Appl Math Optim 17:91-102 (1988)

Applied Mathematics

and Optimization
© 1988 Springer-Verlag New York Inc.

Homogenization of Noncoercive Functionals:
Periodic Materials with Soft Inclusions

Emilio Acerbi and Danilo Percivale

Scuola Normale Superiore, Piazza dei Cavalieri, 7, 1-56100 Pisa, Italy

Communicated by D. Kinderlehrer

Abstract. In this paper we study the asymptotic behavior, as h - oo, of the
minimum points of the functionals

J' [f(hx, Du)+ gu] dx,

where f(x, £) is periodic in x and convex in ¢ and u is vector valued. A
convergence theorem is stated without uniform coerciveness assumptions.

1. Introduction

The classical homogenization problem is the study of the behavior, as h -, of
the minimum points on u,+ W* of the functionals

J [f(hx, Du)+ gu] dx, (1.1)

where f(x, £) is periodic in x and convex in & Many convergence results have
been obtained in the scalar case u: (1 > R (see the extensive bibliography of {2]).
If the function f satisfies

f(x &) =€), (1.2)

then the scalar results may be extended to the many-dimensional case u: > R".
Without condition (1.2), however, some convergence results for the minimum
points of (1.1) have been given, in [1], [3], and [7] only in the scalar case. We
deal with a many-dimensional case, in which, in addition, the function f depends
on Du through the strain tensor e(u)= (Du+'Du)/2.
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Consider a foamlike periodic structure Y made of an elastic material with
holes filled by a softer material. If B denotes the union of the holes, the elastic
energy is given by

E(u)=f Sfle(u)) dx+£J‘ fle(u)) dx,
Y\B B

where f is a positive-definite quadratic form of the strain tensor. We study the
case when both the period 1/h of the structure and the Young modulus ¢, of
the filling material go to zero. Then, denoting the holes again by By, the energy
is

E,(u)= Lf(e(u))[ﬂ vig, (X) + 6,15, (x)] dx.
If &, is not too small (lim h’e, = +0), the solutions of
min{E,1 (u)+ JY gudx:u—u,c Hi(Y; R")}
converge in L’(Y) to the solution of

min{Eoo(u)JrJ gudx: u—-uye Hy(Y; R")},

Y

where the homogenized functional E. is an integral:
Em(u)=J Fle(u)) dx
Y

with f of the same type of f.

Qur result (Theorem 2.2) also holds when both materials are allowed to be
inhomogeneous (f depends on x), and f need not be a quadratic form in & but
a generic convex function such that

0=f(x,&)=c(1+]¢")  (p>1)

with f(x, £) =|¢|” only outside the holes. We remark that this general case leads
to a fully nonlinear system of partial differential equations.

2. Statement of Results

In the following we denote by Y the cube ([0, 1[)"; a function f is said to be
Y-periodic if f(x+z)=f(x) for all ze Z" and x€R". We denote by M,, the set
of real n X n matrices, and by M, M, the sets of symmetric and skew-symmetric
matrices. By '¢ we denote the transpose of a matrix & If AcR”, by LP(A; R")
we denote the space of functions whose n components belong to Lf(A), and
analogously for the spaces W'? and W§”. For such functions we set

e(u)=(Du+"'(Du))/2.
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We say that a sequence (u,) < LF(A; R") converges to u in L5(A; R") if u, > u

in L?(A; R") and spt(u;, —u) is compact in A for every h. Finally, we set
W(Y)={ue WiE(R";R"): uis Y-periodic}.

Let B be an open subset of Y, with Lipschitz boundary and well contained
in Y, ie.

dist(B,3Y) > 0. (2.1)
Fix p>1 and let f: R" X M >R satisfy

f(-, &) is measurable, f(x,-) is convex, 2.2)

0=<f(x, &) =c(1+|€P), with c¢=1, (2.3)

flx, &) =|€7 if xe Y\B. (2.4)

We set, for every £€ M,

f(§)=inf{J fx, e(u)) dx: u—éxe W(Y)}. (2.5)

In addition, fix ge LY(Y;R"), with p~'+q~'=1. We define, for all heN and
ue L”(Y;R"),

hx, e(u)) dx if ue W (Y;R"),
F, (u) = Lf( (u)) ( )
+ o0 otherwise,

and, for all ue W'"?(Y;R"), we set

F(u)=f fle(u)) ax.

Finally, let (¢,) be a sequence of nonnegative numbers such that
lim &, =0, | (2.6)
h
lim hfg), = +co. (2.7)
h

We prove the following theorems in Section 3.

Theorem 2.1. Assume only (2.2), (2.3), and (2.6) hold. Then, for every open set
A< Y and every ue W' (A; R"),

J fle(w)) dx=T"(L"(A; R")) lim J’ Lf(hx, e(u)) + &, ]e(u)|"] dx
A h A

=I"(L5(A; R")) lim J [f(hx, e(u))+ey)e(u)|"] dx.
h A
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Theorem 2.2. Assume (2.1)-(2.7) hold. Then, for every ue W'-?(Y;R"),

min{F(u)—kJ gudx: u—u,e WyP(Y; R")}
Y

=lim min{Fh(u)+J‘ [gu+e,le(u))’] dx: u—u,e WyP(Y; R”)}.
h Y

Moreover, the minimum points on u,+ Wi"(Y;R") of the functionals F,(u)+
fy [gu+e,le(u)|P] dx converge in L°(Y;R") to the minimum point of F(u)+
{y gu dx.

Theorem 2.3. Let f be as above. Then the function f is convex and satisfies, for
every £ M,

1 -
“leP < F(er=c1+er).

If, in addition, the function f is p-homogeneous with respect to &, then the same is
true for f. In the case p =2, if f is a quadratic form in & so is f.

Theorem 2.2 may be deduced from Theorem 2.1 through the theory of I'-limits,
whose definition and main properties will be given hereafter.
Let X be a metric space, and F,, F functionals from X to R. We state that

F(x)=I"(X)lim F,(x)

if the following conditions hold:

F(x)= li{n inf F,(x,) forevery x,- x, (2.8)
there exists X,—>x suchthat F(x)=Ilim F,(%,). (2.9)
h

The sequence (F,) is equicoercive if, for every c€R, we can select from every
sequence (x;), such that F;, (x,) < ¢, a subsequence (x;, ) which converges to some
xeX

Proposition 2.4 (see Theorem 2.6 of [4]). If the sequence (F),) is equicoercive and
F=T7(X) lim, F, then F has a minimum on X and min F =1lim, (inf F,).
Moreover, if lim, F,(x,) =lim, (inf F,) and x,, > x in X then x is a minimum point
Jor F.

Proposition 2.5 (see Theorem 2.3 of [4]). IfF=T"(X)lim, F, and G: X >R is
continuous, then F+ G =T"(X) lim,(F, + G).

The existence of the minima above, and the convergence of the minimum
points, depend on the following Korn-type inequalities, which are essentially
contained in [5]. Let p>1, and let ) be a connected open subset of R” with
Lipschitz boundary.
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Proposition 2.6. Ifuc W"7(Q; R") satisfies e(u) =0 in Q, then there exist a ¢ R"
and £ M, such that u(x)=éx+ain (.

The affine functions with skew-symmetric gradient are called rigid displace-
ments, and, for any ue L”(Q; R"), we denote by Rqu its projection on the
subspace of rigid displacements of Q.

Proposition 2.7. There exist two constants c(Q) and ¢'(Q}) such that

~

(lu|” +|Du|?) dx < c(Q)J (|lul”+|e(u)”) dx forall ue W'P(Q;R"),
Q a

.
|ul? dx < c’(Q)J le(u)|Pdx  forall ue W§P(Q;R"),
Q

JO

r

lu—Rou|" dx=c'(Q) J’ le(u)|?dx  forall ue W"7(Q;R").
Q O

o

Moreover, ¢'(af)) = a’c'()) for every a > 0.

3. Proof of Results

In the following, if no confusion is possible, we will denote all positive constants
by the same letter ¢, and, except in the statements, we will simply write L”(A)
instead of L”(A; R"), and the same for L;, W'” and W;”.

3.1. Proof of Theorem 2.1

First, we need a compactness result with respect to I'-convergence.

Theorem 3.1. Let p=1 and let f,: R" x M, > R satisfy
fo(-, £) is measurable,  f, (x, -) is convex,
0=f,(x, £)=c(1+][£]").

For every open set A and every ue L”(A; R") set

far || D0 iue Wi,

+00 otherwise.

Then there exists a function ¢: R" x M,, > R satisfying the same conditions as (f,),

and a subsequence (f,, ), such that for every bounded open set A and every
ue W(A; R")

J‘ ¢o(x, Du) dx=T"(L"(A;R")) lim F, (u, A)
A K

=TI (L5(A; R")) lim F, (u, A).
k
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The proof is standard in the theory of I'-convergence; for example, it is
similar to Theorem 3.2 of [2] and we omit it. If f satisfies (2.2) and (2.3) then
the functions f, (x, £) = f(hx, (¢+'¢)/2) satisfy the assumptions of Theorem 3.1,
hence for a suitable subsequence we have

I o(x, Du) dx =T~ (L*(A)) lim F,_(u, A)
A k
=I"(L§(A)) lim F, (u, A)
k

forevery openset A< Y and every u € W'?(A); the function ¢(x, £) is measurable
in x and convex in & and satisfies
0=¢g(x, £)=c(1+]¢7).

Since the period Y/h, of the integrand f,, vanishes as k-0, one may expect:
Proposition 3.2. The function ¢ is independent of x.

The proof is the same as Lemma 4.2 of [6]. Also, since the integrand f,
depends only on e(u), it is not surprising that the same is true of ¢; this depends
on Lemma 3.3.

Lemma 3.3. Let ¢ be a real convex function on a vector space V. If y(tx)=0 for
every teR then

Y(x)=yY(x+1x) forall teR and xeV.

Proof. For all s>1,

_ 1 s 1 _ 1 s
tlf(x-l—tx):l//((l——) x+—stx)s(1-—)d/< x);
s/ s—1 s s s—1

taking the limit as s> -+00, by the continuity properties of ¢,
d(x+1x) = P(x)

for all teR, hence the convex function ¢~ ¢(x+ tX) is constant. |

Proposition 3.4. The function ¢(&) depends only on (§+°£)/2.
Proof. By (2.8), for every ne M,
0= cp(n)slimkian’ f(hx,n) dx=0,
Y

hence, by Lemma 3.3, for every {€ M,,,

¢(§)=¢<§+£—2_—§>=¢<é+7§>. O
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We prove a representation formula for ¢.

Proposition 3.5. The function ¢ is equal to f of (2.5), and the subsequence (Fi)
is the whole sequence (F},).

Proof. As in Proposition 2.6 of [7] one proves that
inf{F, (u): u—é&xe W(Y)}=f(£).
Then, by the ' (L{(A)) convergence,

o(&) :min{limkinf Fo (uy): up, —&x e WiP(Y), uy, ~ &x in L( Y)}
=zinfinf{F, (u): u—é&e Wy'(Y)}
k
=infinf{F, (u): u—éxe W(Y)}
k

=f(&).
On the other hand, let u € ¢éx+ W(Y) and set

u,(x) =% u(hx).

Then u, € é&x+ W(Y)and u, » éxin LP(Y),and F, (u,) = F,(u); by the I (L”(Y))
convergence we have

<P(§)Slimkiﬂf Fy, (u, ) = Fi(u),
whence ¢ (&) =< f(£) since u is arbitrary. This proves the equality ¢ = f, and the

second assertion follows from the previous results applied to any subsequence
of (F,). X

Again following the scheme of [7], fix £ >0 and apply the results above to
the functionals

J [f(hx, e(u))+ele(u)|’]dx if ue WHP(A),
Fi(u A)=4Ja

+ 00 otherwise.

Then, for every ue W'?(A),
I[7(LP(A)) lim Fj(u, A)=T"(L{(A)) lim Fj,(u, A) ZJ fe(e(u)) dx,
h h A
where

ﬂ(§)=inf{J [f(x, e(u))+ele(u)P]dx: u—éxe W( Y)}. (3.1)
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We may now conclude the proof of Theorem 2.1: we have to prove (2.8) for
LF(A) and (2.9) for L§(A); if h is large enough we have

Fy(u, A)= J [f(hx, e(u))+enle(u)"] dx = F (u, A).
A
Then, for every u, - u in L7(A),

lim ian‘ [f(hx, e(u,))+ e, |e(u,)|?] dx =lim inf F, (u,, A)
h A h

EJ fle(u)) dx, (3.2)
A
while there exists a sequence uj, > u in L5(A) such that

lim sup J [f(hx, e(up))+ e, le(up)|”] dx <lim Fj(uj,, A)
h A h

=J' f.(e(u)) dx. (3.3)

By (2.5) and (3.1) it follows that (f.) is decreasing to f, therefore [, f(e(u)) dx =
lim, {4 f.(e(u)) dx by the dominated convergence theorem. Then, by (3.2) and
(3.3), we may choose a sequence u, > u in Li{A) such that

J fle(u)) dx=1i:n J [f(hx, e(u,)) + e, e(u,)|7] dx,
A A
thus proving the assertion. O

3.2. Proof of Theorem 2.2

By Proposition 2.5, the same I'-convergence result holds if we add G(u) = [, gu dx
to the sequence and to the limit functional. To apply Proposition 2.4, thus
concluding the proof of Theorem 2.2, we still have to prove the equicoerciveness
condition. To this aim we need an extension lemma.

Lemma 3.6. Let p>1 and let (), w be bounded open subsets of R" with Lipschitz
boundary, such that o < (). Then there exists a constant ¢({), w) such that for every
ue W' (w; R") there exists iic W"P(Q; R") such that

i=u Ino,
J |e(d)|”dx5c(9,w)J le(u)|? dx.
[$) w

Moreover, c(1Q), tw) = c({, w) for every t> 0.
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Proof. Denote by R, u the projection of u on the rigid displacements of w. Then
the function v = u— R, u belongs to W'”(w) and satisfies

e(v)=e(u) inow.

Moreover, by Proposition 2.7,

nvi|favx~n<w>scj (o +le(@)?) dx

=c J (lu—=Ryul”+le(w)]”) dx=c J le(u)|? dx.

w

By the regularity of o there exists an extension & of v such that

15 wiry=cllvfl wir ),

hence

J |e(5>|»dxscj \DiP dx
Q O

=clvfrre=c J le(u)]? dx. (3.4)

On the other hand, the function R, u is affine, so it is defined on R", and we may
set, in (),

u=R, u+7o,
thus obtaining
u=u inw,
J le(ﬁ)l”dxz‘[ |e(ﬁ)|”dx5cj le{u)l” dx
Q O w

by (3.4).
The invariance of ¢(Q), w) is easy. I

Proposition 3.7. Let u,e WP (Y;R"); the functionals [y [f(hx, e(u))+
en|e(u)|” + gu] dx are equicoercive on u,+ Wyt (Y; R").

Proof. For every a@ € N" such that 0= o, < h for every i, we set
1 1
Yh,a:_h-(Y+a)a Bh,aZZ(B+a)7

and
B, = U Bh,a'

Assume

J [f(hx, e(u,)) + e,)e(u,)|P +gu, ] dx<c
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Then, for any s> 0 (which we will choose later), we have, by (2.4),

j' le(uy)|” dx + e J le(u)l” dx=c+ | glleov)unlicroy
Y\ By

By

=ctsllunllry, (3.5)

where the last constant ¢ depends on s.

Apply Lemma 3.6 to u;, in each of the cubes Y, ,, with v = Y, ,\ B, and
QO =Y,,,and call 4, the function thus obtained. By (2.1), the function 1, belongs
to uy+ WgP(Y), and for every a we have u, —ii, € Wy”(B,,), therefore, by
Proposition 2.7,

- [4 -
j lu,,—umdxs;,;f o) — e(@)]” dx
Bho B

¢ .
Sﬁ j UeCu,)|” +|e(d,)|"] dx. (3.6)
By, «
Then
J |uh|pdeC( ‘ﬁhlpdx+J |uh—ﬁh|pdx>
Y Jy By,
[ 1
Sc< |11,,|”dx+—pj |e(uh)|pdx+j |e(1§h)l"dx>.
JY h By, By,
Since i1, — uge Wg*(Y), by Proposition 2.7,
N
J |dh|”dx§c( ([uo|” +|e(uo)l” +|e(dn)|") dx)
Y JY
=c+c J le(di,)]P dx, (3.7)
Y

hence, by Lemma 3.6 and using (2.7), we have, if h is sufficiently large,

1
J |up | dx = c<l+J le(d,)|” dx +— J le(uy)|? dx)
Y Y h By,

d

sc<1+l[ le(u)|” dx+ &, J |e(u,,)l”dx), (3.8)
Y\ By B,
with ¢ independent of h. If s is properly chosen we obtain, from (3.5) and (3.8),
le(u,)|? dx + ¢, J le(u,)|P dx=c. (3.9)
Jv\s, By,

In particular, by Lemma 3.6 and by (3.7), we have
¢

|e(a,)|” dx = ¢,
JY

. (3.10)

|ah|p dxs C,

JY
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therefore, by Proposition 2.7, the sequence (i, ) is relatively compact in LY(Y).
But, by (3.6), (3.9), and (3.10),

J‘ |uh—11,,|pdx=J |uh—ﬁh|pde
Y B,

Ehhp ’

and, by (2.7), (uy,) is also relatively compact in L7(Y). O

With this result, it is enough to apply Proposition 2.4 to prove
Theorem 2.2. O
3.3.  Proof of Theorem 2.3

The convexity of f, the inequality f(£)=c(1+|¢), and the eventual p-
homogeneity are obvious consequences of (2.5). If f is a quadratic form, for any
ucéx+ W(Y)and ve nx+ W(Y),

S(x, e(u+v))+f(x, e(u—v)) =2f(x, e(u)) +2f(x, e(v)),
therefore
f(e+m)+f(E=n)=2f(&)+2f(n). (3.11)
On the other hand, if ue(é+7n)x+ W(Y) and ve(é—n)x+ W(Y), we obtain
2f(&)+2f(n)=f(E+m)+f(E=m),
which, together with (3.11), implies that f is a quadratic form. We only have to
prove the coercivity of f.

Let uc éx+ W(Y); applying Lemma 3.6 to u with o = Y\ B we obtain a
function 4 such that

J Ie(ﬁ)]”dxst’ le(u)|? dx
Y Y\B

and, in addition,
deéx+ W(Y),

since @ = u near the boundary of Y. In particular, we have {, (Dd—¢) dx =0,
then, by the convexity of the function |¢|?,

f |le(i)[” dx = |§|"+PI§|”2§J (e(d)—¢) dx=|¢[",
Y Y
so that
J fle(u)) dxzj le(u)lP dx = J le(i)]” dx = clgl,
Y\B Y\B Y
and the conclusion follows by taking the infimum on ue &+ W(Y). O

Remark 3.8. All the results are still valid if instead of &, [y |e(u)|” dx we add
£ jyf(x, e(u)) dx to the functionals F;, with

€17 =f(x, &) =c(1+[€]").



102 E. Acerbi and D. Percivale

References

1. Braides A (1983) Omogeneizzazione di integrali non coercivi. Ricerche Mat 32:347-368

2. Carbone L, Sbordone C (1979) Some properties of I'-limits of integral functionals. Ann Mat
Pura Appl (4) 122:1-60

3. Cioranescu D, Saint Jean Paulin J (1974) Homogenization in open sets with holes. J Math Anal
Appl 71:590-607

4. De Giorgi E, Dal Maso G (1983) I'-convergence and calculus of variations. In: Cecconi J P,
Zolezzi T (eds). Proceedings of the Conference on Mathematical Theories of Optimization,
S. Margherita Ligure, 1981. Lecture Notes in Mathematics, vol 979. Springer-Verlag, Berlin,
pp 121-143

5. Gobert J (1962) Une inégalité fondamentale de la théorie de I’élasticité. Bull Soc Roy Sci Liege
31:182-191

6. Marcellini P (1978) Periodic solutions and homogenization of nonlinear variational problems.
Ann Mat Pura Appl (4) 117:139-152

7. Mortola S, Profeti A (1982) On the convergence of the minimum points of nonequicoercive
quadratic functionals. Comm Partial Differential Equations 7:645-673

Accepted 12 January 1987



