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Abstract. In this paper  we study the asymptotic behavior, as h-> oo, of the 
minimum points of  the functionals 

f [f(hx, Du)+gu] dx, 

where f(x, #) is periodic in x a n d  convex in ~:, and u is vector valued. A 
convergence theorem is stated without uniform coerciveness assumptions. 

I. Introduction 

The classical homogenization problem is the study of  the behavior, as h ~ ~ ,  of  
the minimum points on Uo+ W~ "p of the functionals 

f [f(hx, Du)+gu] dx, (1.1) 

where f(x, #) is periodic in x and convex in ~:. Many convergence results have 
been obtained in the scalar case u: 12 ~ R (see the extensive bibliography of [2]). 

I f  the function f satisfies 

f(x, s c ) >-I~1 ~, (1.2) 

then the scalar results may be extended to the many-dimensional case u: 1~ ~ ~". 
Without condition (1.2), however, some convergence results for the minimum 
points of (1.1) have been given, in [1], [3], and [7] only in the scalar case. We 
deal with a many-dimensional case, in which, in addition, the function f depends 
on Du through the strain tensor e(u)= (Du +tDu)/2. 
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Consider a foamlike periodic structure Y made of an elastic material with 
holes filled by a softer material. If  B denotes the union of the holes, the elastic 
energy is given by 

E(u)=f f(e(u))dx+e f f(e(u))dx, 
Y \ B  B ~ 

where f is a positive-definite quadratic form of the strain tensor. We study the 
case when both the period 1/h of the structure and the Young modulus e h of 
the filling material go to zero. Then, denoting the holes again by Bh, the energy 
is 

Eh(u) = f f(e(u))[~V\B,,(X)+eh~Bh(X)] dx. 
d Y 

If  eh is not too small (lira h2eh = + ~ ) ,  the solutions of 

min{Eh(u)+ fygudx: u-uocH~o(Y;"")} 

converge in L2(Y) to the solution of 

min{ E~(u)+ f ygu dx: u-uo~ H~o( Y; W') 1, 

where the homogenized functional E~ is an integral: 

E~(u) = fyf(e(u)) dx 

with .f of the same type of f 
Our result (Theorem 2.2) also holds when both materials are allowed to be 

inhomogeneous ( f  depends on x), and f need not be a quadratic form in ~, but 
a generic convex function such that 

o<-f(x,¢)<-c(l+l~l') ( p > l )  

with f(x, ~) >-I~:l p only outside the holes. We remark that this general case leads 
to a fully nonlinear system of partial differential equations. 

2. Statement of Results 

In the following we denote by Y the cube ([0, l[)n; a function f is said to be 
Y-periodic i f f(x+z)=f(x) for all zcZ n and x c R " .  We denote by M, the set 
of  real n × n matrices, and by M +, M~ the sets of  symmetric and skew-symmetric 
matrices. By t~: we denote the transpose of a matrix ~:. I f  A~_ ~ ,  by LP(A; R ~) 
we denote the space of functions whose n components belong to LP(A), and 
analogously for the spaces W ~'p and W~ 'n. For such functions we set 

e(u) = (Du + t(Du))/2. 



Homogenization of Noncoercive Functionals 93 

We say that a sequence (Uh)c  LP(A; R") converges to u in LP(A; ~") if Uh "-> U 
in LP(A; R") and spt(uh--U) is compact  in A for every h. Finally, we set 

l , p  n n . W(Y)  = {u c W,oc(E ; R ). u is Y-periodic}. 

Let B be an open subset of  Y, with Lipschitz boundary  and well contained 
in Y, i.e. 

dist(B, 0 Y) > 0. (2.1) 

Fix p > 1 and let f :  R ~ × M + --> R satisfy 

f ( . ,  ¢:) is measurable,  f(x, • ) is convex, (2.2) 

O<-f(x,¢)<-c(l+lCJP), with c - l ,  (2.3) 

f(x, ~)-> ]sc[ p if x e Y\B. (2.4) 

We set, for every ( c  M,:,  

f(~:) = i n f { f r  f (x ,e(u))dx:  u- ,~xc W ( Y ) } .  (2.5) 

In addition, fix g~Lq(Y;R") ,  with p 1 + q - ~ = 1 .  We define, for  all h e n  and 
u c Lv( Y; R"), 

Fh(U)=I~vf(hx,  e(u)) dx if u6 W1'P(Y;R"), 

otherwise, 

and, for  all u c WI'p( Y; R"), we set 

F(u) = f f(e(u)) dx. 
d Y 

Finally, let (eh) be a sequence of  nonnegat ive numbers  such that 

lim eh = 0, (2.6) 
h 

lim hPeh ---- q-~. (2.7) 
h 

We prove the following theorems in Section 3. 

Theorem 2.1. Assume only (2.2), (2.3), and (2.6) hold. Then, for every open set 
AG Y and every u~ WI'P(A; ~n), 

f,, f (e(u))  dx=F-(LP(A; , " ) ) l i m  fA [f(hx, e(u))+ ehle(u)[ p] dx 

= F-(LoP(A; N") ) l im fA [f(hx, e(u))+ehle(u)l p] dx. 
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Theorem 2.2. Assume (2.1)-(2.7) hold. Then, for every u ~ wl 'v(Y;  En), 

m i n { F ( u ) +  IY g u d x : u - u o ~ W ~ ° ' ; ( Y ; R n ) }  

= lim min { Fh ( u) + f v [gu + eh[e( u)lP] dx: u - uoe Wlo'P( Y; ~n) }.  

Moreover, the minimum points on Uo+ W~'P(Y; N") of the functionals Fh(U)+ 
Iv [gu+ehle(u)f] dx converge in L P ( Y ; N  n) to the minimum point of F ( u ) +  
~ v gu dx. 

Theorem 2.3. Let f be as above. Then the function f is convex and satisfies, for 
every ~ c M+~, 

1 

C 

If, in addition, the function f is p-homogeneous with respect to ~, then the same is 
true for ~ In the case p =2,  if f is a quadratic form in ~ so is ~ 

Theorem 2.2 may be deduced from Theorem 2.1 through the theory ofF-limits, 
whose definition and main properties will be given hereafter. 

Let X be a metric space, and Fh, F functionals from X to ~. We state that 

F(x)  = F - (X)  lim Fh (x) 
h 

if the following conditions hold: 

F(x)<--liminfFh(Xh) for every x h ~ x ,  (2.8) 
h 

there exists ~h~X suchthat  F(x)=l imFh(Xh) .  (2.9) 
h 

The sequence (Fh) is equicoercive if, for every c c R ,  we can select from every 
sequence (Xh), such that Fh (Xh) --< C, a subsequence (Xhk) which converges to some 
x E X .  

Proposition 2.4 (see Theorem 2.6 of [4]). I f  the sequence ( Fh) is equicoercive and 
F = F - ( X )  limhFh then F has a minimum on X and m i n F = l i m h ( i n f F h ) .  
Moreover, if limb Fh (Xh) = limb (inf Fh) and Xh -~ X in X then x is a minimum point 
for F. 

Proposition 2.5 (see Theorem 2.3 of [4]). I f F  = F (X) limb Fh and G: X ~ R is 
continuous, then F + G = F (X) limb (Fh + G). 

The existence of the minima above, and the convergence of the minimum 
points, depend on the following Korn-type inequalities, which are essentially 
contained in [5]. Let p > 1, and let ~ be a connected open subset of R n with 
Lipschitz boundary. 
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Proposition 2.6. I f  u c WI'p(I); ~") satisfies e( u ) = 0 in fl, then there exist a ~ R" 
and #~ M~ such that u ( x ) =  ~x + a in ~. 

The affine functions with skew-symmetric gradient are called rigid displace- 
ments, and, for any u~LP( f~ ;~" ) ,  we denote by R~u its projection on the 
subspace of rigid displacements of fL 

Proposition 2.7. There exist two constants c([~) and c'(fl) such that 

fa  ( ]u f+[Du f )  d x < - c ( a ) f a  (]uf+]e(u)]P)dx for all u c  W"r( l l ;  R"), 

fa  lu]p dx<-c'(f~) fa  [ e (u ) f  dx for all u c Wa'P(f~; ~"), 

l [ u -  Rnu[ p dx<_ c'(l)) f [e(u)[ p dx for all u e W"v(f~; R"). 
Of l 

Moreover, c'( a ~  ) = aP c'( O ) for every a > O. 

3. Proof of Results 

In the following, if no confusion is possible, we will denote all positive constants 
by the same letter c, and, except in the statements, we will simply write LP(A) 
instead of LP(A; ~"), and the same for L p, W ''p, and W~ "p. 

3. I. Proof of  Theorem 2.1 

First, we need a compactness result with respect to F-convergence. 

Theorem 3.1. Let p >- l and let fh : R n × Mn -~ ~ satisfy 

fh ( ", ~) is measurable, fh (X,') is convex, 

0 --<fh (X, s c) --< C(1 + [~:lP). 

For every open set A and every u c LV(A; R ~) set 

F h ( u , A ) = I f A f h ( X ,  Du) dx i f u 6  WI'P(A;Rn),  

+oo otherwise. 

Then there exists a function q~: R" x Mn ~ff~ satisfying the same conditions as (fh), 
and a subsequence (fhk), such that for every bounded open set A and every 
u ~ WI'P(A; ~") 

IA ¢(X, DU) dx=F-(LP(A;  •")) lim Fhk (U, A) 
k 

= F-(LP(A; R")) lim Fhk (u, a). 
k 
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The proof  is standard in the theory of F-convergence; for example, it is 
similar to Theorem 3.2 of  [2] and we omit it. If  f satisfies (2.2) and (2.3) then 
the functions fh (X, ~) =f(hx ,  (¢+  '~:)/2) satisfy the assumptions of  Theorem 3.1, 
hence for a suitable subsequence we have 

faq~(X, Du) = F-(LP(A)) l im Fhk (U, A) dx 
k 

= F-(L~(A))  lim Fhk (U, A) 
k 

for every open set A g Y and every u ~ W~'P(A); the function ~p(x, ~:) is measurable 
in x and convex in ~, and satisfies 

0-< ~(x, ~) -< c(1 + I~1~). 

Since the period Y/ha of the integrand fh~ vanishes as k -  ~ ,  one may expect: 

Proposition 3.2. The function ~ is independent of  x. 

The proof  is the same as Lemma 4.2 of  [6]. Also, since the integrand fhk 
depends only on e(u), it is not surprising that the same is true of  q~; this depends 
on Lemma 3.3. 

Lemma 3.3. Let qJ be a real convex function on a vector space V. I f  tp( t~)=O for 
every t c R then 

~b(x)=qJ(x+tY~) for all t c R  and x ~ V .  

Proof. For all s > 1, 

~ b ( x + t : ~ ) = ~ b ( ( 1 - ~ )  s--- -~--x+lst~)--<(a-~)~(s--~slx)  • 
s - 1  s / 

taking the limit as s ~ + ~ ,  by the continuity properties of  q~, 

q,(x+ t~) <- ~(x) 

for all t c ~, hence the convex function t ~ ~ (x  + t~) is constant. [] 

Proposition 3.4. The function q~( ~ ) depends only on (~:+t~:)/2. 

Proof By (2.8), for every ~7 c M~, 

0--- ~('O) -< limkinf I y f (  hk x, rl ) dx = O, 

hence, by Lemma 3.3, for every ~ ~ Mn, 
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We prove a representation formula for ~. 

Proposition 3.5. The function ~ is equal to f of (2.5), and the subsequence (Fhk) 
is the whole sequence ( Fh ). 

Proof. As in Proposition 2.6 of [7] one proves that 

inf{Fh (u): u -  ¢x e W( Y)}= f(¢). 

Then, by the F-(LoP(A)) convergence, 

~(~:) =min  {l iminf  Fhk (Uhk): Uhk--¢XC W~'P(Y), uh~- ~:x in L~( Y)} 

-- inf inf(G~ (u): u - ¢x c W~J ( Y) } 
k 

-->infinf(Fh~(u): u -  ¢x c W( Y)} 
k 

=f(¢). 

On the other hand, let u ~ ¢x + W(Y) and set 

1 u~(x)=-d u(hx). 

Then uh ~ s~x + W(Y) and uh -* ~:x in L p (Y), and Fh ( uh ) = F1 ( u ); by the F- ( L p (Y )  ) 
convergence we have 

¢(¢)-< lim inf Fh~ ( uh~ ) = Fl ( u ), 
k 

whence ~(~:)-<f(¢) since u is arbitrary. This proves the equality ¢ =y~ and the 
second assertion follows from the previous results applied to any subsequence 
of (Fh). [] 

Again following the scheme of [7], fix e > 0 and apply the results above to 
the functionals 

F ~ ( u , A ) = I f a [ f ( h x ,  e(u))+e,e(u),P]dx if u c W I ' p ( A ) ,  

[ + oc otherwise. 

Then, for every u~ WI'p(A), 

F-(LP(A)) lim FT, (u, A) = F-(LoP(A)) lim F~ (u, A) = f f~ (e(u)) dx, 
h h d a  

where 

f~(~)=inf{ f v [f(x, e(u))+ e]e(u)[P] dx: u -  ~x ~ W(Y)} .  (3.1) 
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We may now conclude the proof of Theorem 2.1: we have to prove (2.8) for 
LP(A) and (2.9) for L0P(A); if h is large enough we have 

Fh (u, A) <- fA [f(hx, e(u)) + eh [e(u)] p] dx <-- F~h(U, a).  

Then, for every Uh ~ U in LP(A), 

lira inf f [f(hx, e(uh)) + eh ]e(uh)] p] dx >- lim inf Fh (Uh, A) 
h dA h 

>- fa  f ( e (u ) )  dx, (3.2) 

while there exists a sequence u~ ~ u in LOP(A) such that 

sup f [f(hx, e(u~h)) + eh [e(u~,)[ p] dx <- lim FT, (u~,, A) lim 
h ,] A h 

= f fF(e(u)) dx. (3.3) 
3~ 

By (2.5) and (3.1) it follows that (f~) is decreasing to f,  therefore ~af(e(u))  dx = 
lim~ ~AfF(e(u)) dx by the dominated convergence theorem. Then, by (3.2) and 
(3.3), we may choose a sequence uh ~ u in LOP(A) such that 

IA f ( e (u ) )  dx =lihm fA [f(hx, e(Uh))+ ehle(Uh)l p] dx, 

thus proving the assertion. [] 

3.2. Proof of  Theorem 2.2 

By Proposition 2.5, the same F-convergence result holds if we add G(u) = ~A gu dx 
to the sequence and to the limit functional. To apply Proposition 2.4, thus 
concluding the proof of Theorem 2.2, we still have to prove the equicoerciveness 
condition. To this aim we need an extension lemma. 

Lemma 3.6. Let p > 1 and let ~2, to be bounded open subsets of ~n with Lipschitz 
boundary, such that to ~_ fL Then there exists a constant c(f~, to) such that for every 
u C w l ' P ( t o ;  ~ n )  there exists Ft ~ W~'P(Y~; R n) such that 

~ = u into, 

f le(~)lPdx<-c(f~,to)fle(u)lPdx. 
Moreover, c(tf~, tto) = c(~), to) for every t > O. 
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Proof Denote  by R,o u the project ion of  u on the rigid d isplacements  of  to. Then 
the funct ion v = u -  R,ou belongs to Wl'n(to) and satisfies 

e(v)=e(u) in to. 

Moreover ,  by Proposi t ion 2.7, 

Ilvrl~' p(o)~< c f~ (Ivl" + le(v)l p) dx 

By the regularity of  to there exists an extension g of  v such that  

I1~11 w'"(m -< cllvll w','(~, 
hence 

f, le(')lP d x ~ c  fa[D~lP dx 

-< c[[vll~,,,,(~)-< c f~ le(u)f dx. (3.4) 

On the other  hand,  the funct ion R~o u is affine, so it is defined on N n, and we may  
set, in f~, 

~=R,ou+~, 

thus obtaining 

t i = u  into, 

f, le(a)lVdx=f~ le(~)rdx<-c f le(u)f dx 
by (3.4). 

The invar iance of  c(f~, to) is easy. [] 

Proposit ion 3.7. Let uocW~'P(Y;R~); the functionals Iv[ f (hx ,  e(u))+ 
eh ]e(u)[P + gu] dx are equicoercive on Uo+ WI'p( Y; R"). 

Proof For  every a c N ~ such that  0-< a~ < h for every i, we set 

1 1 
Yh.. = ~  ( Y + a ) ,  Bh.~ = ~  ( B + a ) ,  

and 

Bh = U Ba,,~. 

Assume 

f [f(hx, e(u~))+eh[e(uh)lV +guh] dx < - c. 
Y 
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Then, for any s > 0 (which we will choose later), we have, by (2.4), 

I ]e(uh)]Pdx+e" I le(uh)lPdx<-c+llgllL"(v)lluhllu'(v) 
Y \ B h  811 

-< e+sllu~llF(y),  (3.5) 

where the last constant e depends on s. 
Apply Lemma 3.6 to uh in each of the cubes Ya,,, with ~o = Yh,,~\Bh,~ and 

fl = Yh,•, and call uh the function thus obtained. By (2.1), the function uh belongs 
to Uo+ W~'P(Y), and for every a we have uh- t~ac  W~'P(Bh,~), therefore, by 
Proposition 2.7, 

]uh-GlP dX-hp le(uh)-e(G)lP dx 
Bl,,a Bh.a cf 

- h" [le(u,)l~+le(G)l p] dx. (3.6) 
Bh, a 

Then 

f lu~l'dx~c(fyla, tPdx+fB, luh-C'~lPdx ) 

<--C(fvlffhlP dx+-~p fB, le(Uh)lP dx+ fB, le(F~h)'P dx ) • 

Since tih -- u0c W~'P(Y), by Proposition 2.7, 

<-c+c f le(G)lP dx. (3.7) 
. I  Y 

hence, by Lemma 3.6 and using (2.7), we have, if h is sufficiently large, 

f y [uhlP dx ~ c ( l + f v 'e( G )l" dx + ~ f ~,,'e( uh )'P dx ) 

I 
Y \ B h  Bh 

with e independent of  h. I f  s is properly chosen we obtain, from (3.5) and (3.8), 

f ,e(uh)lrdx+e,,f ,e(Uh)lt'dx<~c. (3.9) 
Y \  B h Bh 

In particular, by Lemma 3.6 and by (3.7), we have 

f le(uh)lPdx<-c, 
Y 

f lahlrdx<-c, 
Y 

(3.10) 
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therefore, by Proposition 2.7, the sequence (fib) is relatively compact in LP(Y). 
But, by (3.6), (3.9), and (3.10), 

f luh--ahlPdx=ff ,uh-GlPdx<- c 
Y Bt, eh  h p  ' 

and, by (2.7), (/'/h) is also relatively compact in LP(Y) .  [] 

With this result, it is enough to apply Proposition 2.4 to prove 
Theorem 2.2. [] 

3.3. Proof of Theorem 2.3 
The convexity of v~ the inequality f(~)<-c(l+l¢lP), and the eventual p- 
homogeneity are obvious consequences of (2.5). I f f  is a quadratic form, for any 
ucCx+W(Y) and v~Bx+W(Y), 

f(x, e(u + v))+ f(x, e(u- v))= 2f(x, e(u))+ 2f(x, e(v)), 
therefore 

f ( ¢ +  r/) + f ( ¢  - r/) -< 2f(~:) + 2f(r /) .  (3.11) 

On the other hand, if u~(¢+~7)x+ W(Y) and v~(¢-~7)x+ W(Y), we obtain 

2f(~:) + 2 f ( n )  -< f(~: + 7) +f(~: - n), 

which, together with (3.11), implies that f is a quadratic form. We only have to 
prove the coercivity of)7. 

Let ue~x+ W(Y); applying Lemma 3.6 to u with w =  Y\B we obtain a 
function 5 such that 

f ,e(u)]Pdx<-cf ,e(u)lPdx 
Y Y \ B  

and, in addition, 

~e ~:x+ w(Y), 

since t~ = u near the boundary of Y. In particular, we have ~, (D~- ~) dx = O, 
then, by the convexity of the function ]t] p, 

le(~)lP dx>_l~lp +pl~lp 2~ f ( e ( ~ ) _ c )  dx_=l,gl p, 
d Y 

I f(e(u))dx>-I le(u)lPdx>-cf [e(ff)lPdx>-cl(lP' 
Y \ B  Y \ B  Y 

and the conclusion follows by taking the infimum on u ~ ~x + W(Y). [] 

Remark 3.8. All the results are still valid if instead of eh Iv [e(u)[ p dx we add 
eh Ivf(x, e(u)) dx to the functionals Fh, with 

[([P <--f(x, ~) <-- c(1 + [~:IP). 
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