n+ 2) < p1 it suffices to show that 1+ α � n/(n+ 2)+ 2/n which follows from the upper bound onα in
(3.3). So, by (7.1), it follows that|∂tu| ∈L2

loc in the casep2 � 2. Next, we consider the casep2 > 2. According to
(7.6) we have, using Young inequality (observe that whenp2 > 2 thenµ2 < 2):

|∂tu|µ2 � c
[(

1+ |Du|2) (p(z)−2)µ2
4

((
1+ |Du|2) p(z)−2

2 |D2u|2)µ2
2 + 1+ |Du|(q−1)µ2

]
� c

[(
1+ |Du|2) p(z)−2

2 |D2u|2+ (1+ |Du|) (p(z)−2)µ2
2−µ2 + |Du|(q−1)µ2

]
. (7.7)

In order to use again (7.1) and making all the terms appearing in the right-hand side of (7.7) integrable, w
that

(p(z)− 2)µ2

2−µ2
� (p2− 2)µ2

2−µ2
� q0, (q − 1)µ2 � q0.

The first inequality follows from the definition ofµ2. As for the second one:

(q − 1)µ2= (p2+ α − 1)
2q0 � q0, (7.8)
p2− 2+ q0
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which is equivalent top2 − p1 + 2α � 4/n that follows immediately from (3.3); therefore all the quantit
appearing on the right-hand side of (7.7) are integrable by (7.1). In turn, by (7.7) we have|∂tu| ∈ L

µ2
loc(QT ) thereby

completing the proof of (7.4). Finally (7.2) follows by (7.3) and (7.4).
We are ready to give a first result for the estimate of the singular set, which is local, in the sense that it g

estimate on the singular set when we just look atQ0:

Theorem 7.1.Under the previous assumptions on the cylinderQ0 suppose that:

q � µ0(n+ 2)

n+ 2−µ0
. (7.9)

Then, with the notation of Proposition5.2 it follows that for anyσ > 0

Pn+2−µ0+σ (Q0 \Q0)= 0.

Proof. From Proposition 5.1 it follows thatQ0 \ (Q0
T ∩Q0)⊂Σ0 ∪Σ1 ∪Σ2 where

Σ0 :=
{
z ∈Q0: lim sup

ρ→0

∣∣(Du)ρ

∣∣=+∞},
Σ1 :=

{
z ∈Q0: lim inf

ρ→0
U1(z, ρ) > 0

}
,

Σ2 :=
{
z ∈Q0: lim inf

ρ→0
U(z,ρ) > 0

}
,

therefore it suffices to prove thatPn+2−µ0+σ (Σi)= 0 for i ∈ {0,1,2} for anyσ > 0. ForΣ2∪Σ2, we observe tha
(7.9) implies the following inequality:

U(z0,R) � R

(
−
∫

Q(z0,R)

|D2u|µ0 + |∂tu|µ0 dz+
) 1

µ0
dz

+
[
R

(
−
∫

Q(z0,R)

|D2u|µ0 + |∂tu|µ0 dz+
) 1

µ0
] q

2

. (7.10)

Nest we recall that ifS ⊂Q0 denotes the set of pointsz0 ∈Q0 such that:

lim sup
ρ→0

R(µ0−n−2)

∫
Q(z0,R)

|D2u|µ0 + |∂tu|µ0 dz > 0,

from a well known measure density result (first developed in the context of elliptic systems, see [26] for com
and extensions) adapted to the parabolic geometry of rescaled cylinders it followsPn+2−µ0(S)= 0; therefore, by
(7.9), (7.10) and the same reduction lemma it follows thatPn+2−µ0(Σ1) = Pn+2−µ0(Σ2) = 0. In a similar way,
via the same measure density arguments it is possible to prove thatPn+2−µ0+σ (Σ0)= 0. ✷

As stated before, the previous theorem provides an estimate which is local, that is, the size of the sin
depends on the peculiar choice of the cylinderQ0, via the numberµ0. In order to get a global estimate for th
singular set we find uniform bounds forµ0. This is the aim of the next theorem.

Remark 4. Before going on with the proof we make some remarks on the possible choice of the numberα. It is
clear from the statement of Theorem 3.1 that the constantc in (3.7) blows up whenα→ 0. Anyway the higher
integrability exponentq0, which is the one of the gradient, does not change directly: it remains linked top1 via the
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same relation:q0= p1+ 4/n. The only wayq0 may depend onα appears in the proof of Theorem 2.1; there,p1
changes withQ(k), which, in that scheme, depends onα.

In the following we shall assume, without loss of generality, that:

2n

n+ 2
< γ1 < 2. (7.11)

Theorem 7.2.Defineµ > 1 as follows:

µ :=min

{
2(γ1+ 4/n)

2+ 4/n
,

2(γ2+ 4/n)

2γ2− 2+ 4/n

}
(7.11)
� 2, (7.12)

and suppose that

γ2 <
µ(n+ 2)

n+ 2−µ
. (7.13)

Then, for anyσ > 0

Pn+2−µ+σ (QT \Q0
T )= 0. (7.14)

Remark 5. Observe that whenγ1 = γ2 = p(z) = 2 thenµ = 2, as for the usual estimates concerning parab
systems with linear growth (see, for instance, [7]).

Proof of Theorem 7.2. The proof will be achieved using Theorem 7.1. We fixσ > 0 and we observe that it suffice
to considerσ so small that (7.13) continues to hold withµ− σ/2 in the place ofµ (observe that the function i
the right-hand side of (7.13) is increasing with respect toµ). Then we can findα > 0 satisfying the right-hand
inequalities in (3.3) and such that:

γ2+ α <
(µ− σ/2)(n+ 2)

n+ 2− (µ− σ/2)
and

2(γ2+ 4/n)

2γ2− 2+ 4/n+ α
> µ− σ/2. (7.15)

Now, with respect to such anα, we find a covering family of cylinders{Q(k)} as in the proof of Theorem 2.1
conditions (6.1), (6.2); our aim is to apply the estimate of the singular set stated in Theorem 7.1 in each
Q(k), with respect to the constantµ0 ≡ µ0(Q(k)) (note thatµ0 depends on the cylinderQ(k)). Now let us prove
that, in eachQ(k):

µ− σ/2�


µ1 if p2(Q(k)) < 2

µ2 if p1(Q(k)) � 2

min{µ1,µ2} ≡ µ0 if p1(Q(k)) < 2� p2(Q(k))

= µ0(Q(k)). (7.16)

We prove that the first two inequalities in (7.16) are true for all values ofp1 andp2, therefore the third one follows
The first inequality is trivial sinceµ1 � µ always, it remains to check the second:

µ2= 2q0

p2− 2+ q0

(3.3)

� 2q0

p1+ α − 2+ q0
= 2q0

2q0− 2− 4/n+ α

= 1+ 2+ 4/n− α

2q0− 2− 4/n+ α
� 1+ 2+ 4/n− α

2p2− 2+ 4/n+ α

� 1+ 2+ 4/n− α

2γ2− 2+ 4/n+ α
= 2(γ2+ 4/n)

2γ2− 2+ 4/n+ α

(7.15)
� µ− σ/2.

It follows that:

q � γ2+ α
(7.15)
<

(µ− σ/2)(n+ 2) (7.16)
<

µ0(n+ 2)
n+ 2− (µ− σ/2) n+ 2−µ0
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therefore we can apply Theorem 7.1 and for eachQ(k) (using the notation of Theorem 7.1 withQ0 ≡Q(k) and
Q0≡Q0

(k)): Du is Hölder continuous inQ0
(k) and

Pn+2−µ+σ

(
Q(k) \Q0

(k)

)
� Pn+2−µ0+σ/2

(
Q(k) \Q0

(k)

)= 0.

The statement finally follows as at the end of Section 6.✷
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Appendix A

Here we provide a justification for the crucial inequalities stated in (4.11) and (4.12). In the followingu will
be the function from (4.11), (4.12) whileQ0 will be the cylinder considered in Section 4; for the sake of bre
we assume here thatQ0 ≡ Q(z0,R). The arguments can be easily adapted from the ones in [10] and ar
a consequence of those developed by Zhikov, but we sketch them here for the sake of the reader. Usin
inequality, by the definition of mollification it follows that∣∣Duγ (x, t)

∣∣� γ−(n+2)/γ1‖Du‖Lγ1 =: c1γ
−(n+2)/γ1. (A.1)

Now let us define (forγ suitably small):

pγ (x, t) := inf
{
p(y, s): (y, s) ∈Q

(
(x, t),2γ

)}
andgγ (x, t,F ) := |F |pγ (x,t). The Hölder continuity ofp(x, t) implies:∣∣p(x, t)− pγ (x, t)

∣∣� c2γ
β

(with c2 independent ofγ ) and so, by (A.1):

g
(
x, t,Duγ (x, t)

)= ∣∣Duγ (x, t)
∣∣(p(x,t)−pγ (x,t))∣∣Duγ (x, t)

∣∣pγ (x,t)

� c1γ
(n+2)

γ1
(pγ (x,t)−p(x,t))∣∣Duγ (x, t)

∣∣pγ (x,t)

� c1γ
− c2(n+2)

γ1
γ β ∣∣Duγ (x, t)

∣∣pγ (x,t) (A.2)

� c3gγ (x, t,Duγ (x, t)).

We remark that the constantc3 is independent ofγ . In turn, the definition ofpγ (x, t) and Jensen inequality giv
(recallz≡ (x, t)):

gγ

(
x, t,Duγ (x, t)

) Jensen
�

∫
QR+γ

gγ

(
x, t,Du(z̄)

)
ωγ (z̄− z) dz̄

�
∫

Q

g
(
z̄,Du(z̄)

)
ωγ (z̄− z) dz̄
R+γ
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= (
g(· ,Du) ∗ωγ

)
(x, t)

= g(· ,Du)γ (x, t).

Therefore, combining the last inequality with (A.2) we come up with

g
(
x, t,Duγ (x, t)

)
� g(· ,Du)γ (x, t) ;

as a consequence we get (4.11), and the Lebesgue dominated convergence theorem implies that

g(x, t,Duγ )→ g(x, t,Du) strongly inL1.

The same argument (consideringa(z,Du)γ instead of(Du)γ ) applies for (4.12); indeed alsop(z)/(p(z)− 1) is
Hölder continuous and (4.12) follows in the same way. Again Lebesgue dominated convergence theorem
the assertion (immediately before the proof of Theorem 4.1)I4(γ )+ I5(γ )→ 0.
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